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Abstract: Accurately predicting the volatility of financial asset prices and exploring its laws of
movement have profound theoretical and practical guiding significance for financial market risk
early warning, asset pricing, and investment portfolio design. The traditional methods are plagued
by the problem of substandard prediction performance or gradient optimization. This paper proposes
a novel volatility prediction method based on sparse multi-head attention (SP-M-Attention). This
model discards the two-dimensional modeling strategy of time and space of the classic deep learning
model. Instead, the solution is to embed a sparse multi-head attention calculation module in the
network. The main advantages are that (i) it uses the inherent advantages of the multi-head attention
mechanism to achieve parallel computing, (ii) it reduces the computational complexity through
sparse measurements and feature compression of volatility, and (iii) it avoids the gradient problems
caused by long-range propagation and therefore, is more suitable than traditional methods for
the task of analysis of long time series. In the end, the article conducts an empirical study on the
effectiveness of the proposed method through real datasets of major financial markets. Experimental
results show that the prediction performance of the proposed model on all real datasets surpasses
all benchmark models. This discovery will aid financial risk management and the optimization of
investment strategies.

Keywords: sparse multi-head attention; volatility forecasting; neural network; gradient problems

1. Introduction

Finance is the core of the modern economy, and economic and financial globalization
has exacerbated the generation, exposure, spillover, and contagion of financial market
risks. The prediction of financial volatility plays an important role in studying financial risk
management, asset pricing, and investment portfolio theory. Improving the accuracy of
volatility forecasts, prompting decision-makers to decide on expected changes in advance,
is of great significance to maintaining the stability of the financial market and improving
investment returns. With the continuous development of computer technology, the ability
to acquire and use financial market transaction data is increasing, and more asset price
information can be used in research and practice. This type of data contains richer market
information and can reflect the price fluctuations of financial assets. In the past 40 years,
many scholars at home and abroad have carried out a significant amount of research
work around volatility prediction, exploring the law of fluctuations in financial asset
prices. Among them are classic time series forecasting models based on the law of large
numbers and central limit theory, including the autoregressive model (AR), random walk
model (RW), moving vector autoregressive model (ARIMA), etc. However, these models
have strong assumptions about the constant variance of price fluctuation data and cannot
effectively model the “spike”, “fat tail”, and “clustering” characteristics of volatility changes
that reflect the complexity of the time series of financial volatility.

In 1982, Engle [1] first proposed the conditional heteroscedasticity (ARCH) model,
which is an econometric model developed on the basis of the AR model, abandoning the
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ideal assumption that variance is constant. This model has a more powerful ability to fit
and explain financial time series and has been widely used in financial time series analysis.
However, the characteristics of ARCH inevitably produce a large number of parameters to
be estimated and consume significant computational resources, which limits the popularity
of the model. In 1986, Bollerslev [2] added the variance lag term of the ARCH model and
creatively proposed generalized autoregressive conditional heteroscedasticity (GARCH)
to improve the universality of the model. Subsequently, many variants or combinations
of models based on GARCH have been proposed and widely used in financial volatility
prediction and risk measurement [3–6]. F Klaassen [7] (2002) proposed the Markov regime-
switching GARCH model to achieve multi-cycle volatility forecasts for the United States
dollar. Abdalla and SZ Suliman [8] (2012) used GARCH to forecast currency exchange rate
volatility. P Agnolucci [9] (2009) compared the predictive performance of the GARCH and
implied volatility models using West Texas Intermediate Oil contract data. Nelson Daniel,
B. (1992) examined the relation between stock returns and stock market volatility. They
found evidence of a negative correlation between current returns and future returns and
proposed the exponential general autoregressive conditional heteroskedastic (EGARCH)
model [10].

Compared to GARCH, the stochastic volatility (SV) method can better describe the
characteristics of financial price fluctuations and has good statistical characteristics. Melino,
Turnbull, and Stuart M. [11] (1990) studied the impact of stochastic volatility on spot foreign
currency option pricing and proposed a method of exchange rate diffusion with stochastic
volatility to price foreign currency options and compare their pricing with observed market
prices. Tse [12] (1991) used the stochastic volatility method to model and predict the
volatility of the Japanese stock market, and through experiments proved that the stochastic
volatility method (SV) is better than GARCH in the Asian market. Mariani et al. [13] (2018)
proposed a random volatility method that relies on filtering techniques and compared
it with GARCH. The results show that SV is a better forecasting tool than GARCH (1,1).
Suk-Joon Byun, Sol Kim, Dongwoo Rhee [14] (2009) suggested using SV to predict future
volatility from option prices.

The model of stochastic volatility (SV) improves the generalization ability of data by
adding extra white noise to the variance equation, but this extra feature makes it difficult
to estimate the SV model accurately, which restricts the application of the model. The
realized volatility (RV) theory, proposed by Anderson [15] (2003), is another widely studied
theory about modeling financial volatility. Compared to GARCH, SV, and other traditional
models, this theory can reflect the macroscopic and microscopic information on volatility
more fully. Moreover, it overcomes the shortcoming of the traditional model. There are
many modeling methods based on the RV theory. Among them, Corsi, Audrino, and
Renò [16] (2012) proposed the different value regression realized volatility (HAR-RV),
which has attracted wide interest among scholars. This method calculates the average
realized volatility of the day, week, or month, and obtains the corresponding realized
volatility of the day, week, or month. Based on the HAR model, Qu and Ji [17] proposed
an adaptive heterogeneous autoregressive (AHAR) model to optimize the original HAR
model by genetic algorithm to adapt to the market with different time structures. The
model can automatically adjust the structure and actively adapt to changes as the market
changes over time. In addition, the model also characterizes the typical characteristics of
high-frequency financial data such as long-term memory, peaks, and thick tails, and can
use least squares estimation, so it has a wide range of application scenarios [18].

In recent decades, intelligent prediction technology represented by machine learn-
ing has made breakthroughs. It has powerful processing capabilities for massive, high-
dimensional, high-noise, non-linear, and non-stationary data, so it has been widely used in
the field of financial data analysis. Among the machine learning methods that can be used
to predict volatility, especially the support vector machine [19] and neural network [20]
methods are the most popular. SAH A and ZI B [21] (2004) applied the artificial neural
network method to volatility prediction through the futures options pricing model. After
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comparing with the implied volatility of S&P 500 index futures options, they found that
they were based on an artificial neural network. The forecasting performance is better
than the implied volatility, and there is no significant difference between the predicted
value and the actual volatility. LBTang, LXTang, and HYSheng [22] (2019) believed that
conventional support vector machines could not accurately describe the aggregation phe-
nomenon of stock market return volatility, and proposed a wavelet kernel function SVM,
namely WSVM, and used real data to evaluate the model. Applicability and effectiveness
are verified.

Kristjanpoller and Minutolo [23] (2016) proposed a hybrid model based on the com-
bination of artificial neural networks and GARCH and applied it to the prediction of
crude oil price volatility. E. Ramos-Pérez et al. [24] (2019) stack multiple machine learning
methods such as random forest, support vector machine, and artificial neural network into
a combined model. The experimental results of the volatility of the S&P500 index show
that the model has higher prediction accuracy than the baseline method.

Deep learning is the most important subset of machine learning. It not only has
made great achievements in pattern recognition and natural language processing but also
has been widely used in the financial field. Many traditional complex problems have
been solved with great breakthroughs [25]. LSTM [26] is a deep learning model that can
analyze time-series data and has long-term memory ability and nonlinear fitting ability.
At present, it has been used by many scholars to forecast financial asset price volatility.
Kim and Won [27] put forward the GEW-LSTM model based on the combination of LSTM
and GARCH. All of the MSE, MAE, and HMSE show that GEW-LSTM is better than the
advanced forecasting methods.

Liu, Y. [28] (2019) used a long and short-term memory recurrent neural network
(LSTM) to conduct a series of volatility prediction experiments. Experimental results
show that this method is better than classical GARCH (SVM) prediction results, which
benefit from the powerful data fitting ability of deep learning. Traditional deep learning
methods such as LSTM and GRU have a long memory capacity, but the remote valuable
information is transmitted to the current node in a hidden state with a lag time sequence.
The longer the transmission distance, the more information is forgotten, and the risk of
mission failure increases. Bahdanau, Cho, and Bengio [29] (2014) introduced the attention
mechanism to neural networks for the first time, so that the model can capture and lock
important information and improve the accuracy of machine translation. Since then, the
attention mechanism has been continuously improved and has gradually become one of
the mainstream technologies of natural language processing [30]. Google (2017, Ashish
Vaswani et al. [31]) further proposed a deep learning model, transformer, based on a new
self-attention mechanism, which has better output quality and more effective parallelism
than previous machine translation methods.

LSTM and GRU add gate mechanisms based on RNN, but they are still recurrent
neural networks in essence. In other words, the state of the nodes in such networks
depends on the hidden information about the previous time step. Although the gate
control mechanism alleviates the problem of gradient explosion and disappearance to
some extent, it cannot completely solve the above problems. Furthermore, the recurrent
neural network can only transfer information sequentially, which affects the speed of the
model. Transformer realizes parallel computing, but there are many problems such as too
many waiting parameters, quadratic time complexity, and large memory consumption,
which limit its application for long time series analysis tasks. Zhou, Zhang [32] (2020)
presents the Informer model, which is a variant based on the transformer. It includes a
self-attention mechanism called ProbSparse. This mechanism uses a sparse mechanism to
reduce the input feature information and the parameters to be learned by halving step by
step, which effectively reduces the quadratic time complexity of LSTF tasks. Experiments
on such datasets as electricity consumption showed that the performance of Informer is
significantly better than that of the existing methods and provides a new solution to the
LSTF problem.
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The most significant contribution of our work is the proposal of a sparse multi-head
attention (SP-M-Attention) based volatility prediction model, which draws inspiration
from the design of transformer and Informer. This novel approach uses an encoder-
decoder architecture. It makes full use of the parallel processing mechanism of multi-head
attention to capture complex features, achieving the goal of improving the efficiency of
data fitting. However, the problem of gradient disappearance during the learning of
long-term autocorrelated features still cannot be solved if we rely on multiple attentions
alone. Hence, we then introduced the approximate sparse measure in the multi-head
attention module to obtain a sparse representation of the query. Subsequently, we could
then compute the prediction results with relatively few key queries. As can be seen
from the above description, the method makes full use of the sparse characteristics of
financial volatility sequences and achieves learning and prediction of long-term memory
features of volatility sequences without sacrificing prediction accuracy. Compared to
traditional methods, this novel model is more effective for volatility prediction tasks with
long-memory, non-stationary features, and significantly improves prediction accuracy.

The rest of this article is arranged as follows. Section 2 is related to the work, summa-
rizing the preliminary related research, introducing some relevant technical background,
and research strategy. Section 3 describes the core modules of the proposed approach.
Section 4 presents the layout of experiments and evaluates the results. Finally, Section 5
summarizes the work of this paper.

2. Related Work

Volatility forecasting research is an active branch of finance research, and many meth-
ods have emerged in the last decades. However, none of these methods is perfect, and
all of them have some insurmountable shortcomings in terms of model structure, esti-
mation methods, and applicability. For example, the GARCH family models require a
numerical balance between the degree of random factor shocks and the degree of volatility
persistence, which makes it difficult to capture sudden and large fluctuations in financial
markets during the estimation of GARCH-type models. In addition, the descriptive and
predictive power of GARCH-type models depends heavily on the type of distribution of
the stochastic disturbance term ε, which reduces the usefulness of GARCH-type models.
The non-linear relationship between unobservable log volatility and returns in SV models
makes the calculation and modeling of the likelihood function extremely difficult. RV
has a strong volatility portrayal capability, but in the estimation stage of the model, the
sampling frequency cannot obtain a consistent standard, which hinders the construction of
a reasonable model. The heterogeneous autoregressive (HAR) model combines volatility
components of different frequencies to capture heterogeneous market participant types,
and although it is highly analytical, the complex structure of the data makes the model
inadequate in characterizing certain features [33]. The above approaches based on tradi-
tional statistics or econometrics, which usually rely on linear regression, do not achieve
the desired accuracy of prediction when the explanatory variables are strongly correlated
or exhibit low signal-to-noise ratios, or when the data structure presents a high degree of
nonlinearity. In contrast, general machine learning and deep learning algorithms rely on
big data-driven and supervised learning methods with strong data-fitting superiority, but
remain inadequate in areas such as learning of fine-grained and long-memory features.

Recent studies show that deep learning, especially recurrent neural networks, is the
most effective method to predict volatility. RNN can learn the autocorrelation features
of time series, but the risk of gradient disappearance or explosion increases with the
increase in the length of the input series. This defect limits the learning of long sequence
dependence and long-term memory features for recurrent neural network models. LSTM
and GRU, which are variants of RNN, adjust the transmission and storage of information
by gate control structure, to some extent reducing the negative effect of gradient problems.
However, they do not solve the problem of long-term memory of information because of all
RNN family models passing information in order. The state and output of each time node
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depend on the state of the previous history node, not just the current input. At present,
LSTM mainly adopts the strategy of multi-layer stacking to capture long-term time-series
features. The longer the time series interval and the more LSTM stack layers, the longer the
path of information transmission will be. This situation increases the risk of information
loss and reduces the model’s predictive performance.

The attention model draws on human thought patterns. It can directly learn the
dependence between any two objects in time or space, ignoring the Euclidean distance.
This advantage can help observers to quickly capture high-value information. The self-
attention mechanism is a type of special attention that describes the autocorrelation of time
series variables. It relies less on external information and is better at capturing the internal
autocorrelation of time series data. Therefore, it has been applied in natural language
processing and time series analysis.

The essence of the attention mechanism is the process of focusing on important
information or addressing it. Given a query vector q related to the task, calculate the
probability distribution of the attention for each Key, and multiply it by the value to obtain
the attention score. A typical self-attention framework named scaled dot-product attention
is shown in Figure 1:
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Step 1: In the embedding layer, we convert each input X:,t to a feature vector X
with dimension d, where X:,t = {x1,t, x2,t, . . . , xN−1,t, . . . xN,t}T ∈ RN×1, which is the
observation vector of N time series at the t-th time step.

Step 2: Multiply the embedding vector X by the weight matrix WQ ∈ Rd×Lk , WK ∈
Rd×LK , WV ∈ Rd×LV .

Q = X·WQ, K = X·WK, V = X·WV (1)

This is a linear transformation of the embedded vector process. K and Q make up the
key-value combination, so WQ and WK have the same dimensions.

Step 3: QKT√
dk

. Given the time cost and space efficiency of the calculations, we preferred

scaled dot-product attention. Multiply QKT by scaling factor 1√
dk

, so that the gradient

can be kept stable, and the solution process can be correctly converged until the optimal
solution is obtained. If the result after dot multiplication is too large, the gradient may fall
into a very small region when the adjustment of the parameter propagates backward.
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Step 4: softmax
(

QKT√
dk

)
. Convert the vector to a probability distribution that has a

range of [0, 1] and a sum of 1. The probability here can be understood as the weight
multiplied by the value V.

Step5: Calculate and obtain the weighted attention score Attention(Q, K, V) of each
input vector. This score determines the contribution of each input to the current location
label.

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (2)

The SP-M-Attention model proposed in the next section of this paper is a special
attention mechanism that has been improved and optimized to fit our problem.

3. Methodology
3.1. Problem Discussion

We will build an efficient forecasting model to capture the autocorrelation characteris-
tics of volatility and the correlation with N-1 other time series at medium-grain or fine-grain.
The input X = {X:,0,X:,1, . . . , X:,t, . . .}, where X:,t = {x1,t, x2,t, . . . , xN−1,t, . . . xN,t}T ∈ RN×1.
X is a multivariate time series consisting of the predicted series itself and other N-1 auxiliary
time series. Our goal is to predict the future values of volatility based on the observed
historical data of the N correlated time series. It can be described by Equation (3).

{X:,t+1, X:,t+2, . . . , X:,t+τ} = Fθ(X:,t, X:,t−1, . . . , X:,t−T+1) (3)

where θ denotes all the learnable parameters in model training, F(·) denotes the proposed
model, and τ denotes the τ-step ahead prediction.

3.2. Sparse Multi-Head Self-Attention
3.2.1. Multi-Head Self-Attention

A single self-attention maps a query and a key into the same high-dimensional space
to compute similarity, capturing only a limited set of dependencies on the timing data.
However, a complex time series often has multiple dependencies. On the other hand, multi-
head self-attention can describe the autocorrelation of different levels of subspaces in the
sequence in parallel. Multifarious attention allows the model to focus on the characteristics
of different levels of subspaces in time series and capture the dependencies on different
time positions. Therefore, it has a more outstanding data representation ability than a
single attention structure.

Multi− head(Q, K, V) = Concat(head1, head2, · · · headh)·Wo (4)

head1 = Attention
(

QWQ
i , KWK

i , VWV
i

)
(5)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmoodel×dk , WV
i ∈ Rdmodel×dv , WO ∈ Rhdv×dmodel .

The projection is the parameter matrix WQ
i , WK

i , WV
i . In practice, we perform multiple

dot-product attention computations on input X in parallel to obtain multiple intermediate
outputs. These intermediate output results are then spliced together. To keep the dimen-
sions unchanged, we multiply the result by a weight matrix. We used h attention headers
and then use an extra attention head headi to integrate all the attention and output. Since
the dimension of each head is reduced, the total computational cost is similar to that of
single head attention.

3.2.2. Sparse Self-Attention

The self-attention mechanism can arbitrarily model the sequence autocorrelation
relationship. Each self-attention layer has a global receptive domain and can assign
characterization capabilities to the most valuable features. Therefore, the neural network
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using this architecture is more flexible than the sequential connection mode network.
However, this type of network also has its shortcomings, one of which is that the demand for
memory and computing power increases twice as the sequence length increases. Therefore,
the computational overhead limits its application in long-memory time series.

Because the probabilistic distribution of attention is sparse, the distribution of atten-
tion per query over all keys is far from uniform. The sparse representation characterizes the
signal as much as possible with a small number of parameters, which helps to reduce com-
putational and storage complexity. SP-M-Attention takes advantage of Informer’s sparse
representation scheme and reduces computational complexity by limiting the number of
query-key pairs [32]. The relative entropy method is used to measure the similarity of the
probability distribution of queries and keys. Thus, the dot-product of the dominant top-n
query-key is selected. The sparse high-dimensional signals in the original wave series are
simplified into low-dimensional subspaces. The function of this operation is not only to
ensure the effectiveness of training and learning but also to reduce the data noise and the
complexity of computation and storage.

Suppose the i-th query’s attention to all keys is defined as a probability p(k j |q i). From

scaled dot-product attention, we can deduce p(k j |q i) =
d
∑

j=1

qiK
T
j√

dk
. Then, an algorithm called

relative entropy is used to measure the “similarity” between queries Q and keys K and
filter out the important queries. The relative entropy of the i-th query can be expressed as
follows:

D(q||p) = ln
LK

∑
j=1

e
qiK
>
j√
d − 1

LK

LK

∑
j=1

qiK
>
j√

d
(6)

Here, it is assumed that the attention q of the i-th query Qi on all keys is uniformly
distributed. qi is the probability (weight) of the i-th query-key pair. Then qi = 1/Qlen, i ∈
{1, 2, · · ·Qlen}. If the i-th query-key pair obtains a larger D(q||p), it indicates that the
attention of the i-th query Qi to all keys deviates from the uniform distribution, and the
head of the long-tail self-attention distribution contains the dominant dot-product pair.
The probability is higher.

However, measuring D(q||p) requires the calculation of each dot-product. Because
the query has the same dimension as the key, that is LQ = LK. The complexity is O(LQLK)
or O(L2

K). To reduce computational overhead, we apply an approximate query sparsity
measure called maximum mean measurement.

From Equation (6), we can obtain:

D(q||p) ≤ max
j

{
qiK

>
j√

d

}
− 1

LK

j=1

∑
LK

qiK
>
j√

d
(7)

Then, the maximum mean value is:

M(q, p) = max
j

{
qiK

>
j√

d

}
− 1

LK

j=1

∑
LK

qiK
>
j√

d
(8)

Thus, in the case of sparse distribution of attention, we only need to randomly sample
N = LQ ln LK pairs of queries and keys for dot-product calculations. Other positions
in the sparse matrix are filled with zero values. Because the max operator in M(q, p) is
not sensitive to zero, the calculated value of M(q, p) is stable. After optimization, the
computational complexity is O(LQ ln LK) ≤ O(LQLK), which reduces the computational
complexity and memory overhead.



Information 2021, 12, 419 8 of 18

Based on the approximate sparsity measure mentioned earlier, we obtain a sparse
matrix composed of top-n pairs of predominant queries and keys. Finally, by multiplying
the sparse matrix with V (Value), we obtain approximate self-attention scores:

A(Q, K, V) = Softmax

(
QK>√

d

)
V (9)

where, Q contains only the top-u queries after the sparse metric M (q, K). Figure 2 is a
computational flowchart of multi-head sparse self-attention.
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Sparse measurement is the compression of queries to obtain a sparse representation
of the queries, i.e., a sparse matrix. An effective sparse representation not only ensures
information quality but also reduces the computational complexity of model training. From
Figure 2, we can easily observe that the multi-head attention module processes the input
queries, keys, and values in a parallel manner, which is what makes it surpass the classical
deep learning models LSTM and GRU. Not only that, although h attention heads are
used, the total computational cost of all attention heads is similar to the full-dimensional
single-head attention because the dimensionality of each head is reduced.

3.3. Model Architecture

The self-attention model has been successfully used in the field of machine transla-
tion [34]. We propose an enhanced attention volatility model that uses the Encoder-Decoder
architecture even though the data form is quite different from the former. Let us explain
the structure of the proposed model in detail. The architecture is shown in Figure 3.
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3.3.1. Encoder

Encoders can be stacked to obtain stronger data characterization capabilities. Each
encoder includes two core sublayers. The first is the sparse multi-head self-attention
layer, which is mainly responsible for the adaptive learning of data features. In the self-
attention layer, all keys, values, and queries come from the output of the previous layer.
The other core sublayer is a 1D convolutional neural network layer. In the encoder, the
residual connection method is used between layers, and after each sub-layer, there is a
normalization layer that plays an auxiliary role. Each position in the encoder can focus on
all positions in the previous layer of the encoder.

3.3.2. Decoder

The decoder can also be stackable for performance enhancement. In addition to
the two sublayers in the encoder layer, each decoder also has a masked multi-head self-
attaching sublayer to prevent position i from noticing subsequent locations. This masking,
combined with the fact that the output is embedded in a position offset, ensures that the
prediction of position i depends only on known output less than position i.

3.3.3. 1D Convolution Neural Networks

Unlike feedforward neural networks in Transformer, encoders and decoders in-
clude 1D convolution neural networks in addition to the self-attention sublayer. A one-
dimensional convolution neural network mainly deals with time series data and is often
used in sequence models. The moving directions of convolution nuclei and pooled nuclei
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are one-dimensional. The translation invariance and parameter sharing of 1D convolution
networks reduce the number of parameters that need to be learned.

3.3.4. Residual Connection and Normalization Layer

Encoder-Decoder is stacked with layers of neural networks. Theoretically, the deeper
the neural network is, the stronger the ability to express data features is, and it seems easier
to reduce the training error by increasing the network depth. In practice, however, adding
more layers to the model at the appropriate depth can lead to a saturation of accuracy
or even higher training errors. We call this phenomenon “degeneration”. To circumvent
this type of risk, we use a residual connection between the network layers inside the
Encoder-Decoder structure, so that the network output H(x) = F(x) + x. The structure of the
residual connection is shown in Figure 4.
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When the network is at its best, continue to deepen the networks, and the residual
mapping will push to 0, leaving only the identity mapping. Therefore, in theory, the
network is always in the optimal state, and the network performance does not decline with
the increase in depth.

However, for deep neural networks, even if the input data has been standardized, the
update of model parameters during training can still easily cause drastic changes in the
output of the output layer. This instability of calculated values usually makes it difficult for
us to train an effective depth model. Batch normalization is proposed to meet the challenge
of deep model training. During model training, batch normalization uses the mean and
standard deviation of the small batch to continuously adjust the intermediate output of the
neural network, so that the value of the intermediate output of the entire neural network
in each layer is more stable.

3.3.5. Embedding and Output

As with other sequence-to-sequence models, we use learning embedding to convert
input and output tags into vectors. If it is a categorized task, enter the next token probability
embedded in the model to convert the decoder output to a predicted value through linear
transformations and activation functions. The volatility prediction is a regression task, so
the output vector of the model represents the prediction result of the forward n-step.

3.3.6. Positional Encoding

The attention mechanism is different from classical deep learning models such as
CNN, RNN, and LSTM with strict location information. During the transformation process
of the multi-head self-attention module, the order of entries inside the input vectors will be
disrupted. For our model to be able to take advantage of the position information in the
original sequence, we added a “position encode” to the input embedding at the bottom
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of the encoder and decoder stack. Positional encoding and embedding have the same
dimension d, so the two can be added. In this study, we use sine and cosine functions of
different frequencies as position codes.

Pencoder
(pos,2i) = sin

(
pos/100002i/d

)
Pencoder
(pos,2i+1) = cos

(
pos/100002i/d

) (10)

where pos is the position and i is the dimension. That is, each dimension of the position
code corresponds to a sine wave. We choose this function because we assume that it can
make the model easy to learn by relative position. After all, for any fixed offset k, Pencoder

pos+k

can be expressed as a linear function of Pencoder
pos .

4. Experiment
4.1. Dataset

In this study, three real financial datasets of Standard & Poor’s 500 Index (SPX500),
West Texas Intermediate (WTI), and London Metal Exchange Gold Price (LGP) were used to
verify the effectiveness of our proposed method. The Standard & Poor’s 500 Index (SPX500)
represents the North American stock market. The daily data of West Texas Intermediate
(WTI) crude oil prices represent oil prices. The LGP is the most influential precious metal
price index.

Take the SPX500 dataset as an example. The data coming from Yahoo! Samples are
collected every minute from 3 January 1950, to 4 November 2020. The source dataset
contains 17,827 observations, each of which contains the open, low, high, close, volume,
and Adj close. Each feature constitutes an independent time series. In these series, we
calculate the Adj close to obtain a continuous composite logarithmic rate of return and
historical volatility. Figure 4 shows the trend of the SPX500 (1950–2020) index. From
Figure 5, we can observe that the series has obvious nonlinear and wave aggregation
characteristics.
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Table 1 shows us the descriptive statistics of the three datasets. The mean value of the
log-return of the three datasets is all close to 0, which is significantly smaller than the corre-
sponding standard error. The kurtosis of all the series is greater than 3, indicating that the
three log-return series have obvious non-normal distribution and volatility agglomeration
characteristics. The stock index and crude oil return series are left-skewed (skewness < 0),
and their skewness differs from gold returns, which are positive. This reflects that stock
market indexes and crude oil price return sequences are more volatile than gold prices.
The kurtosis of all markets is above 3, that is, it has the characteristic of “high-peak” and
“fat-tail” (kurtosis > 3), which shows that we cannot assume that the return distribution is
normal. In addition, the Jarque–Bera test results also reject the normality hypothesis.
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Table 1. Descriptive statistics of log return.

Datasets Mean Std-Dev. Skewness Kurtosis Jarque–Bera

SPX500 9.36 × 10−6 0.001525 −0.011905 20.75456 170,957.0
Oil 0.000180 0.022712 −0.540034 16.69873 62,169.60

Gold 0.000249 0.012181 0.062319 13.99408 66,698.44

Figure 6 shows the log return, volatility, and autocorrelation of the SPX500 index.
Volatility is defined as the deviation of asset returns from the mean. In this paper, we
estimate volatility by calculating the standard deviation of log asset returns.
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Ri= ln(Si)− ln(Si−1)= ln
(

Si

Si−1

)
(11)

where Ri denote the i-th log returns, Si is the asset price at the end of the i-th interval, and
ln(·) is the natural logarithmic function.

Vi =

√√√√ 1
N− 1

N

∑
i=1

(
Ri − R

)2 (12)

V = {V0, V1, · · ·Vt−1, Vt} (13)

where Vi is the i-th volatility, V is the time series of volatility, and t is the length of V.
In the following experiments, we set windows of width 30 to calculate the standard

deviation Vi and historical volatility V. As can be seen from the left subgraph of Figure 6,
the return sequence of stock indexes has obvious characteristics of volatility clustering. The
autocorrelation function graph of the SPX500 index return sequence is truncated, which
indicates it is a white noise sequence and does not have significant autocorrelation. The
subgraph on the right side of Figure 6 shows that the autocorrelation function graph of the
volatility has obvious tailing characteristics. We should reject the hypothesis that there is
no autocorrelation in the volatility, i.e., accept that there are typical autocorrelation features
in the volatility.

The Hurst exponent reflects the autocorrelation of time series, especially the long-term
trend hidden in time series. The Hurst index is measured in terms of both V/S and R/S,
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which are generally considered more efficient and robust. Table 2 shows the Hurst indices
for the time windows 30 and 60. It can be seen that all the Hurst indices of the three
series are greater than 0.6, which reflects the significant long-term memory of the above
fluctuation series.

Table 2. Hurst exponent of volatility sequence.

Hurst Exponent SPX500 WTI Gold

t = 30 0.6440 0.6532 0.6486
t = 60 0.6501 0.6556 0.6503

4.2. Baseline Methods

To evaluate the overall performance of our approach, we compared the proposed
model with the widely used baseline and state-of-the-art models, including GARCH (1, 1),
EGARCH (1, 1), SV, RV, HAR, SVR, and LSTM, as well as multiple combinatorial models of
GW-LSTM, W-SVR, HAR-RV, etc.

For the SVR model in the baseline method, we selected the radial basis function as
the kernel function (kernel = ‘rbf’) and set penalty parameters to 1.0 (C = 1.0). To evaluate
the proposed model more fairly, all deep learning methods in SP-M-Attention and the
baseline were unified using mean square error (MSE) as the loss function, and Adam
function as the model optimizer. We set the batch size to 72, the learning rate to 0.1, and
each neural network model trains 500 epochs. In the experiments of LSTM and GW-LSTM
baseline models, we determined the number of neurons and other hyper-parameters in the
hidden layer by grid search and pre-training. In this paper, all the experiments involving
deep learning were performed and completed under the environment of Pytorch 1.7.0 and
CUDA 10.1.

4.3. Metrics

In subsequent experiments, two popular metrics, mean absolute error (MAE) and
mean squared error (MSE), were used to evaluate the performance of the model. Both MAE
and MSE are often used to measure the deviation between observations and forecasting
values in the task of machine learning models.

(1) mean absolute error (MAE)

MAE(y, ŷ) =
1
N

N

∑
i=1
|yi − ŷi| (14)

(2) mean squared error (MSE)

MSE(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (15)

where y denotes the observations, ŷ is the prediction, and N is the number of samples. In
practice, the smaller the values of these two metrics, the closer the predicted results are to
the actual observations, that is, the higher the prediction accuracy.

(3) Diebold–Mariano test (DM test)

DM =
d√

[γ̂d(0) + 2
h−1
∑

k=1
γ̂d(k)]/T

(16)

where d is the sample mean of the loss differential, γ̂d is the autocovariance, and h is the
h-step-ahead. This metric is used to test the statistical significance of the forecast accuracy
of two forecast methods. The null hypothesis of the DM test is that the two forecasts have
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the same accuracy. The null hypothesis will be rejected if the DM statistic falls outside the
range of the z-value.

4.4. Experimental Result Analysis

What are the comparative advantages of our proposed approach versus the various
advanced baseline approaches for financial volatility data? The out-of-sample predictions
for the three real-world datasets above are shown in Table 3. From this table, we can judge
the fitting difference of each model and the performance of one-step forward prediction.
Columns in Table 3 (12, 36, 72, 200) represent the lengths of the input sequence, respectively.
We gradually lengthened the input sequence and observed the prediction performance of
various models on data fitting ability and long-term memory sequence.

Table 3. Comparison of volatility prediction errors between SP-M-Attention and baseline under a single time series input
condition.

SPX500 MAE MSE

Input Length 12 36 72 200 12 36 72 200

SP-M-Attention 1.433 × 10−3 6.401 × 10−4 4.548 × 10−4 2.565 × 10−4 5.406 × 10−6 1.091 × 10−6 6.329 × 10−7 2.511 × 10−7

GW-LSTM 1.533 × 10−3 9.042 × 10−4 1.135 × 10−3 1.209 × 10−3 5.456 × 10−6 1.936 × 10−6 2.609 × 10−6 3.053 × 10−6

W-SVR 2.607 × 10−3 2.300 × 10−3 2.500 × 10−3 3.300 × 10−3 1.733 × 10−5 1.260 × 10−5 1.446 × 10−5 2.749 × 10−5

LSTM 2.217 × 10−3 1.928 × 10−3 2.110 × 10−3 3.210 × 10−3 2.209 × 10−5 1.342 × 10−5 1.172 × 10−5 1.992 × 10−5

SVR 3.500 × 10−3 3.300 × 10−3 3.600 × 10−3 5.500 × 10−3 3.112 × 10−5 2.749 × 10−5 3.354 × 10−5 1.369 × 10−4

HAR-RV 2.340 × 10−3 8.877 × 10−6

SV 2.600 × 10−3 1.733 × 10−5

EGARCH 3.045 × 10−3 2.033 × 10−5

GARCH 3.400 × 10−3 2.806 × 10−5

WTI MAE MSE

Input Length 12 36 72 200 12 36 72 200

SP-M-Attention 1.434 × 10−3 6.487 × 10−4 4.598 × 10−4 4.251 × 10−4 5.674 × 10−6 1.160 × 10−6 6.637 × 10−7 5.230 × 10−7

GW-LSTM 1.525 × 10−3 9.438 × 10−4 1.140 × 10−3 1.212 × 10−3 5.911 × 10−6 2.125 × 10−6 2.958 × 10−6 3.087 × 10−6

W-SVR 2.669 × 10−3 2.376 × 10−3 2.505 × 10−3 3.376 × 10−3 1.765 × 10−5 1.267 × 10−5 1.457 × 10−5 2.790 × 10−5

LSTM 2.230 × 10−3 1.823 × 10−3 2.114 × 10−3 3.210 × 10−3 1.155 × 10−5 7.145 × 10−6 9.867 × 10−6 2.525 × 10−5

SVR 3.549 × 10−3 3.330 × 10−3 3.605 × 10−3 5.521 × 10−3 3.448 × 10−5 2.771 × 10−5 3.373 × 10−5 1.370 × 10−4

HAR-RV 2.014 × 10−3 9.167 × 10−6

SV 2.625 × 10−3 1.775 × 10−5

EGARCH 3.037 × 10−3 2.048 × 10−5

GARCH 3.442 × 10−3 2.823 × 10−5

LGP MAE MSE

Input Length 12 36 72 200 12 36 72 200

SP-M-Attention 8.579 × 10−4 5.767 × 10−4 4.546 × 10−4 2.016 × 10−4 1.860 × 10−6 8.685 × 10−7 6.217 × 10−7 1.316 × 10−7

GW-LSTM 1.146 × 10−3 7.730 × 10−4 8.126 × 10−4 1.125 × 10−3 2.474 × 10−6 1.155 × 10−6 1.221 × 10−6 2.563 × 10−6

W-SVR 1.900 × 10−3 1.734 × 10−3 1.616 × 10−3 1.706 × 10−3 6.533 × 10−6 7.507 × 10−6 5.398 × 10−6 7.507 × 10−6

LSTM 1.409 × 10−3 1.315 × 10−3 1.280 × 10−3 3.445 × 10−3 4.822 × 10−6 3.938 × 10−6 3.677 × 10−6 2.034 × 10−5

SVR 2.800 × 10−3 2.726 × 10−3 2.900 × 10−3 2.932 × 10−3 1.485 × 10−5 1.386 × 10−5 1.598 × 10−5 1.679 × 10−5

HAR-RV 1.364 × 10−3 3.656 × 10−6

SV 1.800 × 10−3 6.216 × 10−6

EGARCH 2.102 × 10−3 7.913 × 10−6

GARCH 2.314 × 10−3 1.204 × 10−5

Looking at Table 3, we can see that all the evaluation functions of the proposed SP-M-
Attention model are the smallest compared to other baseline models, which shows that the
proposed model balances the short-term and long-term predictions very well and achieves
the best performance overall with length distances. LSTM of the deep learning model
is more effective than other machine learning and econometric methods, which shows
that the deep learning model has a stronger ability of data feature fitting than traditional
methods. We also observed that GW-LSTM, a hybrid model of recurrent neural networks
and GARCH, surpasses other single models including LSTM to obtain the second prediction
performance. Machine learning SVM and W-SVM are increasing in the input sequence,
and the prediction accuracy is weakening, which shows that SVM has shortcomings in
processing long sequences. EGARCH has a better prediction result than GARCH, which
indicates that the financial volatility is asymmetric. With the increase in the length of
the input sequence, the evaluation function of the GARCH method is stable and has no
significant change, which reflects that the mathematical interpretation of this method is
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good, but the prediction accuracy is not ideal. When the length of the input reaches 100,
the prediction performance of SVM is not improved and even deteriorates, which shows
that the long-term memory ability of SVM is not significant. At the beginning of LSTM, as
the length of input increases, the prediction accuracy increases slowly, and the acceleration
decreases, which reflects that LSTM has some long-term memory ability, but the prediction
effect is not obvious. With the increase in the length of the input sequence, the value of
the prediction error function decreases at a steady speed, and the improvement of the
prediction accuracy is obvious. Figure 7 shows the loss (MSE) trends of the SP-M-Attention,
GW-LSTM, and LSTM models under different input lengths of SPX500.
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Figure 7. The LOSS (MSE) trends of SP-M-Attention, GW-LSTM, and LSTM models under different
input lengths.

The proposed method is a variant of the Transformer method and still belongs to
the sequence-to-sequence structure in essence. Therefore, it has the ability of multi-step
ahead prediction. Table 4 lists the mean of multi-step ahead prediction errors(MSE) based
on SP-M-Attention and other baseline methods on spx500. We obtain the information
similar to the previous one-step ahead prediction, (a). The proposed method achieves the
best prediction performance in all periods, which proves the effectiveness of the proposed
method, (b). The MSE of all methods increases gradually with the increase in the step ahead,
and the deterioration of SP-M-Attention is the slowest. This indicates that the proposed
method has less error in multi-step ahead prediction of wave series. In the prediction of
different forward steps, the relative improvement of the proposed model was over 5%.
Overall, the results show that SP-M-Attention can accurately capture spatial and temporal
correlations in related business sequences, which are of high predictive value.

Table 4. Comparison errors (MSE) of multi-step ahead prediction between SP-M-Attention and other baseline methods.

Steps SP-M-
Attention GW-LSTM W-SVR LSTM SVR HAR-RV SV EGARCH GARCH

5 2.537 × 10−6 1.176 × 10−5 1.372 × 10−5 1.215 × 10−5 3.334 × 10−5 9.674 × 10−6 2.069 × 10−5 2.233 × 10−5 3.0174 × 10−5

10 2.824 × 10−6 1.294 × 10−5 1.509 × 10−5 1.336 × 10−5 3.668 × 10−5 1.064 × 10−5 2.276 × 10−5 2.457 × 10−5 3.087 × 10−5

20 3.152 × 10−6 1.424 × 10−5 1.660 × 10−5 1.470 × 10−5 4.035 × 10−5 1.171 × 10−5 2.504 × 10−5 2.703 × 10−5 3.396 × 10−5

Finally, we compared the predictive performance of different models under univariate
and multivariate time series input conditions. In the case of the SPX500, volatility was
entered into the model along with other variables (volume, the highest price, the lowest
price, etc.) under the input condition of a multivariate time series. As shown in Table 5, for
the baseline deep learning model and our model, the average prediction error of multiple
time series input conditions was smaller than that of the univariate input conditions.
This phenomenon indicates that the deep learning model can learn the hidden correlation
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characteristics of multiple time series. SP-M-Attention achieves the best predictive accuracy
overall baseline methods of multiple time series inputs.

Table 5. Comparison of MSE of SP-M-Attention with other baseline models for the multivariate volatility forecasting task.

SP-M-Attention GW-LSTM W-SVR LSTM SVR HAR-RV SV EGARCH GARCH

MSE 2.340 × 10−7 1.801 × 10−6 1.172 × 10−5 1.090 × 10−5 2.557 × 10−5 8.256 × 10−6 1.612 × 10−5 1.891 × 10−5 2.610 × 10−5

To assess the statistical significance of these experimental results, we applied the
Diebold–Mariano test to the comparisons between our proposed model and each of the
baselines. As seen in Table 6, the results of all Diebold–Mariano tests rejected the hypothesis
that our model is insignificant compared to the baselines. Therefore, we can infer that our
model has an advantage over all other models.

Table 6. The Diebold–Mariano (DM) test on volatility forecasting between SP-M-Attention and other
baselines.

DM Test
BASELINES

GW-LSTM W-SVR LSTM SVR HAR-RV SV EGARCH GARCH

SP-M-
Attention

−10.357
(0.00)

−16.819
(0.00)

−15.432
(0.00)

−33.762
(0.00)

−13.018
(0.00)

−20.664
(0.00)

−24.256
(0.00)

−35.246
(0.00)

The numbers outside the parentheses are statistics; p-values are inside the parentheses.

4.5. Discussions

In the previous section, we analyzed the prediction performance of the proposed
model for low and medium frequency fluctuation series, such as the SPX500, WTI, and
LGP index. The empirical results showed that the proposed model has an important
advantage in predicting low-frequency data. Then, is the model proposed in this paper
robust to emerging financial markets and high-frequency financial data? The robustness of
a prediction method in finance is the key to its real practical application [35]. This section
further uses the 5-min high-frequency data on the Shanghai Composite Index from January
2005 to December 2017 for modeling analysis to verify the robustness of the prediction
model presented in this paper. Table 7 shows the forecast metric (MSE) of different models
outside the 5-min high-frequency data sample of the Shanghai Stock Exchange Composite
Index.

Table 7. Volatility prediction of different models on the high frequency of the Shanghai Composite Index.

SP-M-Attention GW-LSTM W-SVR LSTM SVR HAR-RV SV EGARCH GARCH

MSE 3.153 × 10−8 2.592 × 10−7 1.715 × 10−6 1.615 × 10−6 3.692 × 10−6 1.196 × 10−6 2.331 × 10−6 2.742 × 10−6 3.850 × 10−6

From Table 7, we can see that each model’s forecast of high-frequency stock volatility
was lower than the low-frequency data MSE, that is, had a smaller forecast error. At the
same time, we found that the performance of SP-M-Attention was significantly improved
by more than 10% compared to other baseline models in the volatility prediction task
using high-frequency data from Asian stock markets. Our proposed model is still the best
predictive model, and this conclusion is consistent with the conclusions of the previous
section. This experiment confirms once again the value and robustness of our proposed
method.

5. Conclusions

In this paper, we proposed a novel deep learning model, SP-M-Attention, for volatility
prediction, which is a sparsely optimized, multi-headed, self-attentive neural network
model. Because of the parallel processing mechanism of multi-headed attention, the
proposed model has a larger perceptual field and captures complex features of volatility
at different time scales and granularity more easily than classical time-series-like deep
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learning algorithms such as LSTM and GRU. Not only that, SP-M-Attention obtains the
sparse representation of features using approximate sparse measurements, which greatly
reduces the computational complexity of attention and the risk of gradient disappearance
for long time series. Experiments on SPX500, WTI, and LGP showed that the proposed
SP-M-Attention model has significant advantages and performs well in various types
of financial volatility forecasting tasks. In addition, we analyzed the robustness of the
proposed research methodology by using high-frequency data from emerging markets.
The empirical results were consistent with the conclusions drawn from the low-frequency
data. This fully demonstrates the robustness of the proposed model.

The SP-M-Attention model proposed in this paper is used to improve the accuracy
of volatility forecasting. However, this does not mean that this approach can only solve
this particular problem. It can also be extended to solve more time series problems with
nonlinear and long-term memory characteristics, including complex forecasting problems
in multiple domains such as traffic flow, energy consumption, disaster preparedness, and
infectious disease prevention.

However, there are still limitations in our method that need further refinement. For
example, (i) although we have found favorable evidence of the effectiveness of our method
on several real datasets, the high-reward and high-risk nature of financial markets require a
more in-depth and careful evaluation of the method before it can be applied in industry. We
will continue our research work with the “paper trading” simulators. The proposed model
is more effective and secure than others. In the absence of an actual capital commitment,
these simulators can produce rolling forecasts of real-time data in the market through a
rolling window, thus helping to correctly measure the value of the proposed model and
further facilitating model optimization. Furthermore, (ii) in this paper, we only considered
the joint modeling of volatility and other synchronous time variables. Still, many factors
affect volatility, including non-synchronous time variables and even static variables and
known future inputs. However, our current proposed model is not sufficient to solve such
complex multi-span input forecasting problems. Therefore, volatility forecasting based on
complex multi-span inputs will be the next step in our research. These are also directions
for our continued research in the future.
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