
 information

Article

Industrial Networks Driven by SDN Technology for Dynamic
Fast Resilience

Nteziriza Nkerabahizi Josbert 1, Wang Ping 2, Min Wei 2,* and Yong Li 2

����������
�������

Citation: Josbert, N.N.; Ping, W.; Wei,

M.; Li., Y. Industrial Networks

Driven by SDN Technology for

Dynamic Fast Resilience. Information

2021, 12, 420. https://doi.org/

10.3390/info12100420

Academic Editor: Corinna Schmitt

Received: 19 August 2021

Accepted: 8 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departement of Computer Science and Technology, Industrial IoT International S&T Cooperative Base,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China; josbertnn@gmail.com

2 Departement of Automation, Industrial IoT International S&T Cooperative Base, Chongqing University of
Posts and Telecommunications, Chongqing 400065, China; wangping@cqupt.edu.cn (W.P.);
liyong@cqupt.edu.cn (Y.L.)

* Correspondence: weimin@cqupt.edu.cn; Tel.: +86-134-5233-3003

Abstract: Software-Defined Networking (SDN) provides the prospect of logically centralized man-
agement in industrial networks and simplified programming among devices. It also facilitates the
reconfiguration of connectivity when there is a network element failure. This paper presents a new
Industrial SDN (ISDN) resilience that addresses the gap between two types of resilience: the first is
restoration while the second is protection. Using a restoration approach increases the recovery time
proportionally to the number of affected flows contrarily to the protection approach which attains
the fast recovery. Nevertheless, the protection approach utilizes more flow rules (flow entries) in the
switch which in return increments the lookup time taken to discover an appropriate flow entry in
the flow table. This can have a negative effect on the end-to-end delay before a failure occurs (in the
normal situation). In order to balance both approaches, we propose a Mixed Fast Resilience (MFR)
approach to ensure the fast recovery of the primary path without any impact on the end-to-end delay
in the normal situation. In the MFR, the SDN controller establishes a new path after failure detection
and this is based on flow rules stored in its memory through the dynamic hash table structure as
the internal flow table. At that time, it transmits the flow rules to all switches across the appropriate
secondary path simultaneously from the failure point to the destination switch. Moreover, these flow
rules which correspond to secondary paths are cached in the hash table by considering the current
minimum path weight. This strategy leads to reduction in the load at the SDN controller and the
calculation time of a new working path. The MFR approach applies the dual primary by considering
several metrics such as packet-loss probability, delay, and bandwidth which are the Quality of Service
(QoS) requirements for many industrial applications. Thus, we have built a simulation network and
conducted an experimental testbed. The results showed that our resilience approach reduces the
failure recovery time as opposed to the restoration approaches and is more scalable than a protection
approach. In the normal situation, the MFR approach reduces the lookup time and end-to-end delay
than a protection approach. Furthermore, the proposed approach improves the performance by
minimizing the packet loss even under failing links.

Keywords: Software-Defined Networking (SDN); resilience approach; Industrial Software-Defined
Networking (ISDN); primary and secondary paths

1. Introduction

SDN [1,2] is a new technology that provides network management in the industrial
domains for efficient performance [3]. The concept of involving SDN in industry along with
the utilization of low-energy transmission technologies was proved to enhance end-to-end
information exchange between controlled devices [4]. Additionally, utilizing SDN technol-
ogy improves the industrial networks with the decoupling of networking hardware and the
control plane. This is done in order to facilitate the network configuration/reconfiguration
and efficient management of network devices. SDN solution enhances communication to

Information 2021, 12, 420. https://doi.org/10.3390/info12100420 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info12100420
https://doi.org/10.3390/info12100420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12100420
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12100420?type=check_update&version=2

Information 2021, 12, 420 2 of 30

ensure the high reliability. Hence, it designs a resilience structure that can handle network
changes in data transmission, such as failure events [5,6].

Industrial applications require monitoring and fast reconfiguration to prevent malfunc-
tions in the connectivity and production process. It is important to design communication
structure that guarantees dynamic operation whereby changes in network element settings
involve solutions from the system configuration. The industrial communication manage-
ment system should identify any network component failure and report the problem [7].
The failure involves device failures, wire cuts, software and human errors, etc. [8]. Some
of these failures may result in a loss of packets and introduce additional delays. Packet
losses and unwanted additional delay raise the threat to the manufacturing process of
the industry, machine-to-machine communication, and on the users of the network [9].
Moreover, the loss of one or many time-critical messages can have an impact on protection
functions as described in [10]. Industrial networking and Industrial Internet of Things
(IIoT) applications enforce different quality of service (QoS) requirements. Delay-sensitive,
loss-sensitive, and guaranteed bandwidth are among those requirements [11,12]. For in-
stance, delay requirements of factory automation can differ from 0.25 ms to 10 ms, while
the process automation can tolerate time delay until 100 ms [13]. In traditional networking,
a simple change and failure of a link or switch to the network may take long delays for
recovery and could generate more packet losses and hence jeopardize the communication
services. This frequently happens because the reconfiguration in every network device is
required as a matter of inconvenience. Weaknesses of these traditional networking abili-
ties have encouraged the investigation of the potential sustains of the SDN. This permits
high-level configuration/reconfiguration through programming languages without being
involved in the low-level device configuration.

Previous studies generally categorized two forms of resilient methods for SDN. The
first is restoration (Local Restoration and Path Restoration) [14]. The restoration method
creates paths on-demand based on the current network status. It means that when there
is a case of a link failure, the SDN controller responds by computing the new path and
inserts the flow rules to restore the damaged flows caused by the failure. Besides, frequent
signaling messages are needed between the SDN controller and switch until the packet
arrives at the destination. Consequently, recovery from failure can take a significant amount
of time, as well as increases of the end-to-end delay. One of the strengths of this resilience
approach is that it enables dynamic performance on failure recovery. The second resilient
method is protection (Path Protection) [15,16]. In this method, the flow rules of both
primary and secondary paths are pre-configured in the data plane devices before failures
can occur in order to reduce recovery time. Thus, the protection approach increases the
lookup time taken to find an appropriate flow entry in the flow table of the switch if there
is no failure. It is paramount to remember that for a long time, there is no failure in the
network topology. In the case of default/failure, this technique of performing many actions
inside the switch creates an inconsistent state between the SDN controller and application
layer as investigated in [17].

In order to balance the above-mentioned approaches, this work proposes an MFR
approach that has the merits of a restoration approach. It calculates the paths according
to the current network measures. Likewise, it minimizes the computation time of a new
path in the recovery process like a protection approach. In the MFR, the SDN controller
determines a new path after failure detection and this is based on flow entries cached in
its memory via the hash table structure. At that time, it communicates the flow entries to
all switches across the suitable secondary path concurrently from the failure point to the
destination switch. In addition, these flow entries which correspond to secondary paths
are saved in the hash table by considering the current minimum path cost. From this, we
can deduce that if we reduce the computation time of the best alternative path and the
number of round-trips between switches and an SDN controller, a fast recovery time can
be achieved.

The contribution of this paper is outlined as follows:

Information 2021, 12, 420 3 of 30

• We proposed an MFR approach that guarantees a fast resilience and loss-sensitive re-
quirements in industrial applications composed of both wireless and wired networks;

• The optimum path scheme for traffic-aware routing solutions is demonstrated. This
scheme is utilized for the proposed MFR resilience approach;

• We presented different network topology scenarios to show dynamic rerouting traffic
among OpenFlow switches. These scenarios help to verify the recoverability of the
designed approach through various use cases, such as network expansion and failure
state in industrial networks;

• We validated the proposed approach through experiments in an emulated environ-
ment using OpenNet [18]. This connects Mininet [19] to ns-3 for exploiting both
Mininet’s merit of designing virtual topology and the ns-3’s ability in the modeling of
wireless networks as well;

• We take advantage of the proposed approach by offering an experimental testbed
through the use of physical devices like sensor nodes and Raspberry Pis.

This paper is organized as follows. Section 2 presents related topics. Section 3 displays
the architecture of ISDN resilience and the details of the MFR approach. A summary of
the results is given in Section 4 to show the robustness of the proposed approach. Lastly,
Section 5 concludes the paper and covers topics for future works. This manuscript is the
extended version of the paper archived in [20].

2. Related Works
2.1. Link Failure Recovery

Muthumanikandan et al. [21] suggested a Fast Re-routing Technique (FRT) that offers
the backup path calculated on demand. Furthermore, FRT prevents congestion by distribut-
ing the traffic in equal measures via several available shortest paths. Sharma et al. [22]
proposed a queuing approach that in-band control traffic can take the highest priority.
Due to this, data traffic does not disturb the control channel. For resiliency against fail-
ures, the recovery process meets the delay requirements (<50 ms) through the protection
method. Stephens et al. [23] utilized various backup routes to protect against multiple
concurrent failures in the data center networks. The literature proposed both a forwarding
table compression algorithm and a compression-aware routing method to provide simple
compressible forwarding tables. The constraint to compress forwarding table entries is that
they are supposed to have the same packet modification action and output which relies on
the forwarding method that is applied. Correspondingly, the Plinko forwarding scheme is
designed to enhance the compressible forwarding tables.

Lin et al. [24] presented a pre-configured fast failover approach to recover rapidly
from a failure without contacting the SDN controller (protection). To alleviate traffic
congestion, the SDN controller repeatedly swaps the flows from one port to another if
the bandwidth of the alternative path exceeds a specified rate threshold (restoration).
However, the fast failover strategy may pose the challenge of recording several backup
paths in the limited switch memory as investigated in [25]. Satchou et al. [26] suggested
a ReaPro (reactive-proactive) mechanism that reduces the lag time between the SDN
controller and the switch. When a switch reboots, the algorithm checks the time remaining
until the switch gets new flow rules from the SDN controller. If this time is longer, the
switch directly asks the SDN controller for new flow rules of transfer (restoration). At that
moment, the SDN controller calculates the backup path and sends the new flow entries
to the data plane level to restore the path. When a link failure occurs during data packets
transmission, this mechanism provides a backup path without intervention from the SDN
controller (protection). Zhang et al. [27] suggested a Local Fast Reroute (LFR) method.
In this manner, instead of handling each flow one by one, LFR collects all affected flows
inside a new “big” flow that executes all flows damaged with the breakdown which should
be rerouted via this new “big” flow. Therefore, a local reroute path is actively provided
through the SDN controller which aggregated the affected flows. However, the aggregation

Information 2021, 12, 420 4 of 30

and disaggregation only occur after link failures, which may result in packet loss during
the recovery process when flows have many different destinations.

In the field of industrial networks/IIoT, different studies focus on the problem of
network resilience based on SDNs so as to guarantee network reliability when network
elements fail. Al-Rubaye et al. [28] proposed an IIoT-based SDN paradigm to manage
the high demand of seamless data forwarding and improve the resilience in smart grids
using real-time monitoring methods. Thus, the SDN controller can reconfigure switches
or re-compute new routing to maintain the required performance. Zhang et al. [29]
analyzed the combination of electric power/data and SDN. Besides, SDN-based dynamic
resilience for fault management is proposed to achieve path restoration for the scenarios
of network element failure and network expansion through the shortest path in smart
grids. Vestin et al. [30] implemented a FastReact where the control logic performs inside the
switch can generate local control actions. By performing locally from the switch, the control
loop between sensors and actuators can be reduced, as the forwarding decisions are made
nearer to the actuators and sensors, thereby preventing the round-trip to the industrial
controller and decreasing the communication latency. The control logic is determined via
rules composed of Boolean expressions, which are configured by the SDN controller in
the switches, as guided by the industrial controller. For resiliency, FastReact applied a
protection approach for link recovery in the infrastructure layer if failure is detected. In line
with this, Vestin et al. [31] also proposed an architecture which applies SDN in Industrial
Control Networks (ICN) so as to design network resiliency. This architecture uses packet
duplication managed by an SDN controller to achieve the requirement of low-latency and
reduce packet loss in case of failure. However, forwarding duplicate data packets consumes
more bandwidth and may raise the issue of network congestion in the intermediate links.
For protection against failures, the SDN controller preinstalled primary and several backup
paths in the data plane elements by applying the fast failover mechanism presented in [32].
Jhaveri et al. [33] proposed the end-to-end delay estimation technique with SDN which
uses default probe packets to decrease the overhead in communication. Besides, the
literature designed a contract-based fault-resilient method to reroute the flows through the
restoration approach and react to the changes in the network condition. Babiceanu and
Seker [34] considered resilience as the protection of a requisite network state of security. The
work firstly concentrated on planning a model to achieve cybersecurity and equilibrium
resilience for the SDN-based manufacturing system. Additionally, it presents the resilience
techniques which comprises a mixed cybersecurity-resilience ontology to maintain the
security condition required by the manufacturing networks. However, the literature does
not consider the simulation or implementation of the proposed method.

Several works used Virtual Local Area Network (VLAN) tags to achieve timely re-
silience and reduce the flow rules (entries) [27,35,36]. In this way, affected flows can be
aggregated into one flow entry to prevent the creation of each flow independently. When
there is a link failure, the flows can be redirected to the same port by matching the VLAN
field in the flow table. As a result, the failure recovery time can be decreased by aggregating
the flows. Nevertheless, the aggregation of many affected flows to a single flow that passes
through the same port and the same link may cause network congestion. In that case,
the backup path distribution is required to resolve this issue of congestion, as illustrated
in [36]. For dynamic restoration, this method also increases the recovery time if there are
a large number of affected flows in the failed link as displayed in [27]. To this end, the
correlation of previous studies is reported in Table 1, in which they are arranged by the
sort of resilience approach, the key metrics utilized, and the approval technique applied
(e.g., testbed, prototype, and simulation).

Information 2021, 12, 420 5 of 30

Table 1. A comparison of related studies with regards to the sort of resilience (protection, restoration
or both), key metric, and approval methodology.

Literature Sort Key Metrics Approval

Al-Rubaye et al. [28] Restoration End-to-end latency and
data traffic flow Simulation

Zhang et al. [29] Restoration

CPU utilization of SDN
controller (NOX) and its
average, end-to-end
delay and its average

Simulation

Vestin et al. [30] Protection

Delay, network load,
message reception
interval, and
request-response time

Prototype

Jhaveri et al. [33] Restoration

Estimated end-to-end
delay, average
throughput, path
restoration delay, and
success rate

Simulation

Muthumanikandan
et al. [21] Restoration

Recovery time, response
time, throughput, and
latency

Simulation

Satchou et al. [26] Restoration and
protection

Latency when there is a
failure Simulation

Li et al. [24] Restoration and
protection

Average recovery time,
controller processing
time, flow entries, PLR,
and link congestion

Simulation

Adrichem et al. [32] Protection Recovery time Prototype

Zhang et al. [27] Restoration Failure recover time and
number of flow entries Simulation

MFR

Mixed of protection
and restoration based
on the dynamic hash

table

Failure recovery time,
end-to-end delay, PLR,
lookup time, and packet
delivery rate

Simulation and
testbed

2.2. Resilience Approaches

Figures 1–3 show the resilience approaches extracted from related works. The Figures
show the primary path and the secondary path from source to destination. To recover the
primary path (SA → SB → SC → SH), a resilience approach can calculate or activate the
suitable secondary path to prevent unavailability in case of a link of a primary path failure.
In the examples bellow, we assume that the affected intermediate link can be intermediate
link SB → SC which is across the primary path.

Before a link failure for the side LR approach (see Figure 1a), flow rules can be
configured reactively and installed on demand. Packets can reach a switch (SA) where
there is no matching entry configured in the flow table, and thus, the switch cannot send the
packets by itself and informs the SDN controller by sending OFPT_PACKET_IN message to
request forwarding entries. Subsequently, the SDN controller calculates the working path
for the packets, and pushes the corresponding entries using the OFPT_FLOW_MOD message
to the switch. Actions are accordingly repeated in all switches across the working path as
the primary path (SA → SB → SC → SH) until the packages reach their destination.

Information 2021, 12, 420 6 of 30

(a)

(b)

Figure 1. Example of Local Restoration (LR) application for the SDN platform. (a) Before an
intermediate link SB → SC failure. (b) After an intermediate link SB → SC failure.

Figure 1b shows the re-routing traffic when a link SB → SC across the primary path
failure. Then, the SDN controller receives status information from the failure point (SB)
and calculates the secondary path from the SB to the next switch. At that moment, the
incoming packets will be sent through the secondary path (SA → SB → SD → SE → SH)
as the new working path. We can see that after a link SB → SC failure, the switch-controller-
communication is needed from the SB to the destination switch which in return increases
the recovery time and end-to-end delay. In this approach, the controller calculates a
secondary path from zero which also increases the recovery time.

The PP performance consists of installing in advance the flow rules corresponding
to the primary path and flow rules corresponding to the secondary paths as predefined
instructions to the switches immediately after finding them. When a switch (SA) receives
the packets from the gateway to the destination, these packets are transmitted through the
primary path (SA → SB → SC → SH), as illustrated in Figure 2a. If a link SB → SC fails,
the failure point (SB) directly activates the secondary path by using the fast failover group
table [37], and then, the packets are transmitted through the new path (SA → SB → SD →
SE → SH). In the recovery process of this approach, there is no need for communication
between switch and SDN controller (see Figure 2b) as the recovery process is performed
locally inside the switch only. This scheme reduces the recovery time when a link between
two switches fails. However, the PP approach uses additional flow rules in the switch
which in return increases the lookup time taken to find a suitable flow rule inside the
flow table of the switch. This can increase the end-to-end delay in the normal situation.
In addition, the SDN controller does not have information on the new flow installation
process in the connectivity which makes this approach less flexible compared to the other
approaches (LR, LFR, and MFR).

Information 2021, 12, 420 7 of 30

(a)

(b)

Figure 2. Example of Path Protection (PP) application for the SDN platform. (a) Before an intermedi-
ate link SB → SC failure. (b) After an intermediate link SB → SC failure.

For LFR, flow rules of only the primary path (SA → SB → SC → SH) require being pre-
installed in the switches before an intermediate link failure, like with the MFR approach. At
that moment, the data packets are transmitted to the destination without the intervention
of the SDN controller (see Figure 3a). However, the MFR uses dual primary paths from the
source to the destination in order to increase network availability and to guarantee loss-
sensitive requirements, which is different from the LFR approach. When a link SB → SC
failure for the side of the LFR approach, the SDN controller receives an OFPT_PACKET_IN
as the notification command from the SB. Therefore, a secondary path as per topology is
calculated from zero by the SDN controller which also aggregates all the affected flows
into one “big” flow. The aggregation flow reverts to the original flows when it reaches the
destination switch (SH) (see Figure 3b). This approach reduces the recovery time compared
to the LR approach. However, the issue with this application is that the SDN controller
does not have information of the secondary path before a link failure occurs which in return
remarkably increases the calculation time of a new working path.

Information 2021, 12, 420 8 of 30

(a)

(b)

Figure 3. Example of Local Fast Reroute (LFR) application for the SDN platform (a) Before an
intermediate link SB → SC failure. (b) After an intermediate link SB → SC failure.

Contrarily to the existing approaches, we propose an MFR mechanism by suitably
merging the two approaches (restoration and protection) to enhance the reliability and data
transmission even in the normal condition. In the MFR approach, the hash table is in charge
of saving the flow rules partaking to the secondary paths (one from gateway A and the
other from gateway B). These flow rules are saved in order to the extent they can restore the
primary paths faster. In our architecture, the hash table is deployed in the SDN controller
memory and performs as the cache internal flow table. Flow rules will be selected by the
SDN controller and installed in the switches participating on the suitable secondary path
when a failure occurs on the primary path. Thus, the SDN controller installs the flow rules
from the link-failed switch to the destination and removes the link affected by the failure.
In case the network statistics change or there are other modifications in the topology, the
hash table immediately gets the new flow rules to replace the existing ones. The main
advantage of applying the hash table is fast lookup which notably decreases the time to find
a secondary path. The proposed approach aims at improving the recovery time without
affecting the end-to-end delay before a link failure, while simultaneously considering the
dynamic performance according to the current measures. To this end, this paper is the
extended version of the manuscript stored in [20]. Compared to the first one, we have
added and illustrated the big difference between the related works and our proposed
model. This new manuscript computes the routing paths based on both delay-sensitive
and loss-sensitive. However, the first one computes the paths based on delay-sensitive
only. It is insightful that consideration of several metrics for routing solution renders a
perfect framework of the network, and therefore, enhances the performance compared to a
single-metric as presented in [12,38]. Furthermore, the presented results are remarkably
improved with a robustness analysis and the testbed based on the real devices (JY901 sensor

Information 2021, 12, 420 9 of 30

nodes and Raspberry Pis 3 Model B+) in order to build an industrial network managed by
the SDN platform is added with its results. We have added more references to make the
proposed framework more clear.

3. System Model of ISDN
3.1. ISDN Resilience Architecture

The proposed architecture of ISDN resilience based on the three layers of the SDN
model is shown in Figure 4. The ISDN infrastructure layer at the bottom of the architecture
is composed of industrial devices, field devices, gateways, data plane elements (OpenFlow
switches), and the industrial server. The ISDN control layer in the middle of the architecture
will generally manage and control the ISDN infrastructure layer through a southbound
interface. Finally, an ISDN application layer at the head of the architecture allows the
design of industrial applications. So as to save energy consumption, we consider sending
the packets through the computed optimum paths in lieu of splitting the packets over
different paths. Thus, the data plane devices can communicate quickly among them.

Figure 4. ISDN resilience architecture.

3.1.1. ISDN Infrastructure Layer

The ISDN infrastructure layer facilitates communication and data forwarding among
devices. The data plane elements deployed in the industrial backhaul network forward
packets from field devices to the industrial server. In general, the infrastructure layer is
composed of devices and applications to exchange data in the industrial system. The data of
these devices can be forwarded from one point to the next point while being delay-sensitive
and loss-sensitive.

Gateways

The gateway nodes are installed at the infrastructure layer to connect field devices
to the switches through different protocols such as CoAP, MQTT, and IPv4/IPv6. The
gateways encapsulate/decapsulate the data from the sensors/actuators into packets with a
format that is understandable by the data plane elements. Accordingly, the encapsulation
allows the option of recognizing a specified sensor/actuator stream of packets and process
every sensor/actuator flow differently in terms of resilience demanded. This permits an
effective performance of diverse sensor/actuator duos having diverse requirements in
terms of deadlines and packet loss.

Information 2021, 12, 420 10 of 30

Field Devices

Field device mechanisms have made Ethernet even more attractive. It is composed of
sensors and actuators that forward gathered information to the switches with gateways
as an intermediate. These wireless network devices can be connected through an open
standard protocol for the industry such as 6TiSCH; 6TiSCH decreases power consumption
through merger tools by manipulating the scale of an industrial system while preserving
ultra-high reliability. Additionally, integrated SDN with 6TiSCH boosts industrial networks
to build the best traffic based on deterministic networks and schedule all the wireless trans-
missions with a centralized entity to offer global optimizations of different devices [39].
Also, 6TiSCH is able to assure better service for IIoT applications through effective dis-
tribution of radio resources and nodes across the connectivity, as well as permitting the
network scalability through fine-scheduled and offers dynamic installation of the TSCH
slot frame [40]. To this end, this technique of using the 6TiSCH in the field devices with the
application which guarantees both loss-sensitive and delay-sensitive QoS requirements
permits our proposed system to contribute to the future technologies and enhances wireless
communication.

Industrial Backhaul Network

The industrial backhaul network handles the transmission problems introduced in
case the industrial field network accesses the IPv4/IPv6 wide area network or Internet to
optimize the speed of cross-network. This provides the deterministic end-to-end delay for
data frames transmitted in the industrial area. With the SDN-based industrial backhaul
network, the industrial networks are scheduled and managed in a centralized way. When
a service establishment request is acquired, the service can be deployed directly by the
controller without the need for other tools. In order to pliably adjust the bandwidth
distribution strategy in the industrial backhaul network, the network administrator can
assign more bandwidth to decrease delay and ensure the real-time requirements of critical
flows. For non-real-time communication, the network administrator can allocate less
bandwidth to reserve bandwidth for real-time communication. More details are exposed
in our patent presented in [41].

3.1.2. ISDN Control Layer

The ISDN control layer needs a high interface for coordination to support the ex-
change of information among layers. In architecture, this layer is made of two main SDN
controllers. One of them is the SDN controller B utilized to manage data plane devices
and routing policies according to changes. SDN controller B is also in charge of network
fault management. The other one is SDN controller A which manages the wireless network
devices. SDN controller A has an east-west API interface to SDN controller B to fix the
network performance. Specifically, SDN controller A determines the number of gateways
in order to prevent packet loss for critical services. For instance, a service that requires
high reliability will activate additional gateways than a service that requires less reliability.
SDN controller A is also able to measure the energy consumed by the sensor/actuator
nodes in the different modes of send, receive, sleep, and wake. By this way, the SDN
controller A should analyze a schedule that fits well with the energy constraints of the
sensors/actuators and allow a perfect time within the constrained resources.

3.1.3. ISDN Application Layer

The ISDN application layer consists of resilience and other industrial applications
which expressly, precisely, and programmatically transmits their different requirements
and desired network performance to the ISDN control layer through a REST API. Besides,
this layer provides appropriate guidelines for the ISDN control layer based on received
statistics.

This section proposes the architecture of ISDN resilience and explains related essen-
tial technologies. In the next section, we focus on resilience when a link failure occurs.

Information 2021, 12, 420 11 of 30

Therefore, the question is how to ensure fast recovery with minimum packet loss without af-
fecting end-to-end delay in the normal conditions. Industrial systems must be programmed
so that the process and communication can continue to function when there is a device or
link failure, and, still be resilient to failures with planned fast maintenance during difficult
condition.

3.2. MFR Approach
3.2.1. Link Failure Detection

In this paper, the MFR approach applied the BFD per-link [32] to quickly identify a link
failure in the network topology. The BFD executes a control method and an echo message
to check the performance of links in the connectivity with precise short latencies. After
detection of a link failure, the SDN controller establishes suitable decisions to maintain
the performance accordingly. Thus, the SDN controller obtains complete information
to determine a new path in order to accomplish the appropriate recovery from failure.
Furthermore, it is practical to utilize BFD protocol specifically on Open vSwitch [42] which
is used in our approach.

3.2.2. Computation of Primary and Secondary Paths

In this subsection, we display the model of ISDN considered in this paper. The
notations utilized in this paper are summarized in Table 2.

The industrial network connectivity must contain the capability to find various disjoint
paths. If the connectivity is extremely limited, disjoint paths could not be established and
network augmentation is required. In this work, we believe that the network connectivity
for the applied topologies is adequate.

The Integer Linear Programming (ILP) formulated in this subsection is based on the
Min-Sum Link Disjoint Paths algorithm [43] to compute the optimum primary paths and
optimum secondary paths in order to enhance the overall network performance. We define
the problem by utilizing A Mathematical Programming Language (AMPL) [44]. As a
formulation step, we adopt some basic ILP formulation found in [45]. We suggest to utilize
Gurobi Optimizer [46] to solve the ILP problem. The scheme is defined to calculate the
optimum paths in order to reduce the packet loss and delay as numerous industrial appli-
cations require delay-sensitive and loss-sensitive in communication and data-processing
functions. SDN controller properly examines the network state, calculates the optimum
primary and secondary paths from each gateway, and configures the instructions inside
the flow tables. The analyzed mathematical scheme is applicable to be used in wireless
and wired networks. Thus, the scheme allows us to calculate the paths for each demand in
accordance with the application requirements.

We investigated a framework with a connectivity of nodes where every link has the
measures such as the available bandwidth bij and weight wij that is calculated as the
sum of the delay and packet-loss probability. The optimization goal is to forward each
flow through the lowest weight of the link. Specifically, the weight is determined by the
following formula:

wij = βlij + αdij ∀(i, j) ∈ E (1)

since β and α are the scale factors and allow us to set the weight associated with each link
in the connectivity for a particular demand.

Table 2. Summary of key notations.

Notation Description

G(V, E) G is an undirected graph, where V is
the set of nodes (switches

and gateways) and E is the set of links.
(i, j) ∈ E the link from node i to node j.

α ≥ 0 the scale factor for the delay (d).

Information 2021, 12, 420 12 of 30

Table 2. Cont.

Notation Description

β ≥ 0 the scale factor for the loss (l).
s1 ∈ V the source node of the path k.
sn ∈ V the destination node of the path k.
dij ≥ 0 the delay of the link (i, j).
lij ≥ 0 the packet-loss probability on the link (i, j).
wij ≥ 0 the weight of the link (i, j) ∈ E, computed as βlij + αdij.
xk

ij ≥ 0 The number of the flow corresponding to
the path k ∈ N sent on the link (i, j) ∈ E.

Dk
max ≥ 0 the maximum tolerable delay.

Lk
max ≥ 0 the maximum tolerable loss.
bij ≥ 0 the bandwidth available on the link (i, j) ∈ E.
Bk ≥ 0 the bandwidth required by the path k.
Pa

1 ≥ 0 the primary path from gateway (GW) A.
Pb

1 ≥ 0 the primary path from GW B.
Pa

2 ≥ 0 the secondary path from GW A.
Pb

2 ≥ 0 the secondary path from GW B.
sPa

1
≥ 0 the switches across the Pa

1 .
RPa

1
≥ 0 the flow rules corresponding to the Pa

1 .
sPa

2
≥ 0 the switches across the appropriate Pa

2 .
RPa

2
≥ 0 the flow rules corresponding to the Pa

2 .
sPb

1
≥ 0 the switches across the Pb

1 .
sPb

2
≥ 0 the switches across the appropriate Pb

2 .
f the failed link in the network topology.

RPb
1
≥ 0 the flow rules corresponding to the Pb

1 .
RPb

2
≥ 0 the flow rules corresponding to the Pb

2 .
λ ≥ 0 the number of intermediate switches on the Pa

1 .
δ ≥ 0 the number of intermediate switches on the Pa

2 .
γ ≥ 0 the number of intermediate switches on the Pb

1 .
ε ≥ 0 the number of intermediate switches on the Pb

2 .
working_path_A the optimum path used for sending the

packets from GW A to the destination.
working_path_B the optimum path used for sending the

packets from GW B to the destination.
HT the hash table.

Let xk
ij denote the portion of traffic that traverse from node s1 ∈ V to node sn ∈ V

through (i, j) ∈ E, where xk
ij gets a binary value, only 0 or 1, and N = {1, 2, 3, . . . , K}. If

path k is transmitted via (i, j) ∈ E, xk
ij = 1. Otherwise, xk

ij = 0. We compute a set of K
link-disjoint paths from source to destination, as specified in the following ILP problem:

Objective min ∑
k∈N

∑
(i,j)∈E

wijxk
ij (2)

Constraints ∑
j:(i,j)∈E

xk
ij − ∑

j:(j,i)∈E
xk

ji = 1, ∀k ∈ N, if i = s1 (3)

∑
j:(i,j)∈E

xk
ij − ∑

j:(j,i)∈E
xk

ji = 0, ∀k, i(6= s1, sn) ∈ V (4)

xk
ij + xk′

ij ≤ 1, ∀k, k′(k 6= k′) ∈ N, (i, j) ∈ E (5)

∑
(i,j)∈E

lijXk
ij ≤ Lk

max ∀k ∈ N (6)

Information 2021, 12, 420 13 of 30

∑
(i,j)∈E

dijXk
ij ≤ Dk

max ∀k ∈ N (7)

∑
k ∈ N

Bkxk
ij ≤ bij ∀(i, j) ∈ E (8)

xk
ij = {0, 1}, ∀k ∈ N, (i, j) ∈ E (9)

xij is the decision variable. Equation (2) is the objective function of this algorithm that
minimizes the sum weights of K paths. Equations (3)–(9) are the constraints.
Equations (3) and (4) indicate the requirements of flow conservation. Equation (3) keeps
the flows at the source node s1. The difference between the ingress traffic capacity and
the egress traffic capacity, ∑j:(i,j)∈E xij −∑j:(j,i)∈E xji, is 1. Here, the egress traffic capacity
at node sn is 1. Equation (4) keeps flows at intermediate node i, where i 6= s1, sn. The
egress traffic capacity at node i, ∑j:(i,j)∈E xij, is equal to the ingress traffic capacity at node
i, ∑j:(j,i)∈E xji. Equation (5) specifies that different paths in the network topology must
not share common links. The maximum acceptable number for the packet loss is speci-
fied in Equation (6). Also, the maximum acceptable number for the delay is specified in
Equation (7). The parameters Dk

max and Lk
max impose a bound on the delay and loss for

every path k. The link capacity constraint is considered in Equation (8). It dictates a limit
on the available bandwidth for each link contributing in the path k. Equation (9) shows the
range of xij.

When there are various best paths for a demand (various paths have the same weight),
and when we are basing on a path which refers to one of these optimum paths. We consider
the dual of the optimum path to discover the primary path as the working path.

max ∑k∈N Uk
sn (10)

s.t.

Uk
j −Uk

i ≤ wij, k ∈ N, (i, j) ∈ E (11)

Uk
s1
= 0, k ∈ N. (12)

Note that in formulation (10) and (11), different demands do not interact. Thus, every
one of them can be decomposed to a number of sub-problems. Now for the optimum path
problem, the duality relationship can be explained in the following procedure. Let {X̄k

ij}
symbolize the optimum flow solution of the primal problem. If {X̄k

ij} obtain values of

only 0 and 1, a unique optimum path is defined for each demand. Let {Ūk
i } symbolize the

optimum flow solution of the dual problem. The value of Ūk
i can be noted as the range

from the s1 to switch i on the basis of the optimum paths for demand k resolved in the
primal problem. Precisely, Ūk

sn is the total weight of the optimum path from s1 to sn. By
utilizing the duality relationship to the primal and dual problems, we have:

Lemma 1 (complementary slackness). If X̄k
ij > 0, then Ūk

j − Ūk
i = wij. If Pk is the data

path resolved by {X̄k
ij : (i, j) ∈ E}, then for every link (i, j) ∈ Pk, X̄k

ij > 0, which signifies that

Ūk
j − Ūk

i = wij.

Theorem 1. Let P1 be a data path from s1 to sn. If for every link (i, j) ∈ P1, Ūk
j − Ūk

i = wij, then
P1 is a primary path from s1 to sn (with respect to the link weights wij

′s).

Information 2021, 12, 420 14 of 30

Proof. Let P1 = y0, y1, . . . , ya−1, ya where yj, 0 < j < a are all the switches on the path in
order with y0 = s1 and ya = sn, we have

Ūk
yj
− Ūk

yj−1
= wyj−1yj (13)

for 0 ≤ j ≤ a. If we calculate the total, we get

Ūk
sn = Ūk

sn − Ūk
s1
=

a

∑
j=1

wyj−1yj (14)

Clarify that ∑a
j=1 wyj−1yj is the weight of P1. Let Pq = z0, z1, . . . , zb−1, zb be any other path

between s1 and sn, we have

Ūk
zj
− Ūk

zj−1
≤ wzj−1zj (15)

for 0 ≤ j ≤ b. Correspondingly determine the total of the equations, we get

Ūk
sn ≤

b

∑
j=1

wzj−1zj (16)

which indicates that ∑a
j=1 wyj−1yj ≤ ∑b

j=1 wzj−1zj . That is, the weight of path P1 is less than
the weight of Pq. Hence, P1 is the optimum primary path.

It is clear that consideration of several metrics for application routing provides a
perfect network scheme compared to a single metric. Bandwidth is a concave metric,
while the delay is an additive metric. However, the composition rule for loss probability
is complex. Therefore, we consider the scheme of success-probability (multiplicative
composition rule). Regarding the size of the problem, we recognize that the measure
of variables is |E||N| and the measure of constraints is |V||N|+ |E|N|. This problem is
NP-complete, as illustrated in [38]. The challenge is to compute a path that fulfills several
constraints. The author in [47] investigated this specific challenge of traffic routing for
calculating a path that satisfies different constraints. Hence, he designed a model that
solves the problem in polynomial-time. Therefore, we adopt the polynomial-time model
to solve the NP-complete problem produced by taking into account both delay and loss
probability metrics. Furthermore, we utilize the dynamic run-time installation facilities
of SDN technology, to run several metrics-based polynomial-time traffic algorithms. This
technique leads to reduce the complexity generated by the combination of several metrics
(packet-loss probability and delay).

3.2.3. MFR Performance-Based with Different ISDN Topology

Let Pa
1 and Pa

2 denote the optimum primary path and the optimum secondary path
from GW A to the destination, respectively. Pa

1 and Pa
2 are the shortest pair of link-disjoint

paths returned by the algorithm, Pa
2 do not share common links with Pa

1 , since Pa
2 will

recover network connectivity for any link failure in the Pa
1 . Likewise, we utilize the

aforementioned strategy to calculate the Pb
1 and Pb

2 from GW B to the destination. In a
normal situation, it implies that there is no failure in the connectivity, working_path_A = Pa

1
and working_path_B = Pb

1 . As we understand, Pa
1 is the primary path from GW A that has

a minimum weight toward the sn. The switch whereby the link of Pa
1 has been failed is

named the failure point (Fp). For this purpose, the secondary path Pa
2 is started from the

Fp to the sn.
The MFR approach is in charge of installing the primary and secondary paths through

the network. Algorithm 1 demonstrates the configuration of primary and secondary paths,
where it is assumed that the graph G(V, E) is known and a set of nodes and links is given.
The input and output of the algorithm are presented. Between lines 3 and 7, the primary
paths are configured in the connectivity. Hence, the switches send the incoming packets
by using the primary paths, and then the flow rules participating to the secondary paths

Information 2021, 12, 420 15 of 30

are saved in the hash table (line 8). Lines from 9–11 depict the failure detection on the Pa
1

through the BFD per-link. Afterwards, the SDN controller picks the appropriate flow rules
in its hash table to reduce the recovery time (line 12). Line 13 depicts that the switches
across the Pa

2 receive the flow rules from the SDN controller, and then the failed link are
deleted from the flow tables via the OFPFC_DELETE commands (lines 14–17). Lines from
18–20 show the configuration of the new path as the working path to replace the previous
one. Afterwards, the switches forward the incoming packets from GW A by using the new
path. In brief, we can see that lines from 9–21 clarify the recovery process if a failure takes
place on the Pa

1 . Similarly, lines from 22–34 show the recovery process when a failure takes
place on the Pb

1 . Line 35 mention the dynamic update of primary paths and flow rules
participating to the secondary paths in case the network condition changes. Lastly, the
approach ends on line 36.

Our proposed architecture, which is shown in Figures 5 and 6, targets optimization of
the resilience in ISDN through multiple functions. This objective is achieved by continu-
ously monitoring the network topology status, updating the paths to ensure that newly
arrived packets forward through the computed ones. Therefore, we focus on minimizing
the calculation delay of a new path to achieve a resilience solution, while a connectivity
process completes under minimum path weights in order to deliver the traffic correctly and
to use the bandwidth efficiently. The MFR architecture contains of the following logical
modules (see Figures 5 and 6):

The Network Topology Statistics Collector module is applied frequently to collect statistics
concerning the delay in the network connectivity. We used active probing to discover the
link delay; the SDN controller injects probe packets at the source switch, and once receiving
them, the destination switch returns them to the SDN controller. The SDN controller
analyses the latency from the difference in entry and outlet times of the probe packet, as
wells as taking into consideration the delay generated by the communication between the
SDN controller and the switches.

The Path Calculator module is in charge for calculating the optimum primary and
secondary paths. This model calculates the min-sum link disjoint paths based on real-time
network state information from the Network Topology Statistics Collector.

The Path Inserter module is responsible for inserting new flow rules into the switches
across the secondary path in case a link of the primary path fails. The Path Inserter module
is also used to install other updates in the data plane devices.

The Network Topology Manager module is utilized to maintain a consistent global view
of the network among the devices and analyzes the network statistics collected by the
Network Topology Statistics Collector module to decide on the time if it is essential to update
the network topology. When the network changes, the hash table immediately receives
new instructions matching to the secondary paths according to the current status.

In this MFR approach, the hash function keeps the destination IP address to an indi-
vidual bucket and flow rules are saved at that bucket in the hash table. It is preferable when
the largest number of flow rules is determined in advance so that the maximum number
of array indexes can be defined once with proper size and modified only if it is essential.
Consequently, we fix the maximum number of array indexes to improve performance. We
created a hash table range from 0 to 1200 columns for the industrial network topology and
from 0 to 1000 columns for sprint topology [48] due to the well-known limited number of
switches and hops involved in these topologies. The maximum number of array indexes
for the side of industrial network topology is larger than the maximum number of the array
for the side of sprint topology. This is because the industrial network topology has more
hops comparatively to the sprint network topology. A consistent hash function [49] was
utilized as it provides similar output for input when the function is executed and facilitated
to identify a particular flow rule of a specific switch. The flow rules are registered in
buckets in a connected list inside the logical data structure which comprises the following
main components: source address (s_a), destination address (d_a), actions (act), switch
identification (sw_id), and timeouts (t). In line with the connection to the destination IP

Information 2021, 12, 420 16 of 30

address (see Figures 5 and 6), other elements of the hash table are arranged at their specific
places. We suppose that flow rules are determined based on the destination IP address.
The great advantage of the hash table structure is the rapid constancy for lookup which in
turn decreases the delay to pick out a secondary path. Besides, this mechanism supports
the SDN controller to rapidly update the flow rules stored in its hash table based on the
changes in network conditions. It is very conducive on the side of the hash table when the
maximum number of flow rules is predetermined before running the system. On the other
hand, the hash table is not unlimited to the controller memory to save the flow rules. Thus,
enough memory is required to cache the flow rules in the SDN controller. Besides of that,
an adaptive distributed controller [50,51] is proved to address the issues of scalability in
order to store a large number of flow rules in the internal flow table to further ensure high
availability.

Figure 5. Network topology with a link failure scenario.

Figure 6. Network topology upgrading scenario with a link failure.

Information 2021, 12, 420 17 of 30

Algorithm 1: MFR route/reroute performance.
Input: The graph G(V, E), constraints, and wij.
Output: Configure the Pa

1 from GW A and Pb
1 from GW B in the connectivity, as

well as storing the RPa
2

and the RPb
2

in the HT.

1 SDN controller monitors the network topology state.
2 while there exist the paths in the connectivity between source and destination do
3 sPa

1
= {s1, sg, sh, . . . , sλ, sn} ← OFPT_PACKET_OUT (RPa

1
).

4 sPb
1
= {s1′ , sg, sh, . . . , sγ, sn} ← OFPT_PACKET_OUT (RPb

1
).

/* s1′ represents the source node on the Pb
1. */

5 working_path_A← sPa
1
.

6 working_path_B← sPb
1
.

7 path.append (working_path_A, working_path_B).
8 HT (d_a, s_a, d_a, act, sw_id, t)← ((RPa

2
), (RPb

2
)).

9 if the link of Pa
1 fails at a point Fp then

10 the f in Pa
1 is identified via BFD per-link.

11 Fp informs the SDN controller about the breakdown.
12 SDN controller pick out the appropriate R Pa

2
from its HT.

13 sPa
2
= {Fp, sg, sh, . . . , sδ, sn} ← OFPT_FLOW_MOD (RPa

2
).

14 for all links contributing in the Pa
1 do

15 temp = Pa
1 − f .

16 path.remove (f).
17 end
18 new-path← temp + Pa

2 .
19 working_path_A← new-path.
20 path.append (working_path_A).
21 end
22 if the link of Pb

1 fails at a point Fp then
23 the f in Pb

1 is identified via BFD per-link.
24 Fp informs the SDN controller about the breakdown.
25 SDN controller pick out the appropriate R Pb

2
from its HT.

26 sPb
2
= {Fp, sg, sh, . . . , sε, sn} ← OFPT_FLOW_MOD (RPb

2
).

27 for all links contributing in the Pb
1 do

28 temp = Pb
1 − f .

29 path.remove (f).
30 end
31 new-path← temp + Pb

2 .
32 working_path_B← new-path.
33 path.append (working_path_B).
34 end
35 SDN controller regularly monitors the topology state. When the network

statistics change, the working paths are updated, and the new flow rules
corresponding to the secondary paths are again stored to the HT to replace
the previous ones.

36 end

In Figure 5, the primary path (GWA → SA → SB → SC → SJ → server) is in violet
color and the appropriate secondary path (GWA → SA → SH → SI → SC → SJ →
server) after a link SA → SB failure is in red color from GW A to the destination; both are
illustrated. Similarly, the primary path from GW B in green color is illustrated (GWB →
SD → SE → SF → SJ → server). After failure detection, the packets must be redirected
using the secondary path as the new primary path before a repair of the first primary path

Information 2021, 12, 420 18 of 30

may happen. When links of both primary paths (Pa
1 and Pb

1) from GW A and GW B fail
simultaneously, this type of network topology is capable of restoring both paths without
interrupting the connectivity because the network is not completely loaded and has no
effect on the congestion produced by the links failure. This is due to the number of sensors
frames is less compared to the wired link capacity. The hash table shows that based on
the destination IP addresses for SA and SB. Likewise, other different flow rules are also
positioned at their particular positions.

Communication availability is essential for network optimization. The unavailability
(U = 1− A, U ∈ [0, 1], for A as availability) of subsystems can be related to the packet
loss [52,53]. In the experiment, dual primary paths with dual GWs reduce the packet loss
compared to one GW with one primary path if a link fails. Correspondingly, the number
of packets forwarded from source and received by a destination through dual GWs A, B,
where A and B mention different paths while AB is the set of them, the packet was more
effectively delivered than one GW.

The network topology connects the number of nodes where the packets has to cross
over in order to reach the destination. Hence, the delay increments with the number of
nodes in series. Then, real-time services and time latency depend on the number of nodes
and hops per path. Particularly, given topology, the shortest path length average is:

as1 = ∑
s1,sn ∈V

h(s1, sn)

m(m− 1)
(17)

in this formula, V is the set of nodes, h(s1, sn) is the shortest path from s1 to sn, and m is the
number of nodes in the topology. As the approach is implemented in the SDN platform,
link parameters accessible at the SDN controller can be incorporated into the topology.
More specifically, once the link SI → SJ is added into the connectivity through the Open
vSwitch (see Figure 6), the resilience application receives datapath-join event. After that, the
Path Calculator will recalculate the paths and send the update flow rules in the hash table
based on the current measures.

Two steps were used to approve the proposed approach. The first step is to check
that the secondary paths are designed correctly, and also check that they are updated
based on the current measures. The second step is to check that the path computation
time is reduced to ensure faster path recovery. Figure 6 shows the network expansion
as an upgrading scenario whereby the secondary path after a link SA → SB failure is
generated based on the current network status. In this way, the Network Topology Statistics
Collector module regularly monitors it. The new secondary path with the highest priority
is turned to GWA → SA → SH → SI → SJ , not passing through SI → SC. Since the
path GWA → SA → SH → SI → SJ has the minimum weight compared to the path
GWA → SA → SH → SI → SC → SJ and the hops/switches of the new secondary path are
equal to the primary path. The positive result of this modification is to reduce end-to-end
delay after link failure for the side of the upgrading scenario. Thus, our proposed approach
can monitor, identify network changes, and choose a different secondary path.

3.2.4. Analysis of the MFR Approach for the Recovery Process

In this part, we analyzed the performance of the MFR approach as shown in Figure 7.
Initially, we used an analytical model to compute the recovery time. After detection of
a link failure (TBFD), the FP informs the SDN controller about the link failure through
the notification message (Tic). At that time, the SDN controller selects the appropriate
secondary path from the FP to the sn (Tc). Afterwards, the Path Inserter module inserts
the new flow rules to reroute the traffic (Tci) and the flow table is updated for the side of
the switch (Tui). We affirm that Tc is reduced because the SDN controller has known the
existing flow rules of each endpoint participating to the secondary path. After a link failure
in the Pa

1 , each switch across the Pa
2 gets and installs the flow rules from the SDN controller.

Information 2021, 12, 420 19 of 30

So, there is only one Tic, one Tc, Tci, and Tui are equal to the total number of switches across
the Pa

2 . So the recovery time (TR) of the approach is shown in Equation (9).

TR = TBFD + Tic + Tc +

sPa
2

∑
i=1

(Tci + Tui) (18)

Figure 7. Analytic model for the MFR recovery process.

This method will significantly reduce the recovery time as the SDN controller will
communicate the flow rules to the switches across the secondary path simultaneously. To
this end, the MFR strategy can be adapted to connect all endpoints in industrial networks
without degrading system performance.

4. Evaluation Performances
4.1. Simulation Setup

We tested the performance of the proposed SDN resilience approach through a real
emulation environment by utilizing Mininet version 2.0.0 emulator platform [19] with
Ubuntu 18.04 OS on VMware Workstation to simulate the topologies by which it is practical
to develop “networks virtualization on a single computer”. Furthermore, the OpenNet
simulation [18] connects Mininet to ns-3 to exploit both Mininet’s ability of creating the
topology and ns-3’s potential in the connection of wireless network devices such as gateway
nodes and sensor nodes. The OpenDaylight (ODL) [54] has been utilized as the SDN
controller. It provides the complete functionality of the controller responsible for different
duties, such as management and control of network topology and the route/reroute
computation. Similarly, the multipath ODL fork is particularly utilized to determine
several link-disjoint paths and allows multipath switching. Open vSwitch (OVS) [42]
application switch has been utilized to provide the performance of OpenFlow version 1.3
networking mechanism. The capacity of every link is set to 1 Gbps between data plane
devices. The experiments were conducted on the computer (Intel Core i5-3470 quad-core
processor with a clock of 3.20-GHz and 16 GB of DDR3 RAM) using the above simulation
tools. The other computer (Intel Core i5-7500 processor with a clock of 3.40-GHz and 8 GB
of DDR3 RAM) as an SDN controller has an ODL platform.

In the experiments, we placed emphasis on the wired network of the data plane.
We introduced an industrial network topology in Figure 8a through which the primary

Information 2021, 12, 420 20 of 30

and secondary paths are clearly illustrated for the MFR approach (see Figures 5 and 6).
Additionally, we use real network topology to evaluate the scalability. To do so, all the
analyzed resilience approaches are tested through the sprint topology (see Figure 8b). The
accurate data were extracted from Internet Topology Zoo [55]. The industrial backhaul
network is used only for the proposed industrial network topology because it works well
in a reasonably small/medium network such as the network of industrial plant size. The
sensor nodes forward UDP packets to the one or dual GWs nodes by a sequence of data
packets from every individual sensor. The GW nodes transmit these packets to the switches,
and the destination switch also sends them to a server. For the data file transfer flow on the
computer server, we utilized a simple FTP server [56]. We keep a precise number of sensor
identifications in the GWs memories in order to reduce the latency. So, the GWs know the
number of sensor identifications that are linked.

(a)

(b)

Figure 8. Network topologies adopted in this paper. (a) The depiction of the industrial network
topology. (b) The depiction of the sprint topology.

4.2. Evaluation Results
4.2.1. End-to-End Delay before Failure Occurs

For end-to-end delay before a link failure, more than 200 samples were evaluated in
the experiments and the average was computed for PP, LR, LFR, and MFR as displayed in
Figure 9. Where the horizontal axis denotes the number of packets forwarded per second,
and the vertical axis denotes the end-to-end delay before a failure occurs.

Information 2021, 12, 420 21 of 30

(a)

(b)

Figure 9. End-to-end delay before a link failure. (a) To the industrial network topology. (b) To the
sprint topology.

The PP installed the flow rules of the primary and alternative paths in the switches.
Thus, the PP used a higher number of flow rules per switch (than the other three methods)
which in return consumes more memory or buffer of the switch and increases the lookup
time taken to discover a suitable flow rule inside the switch (see Figure 10). Altogether this
increases the end-to-end delay for the side of the PP. The flow processing time contains
several types of end-to-end delays of which the lookup time is one of the significant
elements. This means that, if the lookup time increases, the end-to-end delay also increases.
For this reason, storing additional flow rules in the switch memory increases the end-to-end
delay in the network. For MFR and LFR, flow rules of only the primary path need to be pre-
installed in the switches before a link failure; hence the two approaches use the same flow
rules. We can see that the end-to-end delay before a link failure of MFR and LFR is minimal.
Thus, the MFR and LFR provide the slightest delay in the normal situation than the PP.
It becomes apparent that the end-to-end delay of the LR is higher than other approaches
due to a high number of round-trips between a controller and switches. The results of
end-to-end delay before a breakdown occurs are essential for the resilience approach as
most of the time, there is no breakdown in the connectivity.

Information 2021, 12, 420 22 of 30

Figure 10. Lookup time based on the number of flow rules.

4.2.2. Lookup Time Based on the Number of Flow Rules before Failure Occurs

After more than 200 samples of experiments, lookup time based on the number of
flow rules utilized by MFR and PP were compared, and then the average was computed
for both methods. Every experiment was installed as eight flows per intermediate link
between two switches.

Figure 10 shows the results of lookup time based on the number of flow rules. It is
clear that the number of flow rules for the side of MFR is minimal compared to PP, which
means that MFR attains the smallest network cost in terms of consumed memory. PP and
MFR utilize additional flow rules because the alternative paths are installed in advance
and the alternative paths prevent the unavailability of the network in case a link failure
happens in the primary path. For PP, all flow rules are installed in the data plane devices,
and for every flow, an alternative path must be configured. Besides, each switch in the
network topology can independently perform after configuring the flow rules through the
fast-failover groups comprising the backup paths. As a result, this strategy requires extra
flow rules. However, MFR stores the flow rules in the flow tables of the data plane devices
along the primary path and stores the flow rules of the secondary path in the hash table
deployed in the SDN controller in order to decrease the recovery time. The secondary path
is installed to protect the links along the primary path of each flow. This mechanism of
saving the secondary path in the hash table of the SDN controller cannot have an impact
on the lookup time and end-to-end delay before a link failure. In the experiments, the
MFR and PP approaches are also analyzed with consider to the lookup time taken to select
appropriate flow entry participate to the primary path which is used to transmit the packets
to the destination. As the MFR approach utilizes minimum flow rules in the switch than
PP, the lookup time to discover suitable flow rule in the flow table is minimal compared to
the PP approach.

4.2.3. Failure Recovery Time

We compute the failure recovery time based on the Number of Affected Flows (NAFs)
for the industrial network topology (see Figure 8a) and the sprint network topology (see
Figure 8b). At each approach, we uniformly choose a link from the links participating in
the primary path and break it. For each topology, more than 200 samples were evaluated
in the experiments for MFR, PP, LR, and LFR approaches. Then the average was computed
for each approach.

Figure 11 displays the failure recovery time where the horizontal axis represents the
NAFs and the vertical axis represents the recovery time in ms for each resilience approach.
The SDN controller interface is required to recover from a failure for the side of LR, LFR,
and MFR approaches. However, it is different from the situation of PP as the flow rules for

Information 2021, 12, 420 23 of 30

both primary and alternative paths are pre-configured into the switches. At that moment,
the alternative path replaces the primary path if a link failure occurs without informing the
SDN controller. Consequently, the failure recovery time becomes slight. However, PP is
more inflexible compared to other resilience approaches. LR and LFR need extra time to
restore the path than the MFR due to the computation of a new path from zero required to
recover the primary path on the part of LR and LFR. Nonetheless, LFR reduces the recovery
time compared to LR as it combines all flows affected by the link breakdown into one “big”
flow instead of processing each flow individually. The SDN controller computes a new
path and inserts only one aggregation flow on the intermediate switches and disaggregated
to be the original flows when it reaches the switch destination. For LR and LFR, the time to
recover from failure increases with the increase of NAFs. On the other hand, MFR reduces
the recovery time since it has already stored the flow rules corresponding to the secondary
paths in the hash table. Thus, the MFR meaningfully reduces the computation time of a
new path as this time increments the recovery time than the signaling message to the SDN
controller. Furthermore, MFR reduces the number of round-trips between the switches and
the SDN controller after a network failure. To do that, after detection of a failure, the SDN
controller chooses the appropriate secondary path and directly forwards the instructions
as feedback to each switch along this secondary path (see in Figures 5 and 6). Particularly,
only one switch triggers the round-trip with the SDN controller.

(a)

(b)

Figure 11. Failure recovery time based on the NAFs. (a) For the industrial network topology. (b) For
the sprint topology.

Information 2021, 12, 420 24 of 30

4.2.4. Packet Loss Rate (PLR)

Transmitting the continuous data packets would allow one to discover the PLR when
network components fail. In the tests, we compare the PLR based on the NAFs among
three topologies, the topology of Dual Primary paths with Dual GWs (DPDG) presented
in Figure 5, topology Upgrading also with Dual Primary paths and Dual GWs (UDPDG)
presented in Figure 6, and finally the topology of One Primary path with One GW (OPOG).
The experiments were repeated more than 200 times for each topology and the results
were averaged. Flows that are affected by the failed link before the secondary path works
will cause some packet loss. In this work, PLR under the industrial network topology is
calculated by the following equation:

PLRsource→ destination = 1− Packets received
Packets transmitted

(19)

Figure 12a,b show the PLR comparison results for the UDPDG, DPDG, and OPOG
topologies. We can see that the PLR of OPOG increases gradually with the increase in the
NAFs, while the UDPDG and DPDG show a minimum PLR. The packet loss for the side of
the OPOG varies from 1.5% to 3.8% PLR. However, the UDPDG and DPDG experienced
minimum PLR variations from 0.12% to 0.29%.

(a)

Figure 12. Cont.

Information 2021, 12, 420 25 of 30

(b)

Figure 12. Results for PLR based on the NAFs. (a) Capture of results for displaying the PLR;
(b) Average PLR.

Based on the demonstrations’ results, it is clear that using dual primary paths with
dual GWs remarkably decreases the PLR. We can nearly accomplish a zero packet loss
possibility when there is a failure in a link of a primary path. This indicates that the MFR
approach is exceptionally tolerant in offering approximately error-free transmission of data.
On the other hand, if the NAFs increment, the PLR also increments. The reason is that
after a network link failure, it costs additional time for the detection of a link failure and
the SDN controller selects the appropriate flow entries and inserts them in the switches,
and then it removes the failed link from the connectivity table. All this together causes
packets to be discarded. However, if dual primary paths with dual GWs are utilized, there
is a greater possibility that many packets will utilize the computed optimum paths which
reduce the delay, thereby decreasing the PLR.

4.3. Experimental Testbed Setup and Results Analysis

As shown in Figure 13, we designed a decoupled intelligent testbed to prove and
test the proposed framework. The testbed environment is also composed of the main
computer containing simulation applications and network topology. Besides, sensors
devices, two GWs (Raspberry Pis), and a computer containing ODL controller departed
from the simulation network topology as physical devices were used. The GWs are
connected to the main computer with Ethernet adapters’ connection (High-Speed HDMI™
Cable with Ethernet). Whereas the ODL controller is connected to an Ethernet adapter
(RJ45), and these adapters are attached to the main computer with the USB ports. Nine
switches inside Mininet software have private addresses, to create the interface with the
public network possible, it is mandatory to realize a Network Address Translation (NAT)
in the switches S1, and S2. It is also necessary to use a set of IPTable rules to forward the
data packets from the public to the private network.

Raspberry Pis acting as gateways are in charge of receiving the packets from field
devices (sensor nodes) and connecting the public to the private network. The experiments
are conducted on field devices by installing an MQTT for Sensor Networks (MQTT-SN) [57]
plugin which utilizes UDP as a transport protocol to render assistance in field devices
for forwarding packets. The utilization of UDP is also applicable for delay-sensitive
applications as it reduces latency due to re-transmission and connection setup. USB ports
and serial connection are used to connect the sensor nodes to the Raspberry Pis. At that
point, pyserial library was applied to develop the script for the serial interface connection
and python-wifi 0.6.1 library for those sensor nodes. The experiments under the proposed

Information 2021, 12, 420 26 of 30

industrial network topology were repeated more than 250 times and 5 numbers returned
many times were selected as the results while the average was calculated.

Figure 13. Testbed experiment.

Figure 14a shows the measured results of the packet delivery rates before and after
link failure in the network topology configured on the main computer. We concluded
that the MFR approach can achieve the requirements in reliability and has high stability
in dynamic changes of the network as the average packet delivery rate is greater than
97.5% after a link failure and greater than 99.5% before a link failure. Figure 14b shows the
average end-to-end delay before and after link failure is 3.70 ms and 12.63 ms, respectively.

Figure 14. Testbed experimental measurement results. (a) Results of the packet delivery rate.
(b) Results of average end-to-end delay.

5. Conclusions

In this paper, we presented an approach called MFR to improve the resilience mecha-
nism through the ODL application implemented under JAVA interfaces. The MFR approach
considers the differing metrics (delay, packet-loss probability, and bandwidth) for QoS
routing to meet the various requirements of industrial applications. In the recovery process,
the SDN controller selects the suitable flow rules in the dynamic hash table installed in
its memory as an internal flow table. Afterwards, these flow rules are injected inside the
switches along the secondary path from the link-failed switch to the destination switch.

Information 2021, 12, 420 27 of 30

The MFR approach is evaluated with five paramount metrics: end-to-end delay/average
end-to-end delay, recovery time, lookup time, PLR, and packet delivery rate. The MFR
approach considerably decreases the failure recovery time as opposed to restoration ap-
proaches and is more scalable than a protection approach. Additionally, the MFR approach
decreases the lookup time and end-to-end delay than a protection approach in the normal
situation (before a failure occurs). According to the different scenarios, the MFR approach
demonstrates the ability of SDN to provide resilience in industrial networks with nearly
zero packet loss even when a link failure takes place. Some essential topics for future work
that need to be analyzed are listed below:

It is important to design in further specific detail the paradigm with sophisticated
resilience in the field devices, and use the low-power industrial wireless protocols such
as 6TiSCH or WirelessHART while studying the performance of the proposed approach
in terms of energy efficiency. Likewise, in the testbed setup, Mininet is used to construct
the virtual OpenFlow switches. In the future we may think of the use of Zodiac Fx SDN
switches to minimize the risk of bottlenecks.

In order to improve the dynamicity on the side of field devices and extend the pro-
posed approach, it is essential to consider mobile sensors and mobile gateways (e.g., drones)
as well as to think about the specific sensor (sink device) that can be applied as an interme-
diate between standard sensors and gateways. This potential direction is defined as future
work.

According to the demonstrations’ results, it is visible that applying double primary
paths with double gateways makes the MFR more fault-tolerant application and guarantees
loss-sensitive requirements. However, the MFR approach considers the recovery of a link
failure across the primary path(s). Therefore, we plan to study the design of multiple
backup paths in case multiple failures occur, such as when the breakdown of primary and
secondary paths happen at the same time.

Achievement tests through simulation and testbed techniques have provided network
reliability where the resilience approach meets various requirements. For instance, reduce
the failure recovery time, packet loss, and end-to-end delay, without requiring a large
percentage of resources. Thus, a software application tested in emulated networks has
proven adequate to confirm the advantages of this new method. Hence, this work serves
as a preliminary stage to create a hardware implementation in the real industry, which is
an interesting goal for future work.

Author Contributions: Conceptualization, N.N.J., W.P. and M.W.; methodology, N.N.J., W.P. and
M.W.; formal analysis, W.P., M.W. and N.N.J.; investigation, N.N.J., W.P. and M.W.; writing—original
draft preparation, N.N.J., W.P. and M.W.; writing—review and editing, W.P., M.W., N.N.J. and Y.L.;
software and hardware, N.N.J. and M.W. All authors have read and agreed to the published version
of this manuscript.

Funding: This work was supported by The National Key Research and Development Program of
China (2020YFB1708800), China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions–privacy. The data pre-
sented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication
of this paper. The funder had no role in the study’s design; in the analyses, collection, or interpretation
of data; in the writing of this manuscript, or in the decision to publish the results.

Information 2021, 12, 420 28 of 30

References
1. Latif, Z.; Sharif, K.; Li, F.; Karim, M.M.; Biswas, S.; Wang, Y. A comprehensive survey of interface protocols for software defined

networks. J. Netw. Comput. Appl. 2020, 156, 102563. [CrossRef]
2. Bera, S.; Misra, S.; Vasilakos, A.V. Software-defined networking for internet of things: A survey. IEEE Intern. Things J. 2017, 4,

1994–2008. [CrossRef]
3. Josbert, N.N.; Ping, W.; Wei, M.; Muthanna, M.S.A.; Rafiq, A. A Framework for Managing Dynamic Routing in Industrial

Networks Driven by Software-Defined Networking Technology. IEEE Access 2021, 9, 74343–74359. [CrossRef]
4. Li, D.; Zhou, M.T.; Zeng, P.; Yang, M.; Zhang, Y.; Yu, H. Green and reliable software-defined industrial networks. IEEE Commun.

Mag. 2016, 54, 30–37. [CrossRef]
5. Fonseca, P.C.; Mota, E.S. A survey on fault management in software-defined networks. IEEE Commun. Surv. Tutor. 2017, 19,

2284–2321. [CrossRef]
6. Ali, J.; Lee, G.M.; Roh, B.H.; Ryu, D.K.; Park, G. Software-defined networking approaches for link failure recovery: A survey.

Sustainability 2020, 12, 4255. [CrossRef]
7. Zurawski, R. Switched Ethernet in Automation. In Industrial Communication Technology Handbook, 2nd ed.; CRC Press: Boca Raton,

FL, USA, 2014; pp. 1–1756.
8. Guimaraes, A.P.; Oliveira, H.M.N.; Barros, R.; Maciel, P.R. Availability analysis of redundant computer networks: A strategy

based on reliability importance. In Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and
Networks, Xi’an, China, 27–29 May 2011; pp. 328–332.

9. Åkerberg, J.; Gidlund, M.; Björkman, M. Future research challenges in wireless sensor and actuator networks targeting industrial
automation. In Proceedings of the 2011 9th IEEE International Conference on Industrial Informatics, Lisbon, Portugal, 26–29 July
2011; pp. 410–415.

10. Ali, I.; Hussain, S.S. Control and management of distribution system with integrated DERs via IEC 61850 based communication.
Eng. Sci. Technol. Int. J. 2017, 20, 956–964. [CrossRef]

11. Mahmoodi, T.; Kulkarni, V.; Kellerer, W.; Mangan, P.; Zeiger, F.; Spirou, S.; Askoxylakis, I.; Vilajosana, X.; Einsiedler, H.J.;
Quittek, J. VirtuWind: Virtual and programmable industrial network prototype deployed in operational wind park. Trans. Emerg.
Telecommun. Technol. 2016, 27, 1281–1288. [CrossRef]

12. Saha, N.; Bera, S.; Misra, S. Sway: Traffic-aware QoS routing in software-defined IoT. IEEE Trans. Emerg. Top. Comput. 2018, 9,
390–401. [CrossRef]

13. Schulz, P.; Matthe, M.; Klessig, H.; Simsek, M.; Fettweis, G.; Ansari, J.; Ashraf, S.A.; Almeroth, B.; Voigt, J.; Riedel, I.; et al. Latency
critical IoT applications in 5G: Perspective on the design of radio interface and network architecture. IEEE Commun. Mag. 2017,
55, 70–80. [CrossRef]

14. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. Enabling fast failure recovery in openflow networks. In
Proceedings of the 2011 8th International Workshop on the Design of Reliable Communication Networks (DRCN), Krakow,
Poland, 10–12 October 2011; pp. 164–171.

15. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. Openflow: Meeting carrier-grade recovery requirements. Comput.
Commun. 2013, 36, 656–665. [CrossRef]

16. Sgambelluri, A.; Giorgetti, A.; Cugini, F.; Paolucci, F.; Castoldi, P. OpenFlow-based segment protection in Ethernet networks. J.
Opt. Commun. Netw. 2013, 5, 1066–1075. [CrossRef]

17. Silva, W.J.A. Avoiding Inconsistency in OpenFlow Stateful Applications Caused by Multiple Flow Requests. In Proceedings
of the International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018;
pp. 543–548.

18. Chan, M.C.; Chen, C.; Huang, J.X.; Kuo, T.; Yen, L.H.; Tseng, C.C. OpenNet: A Simulator for Software-Defined Wireless Local
Area Network. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul,
Turkey, 6–9 April 2014; pp. 3332–3336.

19. De Oliveira, R.L.S.; Schweitzer, C.M.; Shinoda, A.A.; Prete, L.R. Using mininet for emulation and prototyping software-defined
networks. In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota,
Colombia, 4–6 June 2014; pp. 1–6.

20. Josbert, N.N.; Ping, W.; Wei, M.; Rafiq, A. Solution for Industrial Networks: Resilience-based SDN Technology. In Proceedings of
the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE),
Nanchang, China, 26–28 March 2021; pp. 392–400.

21. Muthumanikandan, V.; Valliyammai, C. Link Failure Recovery Using Shortest Path Fast Rerouting Technique in SDN. Wirel.
Person. Commun. 2017, 97, 2475–2495. [CrossRef]

22. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. In-band control, queuing, and failure recovery functionalities for
OpenFlow. IEEE Netw. 2016, 30, 106–112. [CrossRef]

23. Stephens, B.; Cox, A.L.; Rixner, S. Scalable multi-failure fast failover via forwarding table compression. In Proceedings of the
Symposium on SDN Research, Santa Clara, CA, USA, 14–15 March 2016; pp. 1–12.

24. Lin, Y.D.; Teng, H.Y.; Hsu, C.R.; Liao, C.C.; Lai, Y.C. Fast failover and switchover for link failures and congestion in software
defined networks. In Proceedings of the 2016 IEEE International Conference on Communications, ICC 2016, Kuala Lumpur,
Malaysia, 22–27 May 2016; pp. 1–6.

http://doi.org/10.1016/j.jnca.2020.102563
http://dx.doi.org/10.1109/JIOT.2017.2746186
http://dx.doi.org/10.1109/ACCESS.2021.3079896
http://dx.doi.org/10.1109/MCOM.2016.7588226
http://dx.doi.org/10.1109/COMST.2017.2719862
http://dx.doi.org/10.3390/su12104255
http://dx.doi.org/10.1016/j.jestch.2016.11.017
http://dx.doi.org/10.1002/ett.3057
http://dx.doi.org/10.1109/TETC.2018.2847296
http://dx.doi.org/10.1109/MCOM.2017.1600435CM
http://dx.doi.org/10.1016/j.comcom.2012.09.011
http://dx.doi.org/10.1364/JOCN.5.001066
http://dx.doi.org/10.1007/s11277-017-4618-0
http://dx.doi.org/10.1109/MNET.2016.7389839

Information 2021, 12, 420 29 of 30

25. Li, Q.; Liu, Y.; Zhu, Z.; Li, H.; Jiang, Y. BOND: Flexible failure recovery in software defined networks. Comput. Netw. 2019, 149,
1–12. [CrossRef]

26. Satchou, G.A.K.; Anoh, N.G.; N’Takpé, T.; Oumtanaga, S. Optimization of the latency in networks SDN. Int. J. Comput. Commun.
Control. 2018, 13, 824–836. [CrossRef]

27. Zhang, X.; Cheng, Z.; Lin, R.; He, L.; Yu, S.; Luo, H. Local fast reroute with flow aggregation in software defined networks. IEEE
Commun. Lett. 2016, 21, 785–788. [CrossRef]

28. Al-Rubaye, S.; Kadhum, E.; Ni, Q.; Anpalagan, A. Industrial Internet of Things Driven by SDN Platform for Smart Grid Resiliency.
IEEE Internet Things J. 2017, 6, 267–277. [CrossRef]

29. Zhang, X.; Wei, K.; Guo, L.; Hou, W.; Wu, J. SDN-based Resilience Solutions for Smart Grids. In Proceedings of the 2016
International Conference on Software Networking (ICSN), Jeju, Korea, 23–26 May 2016; pp. 1–5.

30. Vestin, J.; Kassler, A.; Åkerberg, J. FastReact: In-Network Control and Caching for Industrial Control Networks using Pro-
grammable Data Planes. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), Turin, Italy, 4–7 September 2018; pp. 219–226.

31. Vestin, J.; Kassler, A.; Åkerberg, J. Resilient software defined networking for industrial control networks. In Proceedings of the
2015 10th International Conference on Information, Communications and Signal Processing (ICICS), Singapore, 2–4 December
2015; pp. 1–5.

32. Adrichem, N.L.V.; Asten, B.J.V.; Kuipers, F.A. Fast Recovery in Software-Defined Networks. In Proceedings of the 2014 3rd
European Workshop on Software Defined Networks, London, UK, 1–3 September 2014; pp. 61–66.

33. Jhaveri, R.H.; Tan, R.; Easwaran, A.; Ramani, S.V. Managing industrial communication delays with software-defined networking.
In Proceedings of the 2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Hangzhou, China, 18–21 May 2019; pp. 1–11.

34. Babiceanu, R.F.; Seker, R. Cyber resilience protection for industrial internet of things: A software-defined networking approach.
Comput. Ind. 2019, 104, 47–58. [CrossRef]

35. Thorat, P.; Challa, R.; Raza, S.M.; Kim, D.S.; Choo, H. Proactive failure recovery scheme for data traffic in software defined
networks. In Proceedings of the 2016 IEEE NetSoft Conference and Workshops (NetSoft), Seoul, Korea, 6–10 June 2016;
pp. 219–225.

36. Wang, L.; Yao, L.; Xu, Z.; Wu, G.; Obaidat, M.S. CFR: A cooperative link failure recovery scheme in software-defined networks.
Int. J. Commun. Syst. 2018, 31, e3560. [CrossRef]

37. Pfaff, B.; Lantz, B.; Heller, B.; Barker, C.; Cohn, D.; Talayco, D.; Erickson, D.; Crabbe, E.; Gibb, G.; Appenzeller, G.; et al. OpenFlow
1.1 Specification; Open Networking Foundation: Menlo Park, CA, USA, 2011; pp. 1–56.

38. Wang, Z.; Crowcroft, J. Quality-of-service routing for supporting multimedia applications. IEEE J. Sel. Areas Commun. 1996, 14,
1228–1234. [CrossRef]

39. Thubert, P.; Palattella, M.R.; Engel, T. 6TiSCH Centralized Scheduling: When SDN meet IoT. In Proceedings of the 2015 IEEE
Conference on Standards for Communications and Networking (CSCN), Tokyo, Japan, 28–30 October 2015; pp. 42–47.

40. Dujovne, D.; Watteyne, T.; Vilajosana, X.; Thubert, P. 6TiSCH: Deterministic IP-enabled industrial internet (of things). IEEE
Commun. Mag. 2014, 52, 36–41. [CrossRef]

41. Wang, P.; Wang, H.; Zhang, C. SDN-Based WIA-PA Field Network/ipv6 Backhaul Network Joint Scheduling Method. U.S. Patent
10,306,706, 28 May 2019.

42. Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.; Zhou, A.; Rajahalme, J.; Gross, J.; Wang, A.; Stringer, J.; Shelar, P.; et al. The design
and implementation of open vswitch. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 15, Oakland, CA, USA, 4–6 May 2015; USENIX Association: Berkeley, CA, USA, 2015; pp. 117–130.

43. Beshir, A.A.; Kuipers, F.A. Variants of the min-sum link-disjoint paths problem. In Proceedings of the 16th Annual IEEE
Symposium on Communications and Vehicular Technology (IEEE SCVT’09), IEEE/SCVT, Louvain-la-Neuve, Belgium,
19 November 2009; pp. 1–6.

44. AMPL. A Mathematical Programming Language. Available online: http://www.ampl.com/ (accessed on 11 September 2021).
45. Oki, E. Disjoint path routing. In Linear Programming and Algorithms for Communication Networks: A Practical Guide to Network

Design, Control, and Management, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–192.
46. Gurobi, I. Optimization, Gurobi Optimizer Reference Manual. 2016. Available online: https://www.gurobi.com (accessed on

13 August 2021).
47. Jaffe, J.M. Algorithms for finding paths with multiple constraints. Networks 1980, 14, 95–116. [CrossRef]
48. Al-Jawad, A.; Shah, P.; Gemikonakli, O.; Trestian, R. Policy-based QoS management framework for software-defined networks.

In Proceedings of the 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21
June 2018; pp. 1–6.

49. Karger, D.; Lehman, E.; Leighton, T.; Panigrahy, R.; Levine, M.; Lewin, D. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, El Paso, TX, USA, 4–6 May 1997; pp. 654–663.

50. Dixit, A.; Hao, F.; Mukherjee, S.; Lakshman, T.V.; Kompella, R. Towards an elastic distributed SDN controller. ACM SIGCOMM
Comput. Commun. Rev. 2013, 43, 7–12. [CrossRef]

http://dx.doi.org/10.1016/j.comnet.2018.11.020
http://dx.doi.org/10.15837/ijccc.2018.5.3316
http://dx.doi.org/10.1109/LCOMM.2016.2638430
http://dx.doi.org/10.1109/JIOT.2017.2734903
http://dx.doi.org/10.1016/j.compind.2018.10.004
http://dx.doi.org/10.1002/dac.3560
http://dx.doi.org/10.1109/49.536364
http://dx.doi.org/10.1109/MCOM.2014.6979984
http://www.ampl.com/
https:// www.gurobi.com
http://dx.doi.org/10.1002/net.3230140109
http://dx.doi.org/10.1145/2534169.2491193

Information 2021, 12, 420 30 of 30

51. Oktian, Y.E.; Lee, S.; Lee, H.; Lam, J. Distributed SDN controller system: A survey on design choice. Comput. Netw. 2017, 121,
100–111. [CrossRef]

52. Cholda, P.; Jajszczyk, A. Recovery and Its Quality in Multilayer Networks. J. Lightw. Technol. 2009, 28, 372–389. [CrossRef]
53. Iqbal, F.; Kuipers, F.A. Disjoint paths in networks. Wiley Encycl. Electr. Electron. Eng. 2015, 4, 1–14.
54. OpenDaylight. Available online: https://www.opendaylight.org/ (accessed on 15 August 2021).
55. Knight, S.; Nguyen, H.X.; Falkner, N.; Bowden, R.; Roughan, M. The internet topology zoo. IEEE J. Sel. Areas Commun. 2011, 29,

1765–1775. [CrossRef]
56. Apache FtpServer. Available online: http://mina.apache.org/ftpserver-project/ (accessed on 17 August 2021).
57. Stanford-Clark, A.; Truong, H.L. MQTT For Sensor Networks (MQTT-SN); Protocol Specification Version 1.2. IBM: Armonk, NY,

USA, 2013.

http://dx.doi.org/10.1016/j.comnet.2017.04.038
http://dx.doi.org/10.1109/JLT.2009.2031821
https://www.opendaylight.org/
http://dx.doi.org/10.1109/JSAC.2011.111002
 http://mina.apache.org/ftpserver-project/

	Introduction
	Related Works
	Link Failure Recovery
	Resilience Approaches

	System Model of ISDN
	ISDN Resilience Architecture
	ISDN Infrastructure Layer
	ISDN Control Layer
	ISDN Application Layer

	MFR Approach
	Link Failure Detection
	Computation of Primary and Secondary Paths
	MFR Performance-Based with Different ISDN Topology
	Analysis of the MFR Approach for the Recovery Process

	Evaluation Performances
	Simulation Setup
	Evaluation Results
	End-to-End Delay before Failure Occurs
	Lookup Time Based on the Number of Flow Rules before Failure Occurs
	Failure Recovery Time
	Packet Loss Rate (PLR)

	Experimental Testbed Setup and Results Analysis

	Conclusions
	References

