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Abstract: Spatial data are very often heterogeneous, which indicates that there may not be a unique
simple statistical model describing the data. To overcome this issue, the data can be segmented into a
number of homogeneous regions (or domains). Identifying these domains is one of the important
problems in spatial data analysis. Spatial segmentation is used in many different fields including
epidemiology, criminology, ecology, and economics. To solve this clustering problem, we propose to
use the change-point methodology. In this paper, we develop a new spatial segmentation algorithm
within the framework of the generalized Gibbs sampler. We estimate the average surface profile of
binary spatial data observed over a two-dimensional regular lattice. We illustrate the performance of
the proposed algorithm with examples using artificially generated and real data sets.
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1. Introduction

Identifying homogeneous domains is one of the important problems in spatial data
analysis since spatial data are very often heterogeneous. For example, survey data may be
collected from a number of regions or areas that have different socioeconomic indicator
variables. To overcome the problem that there may not be a unique statistical model effec-
tively describing the spatial data, we can divide the data into a number of homogeneous
regions (or domains). The spatial segmentation, which is also known as partitioning or
clustering, would allow us to develop and fit different appropriate statistical models for
each domain. The spatial clustering consists of two problems: identifying the boundaries
of the domains and their number.

There is an extensive literature on a variety of different clustering algorithms. These
include hierarchical methods (for example, bottom-up or agglomerative and top-down or
divisive algorithms) and optimization methods (for example, the k-means algorithm) [1].
Clustering algorithms are widely used in many different areas, including spatial epidemiol-
ogy, signal processing, ecological and economic applications; see [2]. Even though there are
various algorithms for different types of clustering problems, there are no global algorithms
to solve them effectively. In this paper, we are particularly interested in developing an
effective Markov chain Monte Carlo (MCMC) algorithm for a spatial segmentation problem.
Recently Bayesian approaches have become quite popular for such problems, and many
Bayesian algorithms have been proposed in many different contexts. In particular, one of
the important problems in epidemiology is to classify regions depending on their level of a
disease risk. A spatial clustering approach with the Bayesian framework is discussed in [3].
In [4], the authors present a Bayesian approach to estimate the spatial pattern in disease
risk and to identify regions with have high/low disease risks.

Ecological applications is one of the areas where spatial segmentation plays a very
important role. In case of analysing large spatial data sets, it is quite common that the
spatial distribution of plants (or animals) is heterogeneous. In [5], the authors consider
a class of Bayesian statistical models in order to identify changes and their locations in
ecological data. In [6], the authors apply a change-point detection methodology to detect
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plant patches. An algorithm based on a binary segmentation method within the change-
point detection framework in order to identify homogeneous domains has recently been
developed in [7]. Climate change studies is another area that commonly uses spatial
segmentation methods. In [8], the authors consider a non-parametric test within a Bayesian
change-point detection framework and a hidden Markov model to find changes in the
rainfall and temperature patterns over India. In image recognition, spatial segmentation
methods are used to identify boundaries of an image. For example, an MCMC method to
identify closed object boundaries in gray-scale images is proposed in [9]. In [10], the author
proposes a wavelet method to estimate jumps and sharp curves of a function in the plane.

There are many applications of spatial segmentation in finance and economics. For
instance, a novel hybrid clustering algorithm and a pattern recognition scheme are pre-
sented in [11] for time series forecasting. In [12], the authors proposed a class of spatial
econometric methods in spatial clustering of industries in the space. Recently, an economic
decision support system based on fuzzy C-mean clustering is proposed in [13] for economic
forecasting. A hybrid algorithm is presented in [14] for spatial small area estimation to
use in agricultural and resource economics surveys. A variety of clustering approaches for
financial data analysis is discussed in [15].

The objective of our study, which is motivated by analysis of the distribution of
plant species, is to identify homogeneous domains in binary spatial data observed over
a two-dimensional regular lattice. This model belongs to the class of autologistic mod-
els introduced by Besag [16]. Parameter estimation or drawing samples from posterior
distribution for this model is a notoriously difficult problem due to the complex form
of likelihood function.The alternative methods to maximum likelihood estimate include
pseudolikelihood and Monte Carlo maximum likelihood estimators [17,18]. To analyse
this model within the Bayesian framework, a significant step was made by Moller [19],
who proposed an auxiliary variable MCMC method that draws independent samples from
unnormalised density by constructing the proposal distribution that cancels the normal-
ising constant from Metropolis-Hastings ratio. This method works well for autologistic
model but it is very slow and, as a result, this theoretically sound Bayesian inference is
impractical for large lattices because the perfect sampler is of order O(n?). Faster approxi-
mate Bayesian approaches exist but lack theoretical justification [20]. Recently, a double
Metropolis-Hastings sampler for autologistic model for spatial data is proposed in [21]. Un-
like other auxiliary variables algorithms, this sampler removes the need for exact sampling,
the auxiliary variable being generated using Metropolis-Hastings kernels and it produces
the same accurate results as other MCMC algorithms, but using much less CPU time.

Our study aims to develop effective procedures based on an MCMC algorithm within
the generalized Gibbs sampler (GGS) framework for estimating the average surface profile
explaining the heterogeneity of the data. The GGS is originally proposed in [22] and
it is particularly useful for sampling from distributions defined on spaces in which the
dimension varies from point to point or in which points are not easily defined in terms
of coordinates. We consider our problem as a change-point detection problem, which is
commonly used in analysing time series to detect abrubt points and their locations. For
more details on change-point problems, applications and available methods, see [23-25].
The GGS approach is already used in multiple change-point problem in order to segment
a long DNA sequence into intervals of approximately uniform composition [22]. In this
paper, we present a novel algorithm expanding the GGS from a one-dimensional change-
point problem to a two-dimensional segmentation problem. For more details on the GGS
and its theoritical properties, see [22].

This paper is organized as follows. In Section 2, we formulate the spatial segmentation
problem. In Section 3, we introduce the main concepts of the GGS, while Section 4 presents
anew spatial segmentation algorithm within the GGS framework. In Section 5, we illustrate
the proposed algorithm’s performance with three examples using artificially generated and
real data sets. Finally, Section 6 provides a discussion of the results and concluding remarks.
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2. The Spatial Segmentation Problem

Let us formally introduce the spatial segmentation problem. We are given spatial
binary data, a lattice with zeros and ones (presence-absence data), which can be represented
by an my x my matrix, B. A segmentation of B is specified by giving the number of cuts N
(horizontal and vertical) and the domains d = (dy, ..., dn41) with their boundaries parallel
to the sides of the lattice. The position of each domaind,, n =1,..., N + 1, can be defined
by the four edges e, = (ey1,€n2,€n3,€na) = (enr, €nr, €nur, enp), left, right, up and down,
respectively. A maximum number of cuts Nmax is specified, where 1 < N < Npax < mymy.
The model for the data assumes that within each domain observations are generated by
independent Bernoulli trials with probability of success (presence of the plant indicates
“1”) 0, that depends on the domain. Thus, the joint probability density function (pdf) of
spatial data B conditional on N, d = (dy,...,dny1), and 0 = (04,...,0N41), is given by

N+1

F(B|N,d,0) = He’d" — 6)0n, )

where I; is the number of ones in domain d,, and Oy, is the number of zeros in that
same domain.

To use the Bayesian framework, a prior distribution must be defined on the set of
possible values of x = (N, d,6), denoted

X = UNm N} x Enyq x (0,1)NF1

with

gN-i—l = {(31/~ weN—l-l) ey = (enll €n2,€n3, en4)/enl < €n2,6n3 < €4,
eyl € {0,...,7}12 — 1},6,12 S {1,...,1112},
en3 € {0,...,m1 —1},6,14 S {1,...,7}11}},

where ¢,1 =0, ep = my, e,3 = 0, or e,4 = My means that the boundary of the n-th domain
coincides with the edge of the lattice.

We assume discrete uniform priors both on the number of domains and on their
positions on the sets {1,..., Nmax} and Ey1, respectively. Alternatively, a truncated
Poisson distribution may be taken as a prior distribution on the number of domains. A
continuous uniform prior is assumed on (0, 1) for each 6,,. This means that the overall prior
fo(N,d,0) is a constant. Therefore, taking into account (1), the posterior density function at
point x = (N, d, ), having observed spatial data B, is given by

N+1

f(x| B) = m(x) « 1_[ 91”’” 1—0,)%%n. ()

3. The Generalized Gibbs Sampler

The generalized Gibbs sampler is a Markov chain Monte Carlo technique that is par-
ticularly useful for sampling from distributions defined on spaces in which the dimension
varies from point to point or in which points are not easily defined in terms of coordinates.
A number of MCMC samplers are available for the purpose of Bayesian model determina-
tion and comparison. These samplers allow transisitons between different models and are
important where there is uncertainty about not only the parameters of a model, but also
about the model itself. These samplers are referred as model-switching samplers and can
be used for Bayesian model selection, model evaluation, model averaging and hypothesis
testing. An example of this type of sampler is the Reversible-jump MCMC sampler, which
is a generalization of the Metropolis-Hastings algorithm. In this paper, we use the GGS, a
model-switching sampler that generalizes the Gibbs sampler, provides an alternative that
is easy to implement and often highly efficient [22,26]. However, no systematic comparison
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of the advantages and disadvantages of the GGS versus the Reversible-jump sampler has
been performed. The dimension in this algorithm does not need to be fixed and it provides
flexibility to sample from varying dimensional spaces and it has been applied to some very
high dimensional problems [27].

Let us explain the GGS in mathematical terms. Consider a Markov chain {(X;, Y¢),
t=0,1,2,...} onthe set X x ), where X is the target set and ) is an auxiliary set. Here,
we assume that both sets are finite. Let 77(x) be the target pdf (for example, see (2)), defined
on X. Each transition of the Markov chain consists of two steps: the Q-step, followed by the
R-step. In other words, the transition matrix P of the Markov chain is given by the product
QR. The first step is (x,7) — (x,y), according to a transition matrix Q, which changes
only the y-coordinates. Q((x, %), (x,y)) = Qx(#,y), where Qy is a transition matrix on ).
Let gy be a stationary distribution for Q. The second step is (x,y) — (x’,), according
to a transition matrix R. The transition matrix R can be defined as: R[(x,y), (x,y')] =
c(x,y) m(x') qu(y'), for all (x',y’) € R(x,y), where c(x,y) is a normalisation constant.
Note that (x, y) is a set containing the point (x,y). The distribution

g(x,y) = m(x) 42 (v), (©)

is trivially stationary with respect to Q, and satisfies detailed balance with respect to R,
and hence is a stationary distribution with respect to the Markov chain. For more details,
see [22,26]. The following steps illustrate the main idea of this algorithm. First start with
an arbitrary (Xo, Yp), then perform the following steps iteratively:

Q-step: Given (Xt Y;), generate Y from Qx (Y, y)
R-step: Given Y generate (X;41, Y4+1) from R[(Xt, Y), (x,y)].

This algorithm generates a Markov chain such that the limiting distribution of X; as
t — cois 71, provided that P is irreducible and aperiodic.

The GGS framework makes it possible to obtain many different samplers.The Gibbs
sampler, the Metropolis-Hastings sampler, the Reversible-jump sampler and the Slice
sampler are special cases of the GGS. These algorithms can be used in the context of
simulated annealing to determine the maximum of 77, attained at the “best model” x.
Furthermore, GGS can be extended to the general case of infinite sets X and ). For more
details on the GGS, see [22].

4. The GGS for the Spatial Segmentation Problem

In this section, we propose the GGS for the spatial segmentation problem described
above. We consider this problem within the change-point detection framework and develop
a GGS algorithm to estimate the average surface profile explaining the heterogeneity of
data. Multiple change-point problems have commonly been utilized to illustrate model
switching samplers [28,29]. The GGS is also previously used in change-point problem [22].
In this study, we use the GGS for the spatial segmentation problem. Here, we assume that
the observations and the clusters are conditionally independent.

Let us number all cuts from 1 to N for a model x and consider the n-thcut,n =1,...,N.
Define C,, = (cu1,cn2,n3,Cna) = (CnL, CuRr, Cutl, Cnp ), Where c,1 and c,,p are, respectively,
the leftmost and rightmost possible cuts to the n-th cut when the orientation of the cut is
vertical; c,3 and ¢4 are, respectively, the uppermost and downmost possible cuts to the
n-th cut when the orientation of the cut is horizontal. Figure 1 shows the visualization of
some moves.
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Cl C'1
C,
(a)t=1 (b) t=2
C, , Ci1 Ci(c3) Ci2
Ca3
c, C,
ds
d;
C, Cy
ds
Coy -
C14
(e)t=3 (d)t=3

Figure 1. (a) shows the first iteration starting with a random vertical cut C;. (b) shows the second
iteration where C; is moved to left and a new horizontal cut C/1 is inserted. We keep vertical and
horizontal cuts seperately to avoid label switching problem. (c) shows the third iteration where
Cq and C’1 are moved to their new positions and a new horizontal cut C’2 is inserted. (d) illustrates
possible movements of all cuts for the fourth iteration. The vertical cut C;’s possible leftmost and
rightmost movements are c1 and c1y, respectively. The horizontal cut C;’s possible uppermost and
downmost movements are c/13 and c’1 4 respectively. Dotted lines inside the domain d; illustrate
possible vertical and horizontal cuts if it is chosen to be inserted a new cut.

Let C;: be the set of possible cuts to the left (if it is a vertical) to the n-th cut or above
(if it is a horizontal) the n-th cut; C2 be the set of possible cuts to the right (if it is a vertical)
to the n-th cut or below (if it is a horizontal) the n-th cut:

Cl = {cicm<c<ecn,cz<c<cy,
Cﬁ = {ciecn<c<cp, n<c<cul

The GGS algorithm cycles through a sequence of steps in which parts of a sampled
element are updated, while other parts are held constant. These different types of updates
are analogous to the coordinate updates of the conventional Gibbs sampler and are known
as “move types”. The GGS algorithm for this problem may be constructed as follows. Two
broad classes of moves are allowed, labelled “Ins” and “Del”, which illustrate insertion
and deletion of a cut. This technique allows the number of cuts to vary: it cycles through
domains inserting and deleting cuts, and shifting cut positions. For a model x with N cuts,
there are N + 1 domains into which a new cut may be inserted, and N cuts that may be
deleted. Depending on the orientation of a cut, each cut has a chance to move left or right
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(if it is a vertical cut); up or down (if it is a horizontal cut), or stay on same position. There
are thus 2N + 1 move types for a cycle. We consider that all domains are equally likely to
be chosen to add a new cut.

For the Q-step, define a transition matrix

—_

, ifi = (c,Ins),j = (cy,Del),c€ CL,n=1,...,N,

. AN I ifi = (cy,Del),j = (c,Ins),c€ C2,n=1,...,N,
Qx((i,x), (j, x)) = ﬁ, if domain d,, is chosen, n € {1,...,N + 1},
0, otherwise.

The design of the transition matrix in the Q-step follows the idea of the original GGS
algorithm (see [22] (Section 5)) expanding from one dimensional change-point problem
to two dimensional segmentation problem. This preserves the properties of the GGS
discussed in Section 3. In the proposed algorithm, the move type is chosen according to
the stationary distribution of Qy, which is gy, discrete uniform with probability function
1/(2N + 1). For the R-step, we use the set of models obtained by changing only a single
domain of x, either by changing the Bernoulli parameter for that domain, or by splitting it
into two new domains with separate Bernoulli parameters.

Let C; 4, be the set of possible cuts in domain d,, and C 4, be the set of possible cuts
that coincide with one of the edges of domain d;:

Cia, = {creqn <c<ep,ens<c<epul,

Cogq, = {cic=epgorc=epn,c=ezorc=emu}.

For the R-step, define R (1, I, x) to be the set of models obtained by changing only
domain d,, either by changing the Bernoulli parameter for that domain, or by splitting
it into two domains (d,;; and d,,) with separate Bernoulli parameters. For given n and x,
we define ry(n, x) to be the set of models obtained by changing the Bernoulli parameter
for domain d,,, and 7.« (n, x) to be the set of models obtained by inserting a new cut at
c* € Cy4, and setting two new Bernoulli parameters for those two domains. Thus,

R(n,1,x) =ro(n,x) U rex(n,x),

C*Gcl/dn
if x has fewer than Npax cuts and
R(n,I,x) =ro(n,x),

if x has Npax total cuts. R-step can simply be implemented as follows.

We take the densities in the R step proportional to g, which is defined in (1). We
compute the integral wy(n, x) of g over r¢(n, x), and integrals w.+ (n, x) of ¢ over r+ (1, x),
for each ¢* € C 4,. For example, consider wo (k, x) when B has fewer than Ny, cuts:

k-1 N 1
wo(k,x) = [ | 6" (1—6,)% x [ 6 (1~ 6y)O xf 6" (1 — 0) % do.
n=1 n=k+1 0

1. Calculate the weights w+ (1, x) for c* € Cy 4, and wy(n, x).

2. Select an element ¢ € {Cy4,,C1 4, } With probabilities proportional to the weights
calculated in Step 1.

3. Ifc € Cyy, is selected, update 6, by sampling from a beta distribution with parameters
« =13 +1and B = Oy, + 1. Otherwise, if ¢ € C; 4, is selected, insert a new cut at
c* and select new Bernoulli parameters for domains d,;; and d,; by sampling from
beta distributions with parameters (x = I; + 1, =0y, +1)and (' = I; , +1,
B =0y, + 1), respectively.
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The R-step is simply a conventional Gibbs coordinate update in which a new value
for 6, is generated by sampling from a beta distribution with parameters « = I; +1and
B= Od,, + 1.

5. Numerical Results

In this section, we discuss three examples with artificially generated and real spatial
data sets to illustrate the usefulness of the proposed algorithm. The first two data sets
are artificial matrices with known distributions, while in the third example we use real
presence-absence plant data [30].

We compare the proposed GGS algorithm to the Sequential Importance Sampling
(SIS) algorithm, which is previously developed for the same type of spatial segmentation
problem [31]. Both SIS and GGS algorithms aim at the same posterior distribution but
they are different in their nature. The SIS algorithm finds new cuts based on the cuts
obtained previously and it calculates weights with respect to proposal density and target
density sequentially. The obtained profile is a weighted average of M (for example M = 100)
profiles obtained by the SIS. On the other hand, the proposed GGS generates domains
by adding a new cut, deleting existing cuts, or moving to new positions by aiming the
target distribution.

We use the parameters of Bernoulli distribution to calculate the Root Mean Squared
Error (RMSE). We consider the values for each cell of the matrix B while the estimated
values for each cell within a particular domain remains the same. It is calculated as

RMSE = \/ Lt X% (e — )

mimp

where e;j, t;; are the estimated and the true values, respectively, for each cell of the matrix;
i, j are the corresponding rows and columns; m; and m; are the dimensions of the matrix.

One of the technical difficulties in MCMC methods is that samples will typically be
autocorrelated within the chain. This will increase the uncertainty of estimation of the
posterior quantities [32]. We need to estimate an effective sample size for each parameter,
which plays an important role in the MCMC central limit theorem as the number of
independent samples plays in the standard central limit theorem. In this study, we use
the following formula to estimate the effective sample size of N samples generated with
autocorrelations p;,i > 1,

N
We follow [33] to estimate the autocorrelations p;. It can be assumed that p; decays
approximately exponentially [34]. It follows that,

i
ol ~ew{ - |,
exp

where fexp is the exponential autocorrelation time, which can be calculated in the follow-
ing way:

Negs = @)

_
—log|p1|’
In our study, each draw is a matrix. First, we calculate p; for each cell of the matrix.

Second, we find the maximal autocorrelation value and use it to calculate texp- Then we
estimate the effective sample size (4).

texp =

5.1. Artificial Data: Example 1

Let B be a 30 x 30 matrix of independent Bernoulli random variables generated with
the parameters given in Table 1. The true profile of this matrix can be seen in Figure 2.
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Table 1. The parameters of the generated data matrix.
Domains Coordinates (Bottom Left to Top Right) Probability (6;)
Domain 1 (0,0)—(30,10) #p =0.1
Domain 2 (1,10)—(8,20) 0, =0.8
Domain 3 (8,10)—(22,15) 03 =0.1
Domain 4 (8,15)—(22,20) 04 =03
Domain 5 (1,20)-(30,30) 05 =0.3
Domain 6 (22,10)—(30,20) 0 = 0.8

TRUE TRUE

Figure 2. Domains as determined by the true profile (Example 1).

Figure 2 shows the true profile (left) of the data and the true parameters (right)
which could be attributed to the fact that although the matrix was drawn from Bernoulli
distributions with parameters given in Table 1, it is still artificially generated data and it
is possible that the true profile may not be exactly the same as the Bernoulli parameters
given in the table. In this example, we set Npax as 100. The obtained profile from the
GGS algorithm is an average of 175 draws which gives smooth configuration. We ran the
algorithm for 1000 iterations and burn-in period of 100. According to the autocorrelation
plot given in Figure 3, we use a thin size of 5 and the effective sample size Nyg = 175 for
this example. That is, we take every 5th draw to obtain the average surface profile (an
estimate of the posterior mean). Figure 4 shows the surface profiles obtained from the
GGS and the SIS algorithms. We do not report a plot of log-likelihood versus iteration here
since it is very similar to the corresponding plot given in Example 2. Our algorithm finds
10 domains at its convergence stage. Due to the nature of the SIS algorithm, it overestimates
the number of domains and provides a noisy profile when we increase d (which decides the
number of segments) to a large number, but the average profile explains the data very well.
To make comparison easy, we use the same parameter values for both algorithms. Thus,
the profiles obtained by the SIS algorithm is for d = 10 and M = 175. For more details on
the SIS algorithm for spatial segmentation and change-point problem, see [31,35]. The two
plots are in excellent agreement with the true profile, supporting the fact that both methods
produced only very small difference between their estimates and the true distribution.

The RMSE values for the SIS and the GGS are 0.0547 and 0.02435, respectively, indicating
that the GGS algorithm produces a more accurate estimate compare to the SIS. Figure 5 shows
the map of the standard error for the whole matrix in Example 1. The minimum, maximum
and average values of the standard error are 0.0012, 0.0086 & 0.0031, respectively.
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| |
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0.1

i

0 20 40 60 80 100

lag

Figure 3. Autocorrelation curve (Example 1).
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Figure 4. Surface profiles as determined by the generalized Gibbs sampler (GGS) and the Sequential
Importance Sampling (SIS) algorithms in Example 1.
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Figure 5. Map of the standard error (Example 1).

5.2. Artificial Data: Example 2

Figure 6 shows the true profile and the true parameters of the second artificial data.
As in Example 1, we executed 1000 iterations of our algorithm (burn-in period of 100). In
this example, the thin size is 6, and the effective sample size is 140. We take every 6th
draw to obtain the average surface profile given in Figure 7. Figure 8 shows an estimated
posterior standard error. The convergence of the GGS algorithm is evident in Figure 9. We
do not report the autocorrelation plot here as it is very similar to Figure 3) in Example 1.
For this example, the GGS algorithm finds seven domains; see Figure 9. The obtained
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profile by the SIS algorithm is for d = 7 and M = 140. Table 2 illustrates the RMSE
values and computational times for both GGS and SIS algorithms. The RMSE values are
0.06421 and 0.04419, respectively. The computational times for both SIS and GGS are for
obtaining the given profiles in Table 2. We see that for the proposed GGS, the RMSE and
the computational time are less than for the SIS.

TRUE TRUE
3 10 ) 08
9 08 0 0.7
2 5 0.6
0.6
> 9 > 9 03
0.4 0.4
S 3
02 0.3
[Te} wn
0.2
° 00 ° T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X

Figure 6. Domains as determined by the true profile (Example 2).

SIs GGS
o o
iyl o
0.7
0.7
n n
N 0.6 S
0.6
< 05 ]
0.5
> 9 04 > 9
0.4
B a
0.3
0.2
wn [Te]
0.2
0.1
© 7 T T T © 7 T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X

Figure 7. Surface profiles as determined by the GGS and the SIS algorithms (Example 2).

o
(3]
0.010
o _|
N
o | 0.008
(3]
> 9
m -
o _|
—
I~ 0.004
o
© T T T T T —
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X

Figure 8. Map of the standard error (Example 2).
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[ N R
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N
I |
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Iteration

Figure 9. The value of log-likelihood (top) and the number of cuts (bottom) for the first 1000 iterations
(Example 2).

Table 2. The average running time and root mean square for the GGS and the SIS algorithms.

Algorithm RMSE Computational Time (s)
GGS 0.04419 30.2928
SIS 0.06421 34.5378

5.3. Real Data

The third example uses a real plant data set [30]. The authors study Alchemilla plants
and their microspecies growing within Eastern Europe with particular interest in the spatial
distribution of the microspecies. The data were collected from 28 localities (habitats), which
are characterised by different environmental conditions: bottomland meadow, dry meadow,
fallow land, edge of mixed and coniferous forest. The plants were considered on square
sites with the area of 1 m2. The surveyed area in localities varies from 2 to 169 m?. In this
study, we consider locality M1, which has the largest number of sites. The 169 sites are
numbered from 101 to 269.

Figure 10 shows a particular type of plant Alchemilla and its study region. In Figure 11,
a black cell indicates the presence of the plant, while a white cell means its absence. So
we can consider a matrix encoded with zeros (white) and ones (black). As a consequence
of considering a real data set, we do not know its true profile but we can still look for
agreement between two algorithms. Since the size of the data set is relatively small, we
set maximum number of domains to 10 for both algorithms. The obtained results given in
Figure 12 is an average of 100 draws. The results for the real data seem reasonable looking
at the data given, showing a general agreement between the GGS and the SIS.

Alchemilla Gracilis Locality M1
Figure 10. Alchemilla Gracilis plant (left) and its habitat (right).
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111 | 112 | 113 | 114

121 | 122 | 123 | 124

131 | 132 | 133 | 134

141 | 142 | 143 | 144 225

151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 206 | 216 | 226
161 | 162 164 | 165 | 166 | 167 | 168 | 169 | 170 | 207 | 217 | 227
171 | 172 174 | 175 | 176 | 177 | 178 | 179 | 180 | 208 | 218 | 228

181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 209 | 219 | 229

191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 210 | 220 | 230

231 | 232 236 240 | 261 | 262 | 263

241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 264 | 265 | 266

251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 267 | 268 | 269

Figure 11. Layout of sites in locality M1. The 169 sites are numbered from 101 to 269. If a site has a
particular microspecies then it is colour coded black, otherwise it is white.

sis GGS

06

Figure 12. Surface profiles as determined by the GGS and the SIS algorithms.

6. Discussion and Conclusions

In this paper, we have developed an MCMC algorithm within the generalized Gibbs
sampler framework to estimate the average surface profile explaining the heterogeneity of
the spatial data observed over two-dimensional lattice. The Bayesian approach allows us to
incorporate existing additional information by choosing an appropriate prior distribution
and to make inference and interpretation of the results easier by estimating the posterior
distribution. We have demonstrated the effectiveness of the proposed method in examples
using both real and artificial data sets. For the artificial data sets, the profiles obtained by
the GGS algorithm were in excellent agreement with both the SIS method and the true
profile. Since we focus on estimating the posterior mean (average profile), we use the
RMSE to compare the methods. Statistical information criteria like the Bayesian Information
Criterion (BIC) can be used for comparison of models in the context of simulated annealing,
when the posterior mode (the maximum of the posterior density function) is determined.
When applying these two methods to the real presence-absence plant data set, comparable
profiles were also obtained. The proposed GGS algorithm for spatial segmentation is
effective in terms of mixing properties, accuracy and computational time. Overall, this
paper has presented a promising new direction for spatial segmentation problem for
different spatial models using change-point detection methodology. A possible limitation
of this algorithm is that for very large scale datasets the computational cost may be high.
However, this is an issue shared with all MCMC algorithms.
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While we developed and compared two spatial segmentation algorithms, the devel-
opment of new spatial segmentation algorithms based on other well-known statistical
computational methods such as Cross-Entropy (CE) [25,36] and different MCMC algo-
rithms [37] including the Reversible jump sampler is a matter of our further research.
Developing a modified BIC and other information criteria for this problem to select the
best model is also one of the future works.
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