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Abstract: This paper presents a novel bio-inspired predictive model of visual navigation inspired
by mammalian navigation. This model takes inspiration from specific types of neurons observed
in the brain, namely place cells, grid cells and head direction cells. In the proposed model, place
cells are structures that store and connect local representations of the explored environment, grid
and head direction cells make predictions based on these representations to define the position of
the agent in a place cell’s reference frame. This specific use of navigation cells has three advantages:
First, the environment representations are stored by place cells and require only a few spatialized
descriptors or elements, making this model suitable for the integration of large-scale environments
(indoor and outdoor). Second, the grid cell modules act as an efficient visual and absolute odometry
system. Finally, the model provides sequential spatial tracking that can integrate and track an agent
in redundant environments or environments with very few or no distinctive cues, while being very
robust to environmental changes. This paper focuses on the architecture formalization and the main
elements and properties of this model. The model has been successfully validated on basic functions:
mapping, guidance, homing, and finding shortcuts. The precision of the estimated position of the
agent and the robustness to environmental changes during navigation were shown to be satisfactory.
The proposed predictive model is intended to be used on autonomous platforms, but also to assist
visually impaired people in their mobility.

Keywords: bio-inspired navigation model; predictive model; visual localization; artificial place cells;
artificial grid cells; artificial head direction cells

1. Introduction

Navigating in an environment, whether indoor or outdoor, is a fundamental task for
autonomous robotic systems and a vital task for many species. Autonomous robotic systems
most commonly use SLAM (Simultaneous Localization And Mapping) approaches [1,2] in
order to constantly estimate their position in an unknown environment. Various active and
passive sensors are employed in order to build a precise global map of the investigated
environment. Visual features/cues (interest points and/or landmarks) are frequently used
to model and recognize places, while odometry data is used to track the local motion of
the robot. A navigation model is continually updated based on location recognition and
odometry data, the robot being simultaneously localized within the map. Each node of
this graph represents a particular waypoint, while edges represent accessibility between
waypoints. Once the navigation graph is constructed, it is possible to specify goal vertices,
and navigate to them autonomously. However, measurement errors accumulate over
time and lead to a drift in the estimated position, causing discrepancies in the map of
the environment. Therefore, alleviating these discrepancies is a major question in the
field of SLAM systems. High precision and minimal computational costs are the main
requirements for such navigation. Finally, these approaches usually perform better in
environments of limited size [3].
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Another class of approaches for the autonomous navigation problem takes inspiration
from the very decentralized navigation systems of mammals which allow navigation
in large-scale environments. Instead of creating a global map during the exploration
of the environment, these approaches generate a graph model, where nodes are local
representations (i.e., at a limited distance) of the observed environment in that node.

This class of approaches is inspired by place cells [4], a spatially correlated neuron
found in mammalian brains. Navigation based on this model consists of following a
path (a sequence of connected nodes) in a given mobility graph, from one node to the
next, from the current position to the destination node. However, several problems arise
when navigating in a large (theoretically unlimited) space due to the limited resources of a
mammalian brain:

1. How can the graph model an infinite space with limited capacity?
2. When should a new node be added to the graph? Conditions must be identified in

order to define a distance (fixed or not) between nodes;
3. How to control the navigation in a physical environment using the navigation graph?

In other words, how to match the physical location to a graph node to obtain the
direction and distance values necessary to reach the next node in the path?

4. Knowing that the visual system of the majority of mammals do not have a field of
view covering the 360◦, how to integrate newly discovered visual cues when moving
through a previously visited node, with a different orientation?

This paper proposes new answers to the above questions through its novel predictive
approach to indoor and outdoor navigation based on collaboration between place cells, grid
cells and head direction cells [5]. The proposed model is in-line with bio-inspired approaches,
and aims to model and design robust systems which can be used on robotic platforms and
on assistive devices for people with visual impairment, spatial neglect, or aphantasia [6–8].
Our goal of providing assistance to visually impaired people adds extra constraints to our
model such as: the visual system must have a narrow field of view (as omnidirectional
cameras are impractical to carry on a person), movements are more varied than on a
wheeled robotic platform, and there is no absolute odometry (e.g., wheel encoders).

This paper is organized as follows: Section 2 outlines a state of the art on some bio-
inspired navigation models. Section 3 gives an overview of our predictive model and its
main properties. Section 4 details the computational principles of the proposed predictive
model, while Section 5 describes a preliminary implementation of the proposed model and
provides the results of its experimental evaluation in a simulated 2D environment. Finally,
Section 6 summarizes the obtained results and discusses some use cases of the proposed
model and its potential future developments.

2. State of the Art on Bio-Inspired Navigation Models

Several vision-based navigation models try to mimic the functioning of the brain’s
navigation system, both to develop efficient navigation models and to validate biological
hypotheses. After the discovery of place cells [4] and grid cells [9], many models inspired
by mammalian navigation abilities were proposed. All of them target both the better
understanding of cognitive navigation processes which underpin the real navigation and
the development of more robust and efficient navigation models.

These approaches integrate more or less accurately the properties of various spe-
cialized neurons involved in the memorization of locations and in the construction of
a topological representation of the environment that is robust to motion drift and envi-
ronmental changes. However, these models do not completely answer all the questions
listed above.

Gaussier et al. [10], Jauffret et al. [11], Zhou et al. [12,13], and Chen and Mo [14]
proposed neurobiological models of place cells and grid cells allowing the encoding of a
robot’s environment and navigating in it. Several implementations demonstrated that these
systems can construct and maintain stable models for long periods [15]. They however
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require an omnidirectional or pan camera to acquire the full context at once. These cameras
are not practical for use in a portable or wearable device.

RatSLAM [16] and its subsequent improvements (e.g., SeqSLAM [17], Tang et al. [18])
are approaches that rely on a 3D attractor network of pose cells, inspired by grid cells
properties, and experience maps to encode position and orientation. Cells of this network
record observed images, allowing them to recognize visited places while providing position
and orientation information. These systems are able to map very large environments and
track positions even through environmental changes. They provide an answer to question 2
with the use of cell networks providing a constant distance between places. However, these
models are constrained to forward-moving vehicles (e.g., cars) and thus cannot be used for
pedestrian motion.

The predictive model of mobility presented here proposes a new answer to question 2,
and solutions for the other three questions.

3. Predictive Bio-Inspired Model of Mobility: Overview

The predictive model proposed in this paper is in-line with the bio-inspired ap-
proaches, and is rooted in a sensorimotor theory of perception [19]. The principles underly-
ing this model incorporate properties observed in a developmental architecture proposed
by Georgeon and Aha [20], and a structure, called Space Memory [21], which specifies how
the relation between an agent’s actions and the environment’s spatial geometry can be
learned without any prior knowledge.

The proposed navigation model provides answers to the questions identified in
Section 1. Several elements intervene in our model: grid cells (Section 3.1), grid cell firing
model during the navigation (Section 3.2), localization in space and movement prediction
(Section 3.3).

3.1. Grid Cells

The proposed model takes inspiration not only from the place cells but also from
another type of cell linked to mammalian navigation: grid cells. The grid cells are involved
in estimation and integration of movements in space. The activation field of grid cells is
organized as a hexagonal grid (Figure 1). Grid cells close to each other in the brain possess
the same spatial properties (spacing between peaks in the activation field, orientation of the
grid) except they are not in phase i.e., their grid is shifted spatially from each other. Groups
of these cells are called modules and together they cover all physical space. When an agent
moves, it goes in and out of the activation field of a module’s cells. The movement of the
agent can be estimated from the successive activations of the grid cells in the same module.

Figure 1. The activation field of a single grid cell (from [22]).

Each grid cell module “represents” a small area around a given position, and has its
specific spatial characteristics (the distance between 2 adjacent activation peaks of its grid
cells called the spacing, and the absolute orientation to the physical space). The sequence
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of activation of Grid Cell of the module can be used to estimate the displacement in the
covered area.

The grid cell module wraps space in a toric manner, thus repeats infinitely. Therefore,
the infinite physical space of navigation can be continually projected on the same phys-
iological support of the mental navigation space. This representation answers question 1 of
Section 1.

Several modules of grid cells co-exist in the brain and provide different spatial infor-
mation of the same physical position (at different scales). As the repetition of modules are
different, due to their different spacings, the combination of position provided by each
module helps to characterize the position in the environment despite the repetition of
these modules.

3.2. Grid Cells Firing during the Navigation

During navigation, the activations of successive grid cells allow the estimation of the
movements of the agent in space. Since the module constitutes a toric space, the same grid
cell will activate in a periodic manner when the animal travels larger distances than the
module can represent. This toric property means that an arbitrary cell can be designated as
the center of the module, and the furthest cells from this center cell are the border grid cells.
The center of a module can be redefined at any moment. By associating a given position of
space to the center place cell of the module, it is possible to define the movement and the
position of the agent relative to this position, in the area bounded by border place cells.

3.3. Localization and Movement Prediction: A Cooperation between Place Cells, Grid Cells and
Head Direction Cells

A place cell is defined as a structure associated with a specific position of space that
records the environmental context observed when the agent was on this position. This
recorded context is compared with the currently observed context to define the firing rate
of the place cell: when the observed context is closed from the recorded context, the firing
rate increases, allowing recognition of the position when the agent approaches it.

A set of place cells can be considered to be a graph representation of the environment
(Figure 2). Two place cells (two nodes of the graph) are connected if is possible to move from
a place cell’s position to the other place cell’s position. Even though more than one place
cell can fire at time t (which is expected in redundant environment), the model considers
only one place cell as active at t. The active place cell indicates the current local reference
for position estimation. The active place cell only changes when the agent approaches the
next place cell on the graph.

Figure 2. Graph of place cells associated with navigation in a physical space (pink node: place cells
with firing activity, blue nodes: inactive place cells. Active place cell is designated with a green circle).

When starting a new navigation graph, the system adds a new place cell, and one grid
cell from each module, designated as the center, is associated with this place cell (Figure 3).
Each grid cell of a module gets the recorded context of the place cell and uses the offset
(phase difference) with the center grid cell to predict the expected environmental context
that could be observed at the position characterized by this grid cell. Each grid cell then
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compares its predicted context with the currently observed context to define its activity
(firing rate). It is then possible to estimate (via interpolation) the agent’s position near the
place cell by measuring the activity of grid cells.

PC

GC

HDC

Figure 3. Cooperation of “brain substrates” while predicting movement in the space: the active place
cell (top, pink) is associated with one grid cell in each module (middle). The couple of grid cell and
head direction cell (middle, green and bottom, green) give an estimate of the movement around the
active place cell.

This position measurement is however constrained to a finite distance from the place
cell. Once a border grid cell is reached, the module limit is reached. A new place cell is
then added to the navigation graph. This place cell stores the current observed context and
links to the currently most active grid cell of each module, which becomes the new center
of its module.

The above approach solves question 2: when should a new node be added to the graph. It
should be observed that the distance between place cells is given by the size of the local
space represented by the smallest used module. The relative position between two place
cells is given by the offset that separates their respective associated grid cells, and the
agent’s position between two place cells is estimated by the grid cells.

The model presented so far does not take into account the orientation of the agent’s
movement. To identify the orientation, artificial head direction cells are added. In our model,
each head direction cell is characterized by a predefined angle of rotation; all the head
direction cells cover the 360 degrees uniformly. Each head direction cell generates a rotated
context from the currently observed context (Figure 3). The rotated contexts are then
compared to the predicted contexts (from the grid cells), the orientation-grid pair with the
highest activity gives the orientation and position relative to the current active place cell.
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Figure 3 schematizes the cooperation of the “brain substrate” of the proposed model
to control the navigation and suggests an answer to question 3 related to the control of
navigation. The active place cell sends its context to the grid modules. The predicted
contexts produced by grid cells from active place cell’s recorded context and the predicted
context produced by head direction cells from observed context are then compared to
predict the location and orientation of the agent around the active place cell’s position.

As the position around the place cell can be estimated, it is possible to predict the
position of currently observed visual cues if they were observed from the place cell’s initial
position, and thus, to add newly observed cues to the recorded context of this place cell.
This answers our question 4: how to integrate new visual cues.

This predictive model of navigation has many advantages: predicted contexts are
computed only once, when the active place cell changes, and even if the environment
changes (e.g., added or removed points of interests), the system will still be able to easily
find the current position by observing only the points of interest close to the expected ones.
Moreover, no matter the differences with the previously stored context, there will always
be a context more active than the others.

4. Predictive Model of Navigation: A Computational Approach

This section presents a computational definition of the proposed predictive model
of navigation. This model involves interactions between the three types of navigation
cells. Section 4.1 defines the environmental context of a place cell; Section 4.2 models the
orientation tracking using head direction cells; Section 4.3 explains how the place cells
recognize a context; Section 4.4 outlines how the grid cells work to precisely localize the
agent around the considered place cell; the subsequent sections show how a new place cell
is added during the navigation (Section 4.5), how place cells are linked in a mobility graph
(Section 4.6) and how the agent’s position is tracked using the mobility graph (Section 4.7);
finally, Section 4.8 shows how the mobility graph supports three basic navigation tasks:
reaching a goal, homing and shortcut detection.

4.1. Environmental Context

We define an environmental context as a representation of the surrounding environ-
ment of the agent in its egocentric reference. A context is a set of salient features that can be
identified and localized in the space surrounding the agent. Formally, the environmental
context is a set of pairs (e, p) where e is the type of element (its color for instance) and p its
position in the agent’s egocentric reference frame.

During navigation, the visual system continually produces a context Ct containing the
currently observed visual cues (the aforementioned e). This context is defined in egocentric
reference frame. Figure 4 presents the context Ct perceived by the agent (orange triangle) at
time t; it contains three red elements (e1, e4, e6), one blue element e2 and two green elements
(e3 and e5).

Figure 4. The context in the agent’s egocentric reference frame: the orange triangle is the agent, colored dots are visual cues.
The elements in the current context are given in polar coordinates.

The different structures of the navigation model produces predictions by applying
spatial transformations to the elements of the context. This model incorporates properties
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observed in the model of space memory proposed by Gay et al. [21], and more specifi-
cally, properties observed in a subsequent work [23] that showed that complex spatial
transformations, such as reference changes, can be learned by experience and exploited
to predict environmental contexts in other positions. From this model, we extract two
relevant properties:

• a movement m in space is strictly equivalent to the position p that it is allowed to
reach;

• any position p in the surrounding space can be updated to p′ through a movement m;
this is expressed with p + m→ p′.

4.2. Tracking Orientation: Head Direction Cells

The head direction cells are defined in our model as structures encoding a specific
rotation in allocentric reference frame; the set of head direction cells give a regular dis-
cretization of the [0; 2π[ interval (Figure 5). These head direction cells are used to generate
rotated contexts. For a given context C, each head direction cell H associated with rotation
moment φH will define a rotated context CH = {(e, p′)|p + φH → p′}.

Figure 5. Head direction cells cover the [0; 2π[ interval uniformly. The head direction cells use the
current context observed by the agent as input and rotates this context by their attributed angle. Each
head direction cell thus simulates a different rotation of the agent from its current orientation. These
rotated contexts are then used in combination with contexts produced by grid cells to estimate the
orientation of the agent (see Section 4.4 and Equation (2)).

4.3. Recording and Recognizing Contexts: Place Cells

Our model considers place cells as structures encoding environmental contexts. The
purpose of a place cell P is to recognize its associated place in space by comparing its
recorded context CP with the current perceived context Ct. Formally, a place cell is a
function P : {C} → [−1; 1] that computes the similarity (P(C) > 0) or dissimilarity
(P(C) < 0) between Ct and CP (Section 5 gives an example of implementation for P).
To make the place cell activity Pa invariant to rotation, Pa is computed using the rotated
context CH that gives the highest value:

Pa(Ct) = maxH P(CH) (1)
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4.4. Localizing Around a Place Cell: Grid Cells

A place cell can indicate when the agent is in its receptive field (the set of points of
space in which this place cell is active), but does not inform on the agent’s location relative
to the place cell. This information, however, is needed to add newly discovered elements to
the place cell context (e.g., when the agent performs a rotation). To overcome this limitation,
we drew inspiration from the brain’s grid cells.

In our model, grid cells intend to localize position and integrate movements of the
agent around a place cell. As said above, grid cells are grouped into discrete modules [24].
Like a place cell, a grid cell G computes the similarity between a context CG received
from the currently active place cell, and the current context Ct. However, grid cells differ
from place cells in three ways: they do not have associated contexts, they do not need to
compute dissimilarities (only similarity), and their receptive field cover a smaller area of
space. Formally, a grid cell is a function G : {C}2 → [0; 1].

The grid cell localization procedure is based on the following assumption: each pair of
grid cells (Gi, Gj) of the same module corresponds to a unique, known, movement in space,
noted mi,j, considered to be the shortest movement separating their receptive fields (on the
toric surface). Each place cell is associated with one grid cell of one or multiple modules.
When the agent is close to a place cell Pk storing the context CPk = {(e, p)} and associated
with a grid cell Gi, it is possible to define, for each grid cell Gj of the same module as Gi, a
modified context CGj = {(e, p′)|p + mi,j → p′}. Such modified contexts are predictions on
the context that should be observed when moving around the place cell.

Therefore, the activity of every grid cell Gj of the module(s) is computed using the
rotated contexts CHk from head direction cells. The pair of head direction cell and grid
cell (Hkmax , Gjmax ) providing the greatest activity (2) in the current context Ct, gives the
orientation φmax and position mmax of the agent in the current place cell’s reference frame.

(Hkmax , Gjmax )/Gjmax (CHkmax
, CGjmax

) = max
Hk ,Cj

Gj(CHk , CGj) (2)

The exact position and orientation of the agent can then be interpolated using head
direction cells and grid cells that are close to Hkmax and Gjmax . Figure 6 illustrates how
grid cell prediction works. By knowing the position and orientation in the place cell’s
reference, it is possible to add newly observed elements (e, p) of context Ct as elements
(e, p′) where p− (mmax + φmax) → p′. This makes possible to update the context of the
current place cell.

Figure 6. Principle of grid cell localization and odometry: a place cell is associated with a grid cell of a module. When the
place cell becomes active (a), grid cells of the module generate alternatives of the place cell’s context, translated by the
relative movement between each grid cell of the module and the grid cell associated with the place cell (b). The activity of
grid cells in the module allows estimation of the agent’s current position and movements in the place cell’s reference (c).

4.5. Adding New Place Cells to the Navigation Graph

Grid cells are also used to determine when a new place cell has to be added: as the
current place cell defines the center of a grid cell module (i.e., its associated grid cell), it
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also defines border grid cells. These cells are the grid cells with the greatest distances to the
module center (Figure 7). Reaching one of these border grid cells indicates that the agent is
moving out of the module’s area of coverage centered on the current place cell (we only
consider the module with the smallest spacing among those associated with the current
place cell). Such situation will prompt a new place cell to be created and associated with
the current most active grid cell. This initially border grid cell becomes the new center
of the module, as shown in Figure 7. The previous place cell is then connected to the
new one, with the spatial transformation separating them encoded by their associated
grid cell. Therefore, while exploring the environment, the system progressively constructs
a sequence of place cells encoding the performed path based on grid cell modules. A
consequence of this mechanism is that the distance between place cells is nearly constant
and independent from the estimated distance to observed elements, and relies solely on
used grid cell modules.

Figure 7. Generation of a new place cell: the center of the grid module defines a set of grid cells as
border grid cells. When reaching a border grid cell, a new place cell is added, and associated with
this border grid cell, which then becomes the new center of this module.

4.6. Connecting Place Cells

Place cells are used to recognize known places. When reaching a border grid cell, the
system will first check for place cells with strong activities. When the most active place cell
has an activity higher than a predefined threshold, indicating that a sufficient number of
cues of its context can be recognized in the environment, the current place cell is linked to
the recognized place cell. Several methods to improve place cell recognition are discussed
in Section 6.

4.7. Position Tracking in the Place Cell Graph

When freely moving in a known part of the environment, the localization system
keeps track of the position by updating the current place cell. When the agent is closer from
a neighbor place cell than the current one (based on the grid cell activities), this neighbor
cell becomes the new current place cell. The place cell subsequently loads its context in
the grid cell module which then helps re-calibrating the estimated position. This principle
thus uses the relative position of place cells instead of their activity, and allows tracking the
position even with very few visual cues and environmental changes. Indeed, the system
only considers elements that are close to the predicted position; missing, new and displaced
elements are ignored and possibly removed from current place cell’s context (as observed
in experiment in Section 5.5). The system can also correct errors in the place cell graph,
disconnecting neighbor place cells that have a negative activity when approached.

4.8. Using the Navigation Graph

A navigation mechanism allows the agent to autonomously move through a sequence
S = [P1, . . . , Pn] of place cells. In the context of a place cell Pk ∈ S, associated with the
grid cell Gk, the mechanism considers
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• the next place cell Pk+1 and its associated grid cell Gk+1 to define the relative position
mk,k+1 between Pk and Pk+1;

• the current most active grid cell Gc to define the relative position mk,c of the agent.

The position mc,k+1, sum of mc,k and mk,k+1, provides the orientation and distance
to reach the next place cell. When the agent is close to the place cell Pk+1, this place cell
becomes the reference. The process is repeated to move from Pk+1 towards Pk+2. Please
note that unlike free navigation, the system will only consider the next place cell of the
sequence, inhibiting other neighbors even though they could be closer.

φ + mc,0 + ∑
Pk∈S0,i

mk,k+1 → pPi (3)

where

• φ is the estimated orientation,
• mc,0 the estimated position in the current place cell P0,
• S0,i the shortest sequence of place cells between P0 and Pi.

These positions can then be compared with the current context Ct: when a position
pPi can be directly reached (i.e., no observable elements between the agent and pPi ), then Pi
can be accessed in straight line. The agent then performs this movement, and continuously
updates its position using the odometry provided by existing or newly added place cell,
until it can visually recognize a place cell of the navigation graph.

4.9. Homing without Visual Context: Visual Odometry

When the visual field is too narrow to record and recognize contexts in a reversed
direction, moving back cannot rely on visual cues. The homing mechanism makes it
possible to move a sequence of place cells backwards to return to the starting position
without knowing the environmental context, based on visual odometry.

This mechanism uses grid cells that are associated with place cells to define the
movement to produce. Starting from the last place cell of the sequence, the previous place
cell designates the grid cell that must be reached, giving the direction and distance to reach
the estimated position of the previous module center. When the agent reaches this grid cell,
the previous cell in the sequence indicates a new grid cell to reach, and so on until reaching
the estimated position of the first place cell of the sequence. During this homing move,
if the agent’s visual field is narrower than 180◦ and cannot observe previously recorded
cues, the navigation mechanism will generate a new sequence of place cells, in parallel to
the current one, allowing visual odometry through grid cells. We can notice that a drift
can appear between the current and the new sequence of place cells. This drift can be
corrected if the agent recognizes a place cell along the way. In this case, the estimated
position is re-evaluated.

4.10. Finding Shortcuts

Relying on properties of the space memory [21], shortcut detection in the environment
can be defined. This mechanism estimates the position pPi of each place cell Pi of the graph
in egocentric reference (the same than visual context Ct) through a recursive update of
their positions, using relative movements between a place cell Pi and its neighbors Pi,k.
The mechanism computes the position of each place cell in egocentric reference defined by
Equation (3).

5. Experimental Evaluation

The navigation mechanism was tested in a 2D simulated environment implemented
in Java. Section 5.1 presents the experimental conditions in which the model was tested.
Section 5.2 pertains to the effect of grid module spacing on the precision of the localization
of the agent. Section 5.3 evaluates the construction of the navigation graph along a path.
Section 5.4 shows the model’s ability to follow a path forward and backward within the
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constructed navigation graph. Section 5.5 evaluates the robustness of the model to changes
in the environment. Section 5.6 demonstrates the ability of the model to find shortcuts in
the navigation graph.

5.1. Experimental Setup

The environment is continuous, and contains blocks of different colors placed on a
grid (Figure 8). We use the width of a single block as a measurement unit: Block Unit—BU.
The environment is populated with green blocks to create walls and three red blocks are
used as markers allow generating visual cues to help discriminate places.

The agent has a visual field of 180◦; it can detect color and distance d of visible
elements e. A polar rendering system provides visual data in a polar reference frame (Θ, d)
with an angular resolution of 1◦ (Figure 8b). The distance of elements is defined as tanh(d),
reducing the precision for distant elements in a similar way than for binocular or optic flow-
odometry distance estimation. The visual system can also identify and localize corners,
used as punctual cues. The context is also given in Cartesian coordinates (Figure 8c) to
simplify spatial transformations produced by the grid cell module. The agent has no other
sensory input than its visual system and no odometric or inertial sensors.

Figure 8. Experimental environment used: (a) the test environment is populated with green blocks
and several red blocks to help discriminate similar places. (b) the agent’s 180◦ visual field (the
agent can only use polar coordinates), which depth estimation precision decreases with distance.
Inner corners, outer corners, and color changes are detected (respectively yellow, cyan and magenta
circles). (c) the agent’s visual context is also given in a Cartesian reference frame (used to simplify
grid cell module context computation). The agent is indicated in blue in figures (b,c), its field of view
is egocentric.

The agent’s context is encoded as a set of triplets (e, Θ, d′) where d′ = tanh(d) and
e is the type of element (green block, red block, re-entrant corner, salient corner or color
change). Place cells are structures that encode and update contexts. The activity of place
cells uses the following function (4):

P(C) = max
Hi

[ ∑
ei∈CHi

,ej∈CP

id(ei, ej)× f1(d(ei, ej))] (4)

where

• d is the distance between elements.
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• id(ei, ej) = 1 when ei = ej, and −1 otherwise.
• f1 a decreasing positive function.

We used f1(x) = max(0, 1− x/α) (α = 15) for its simplicity, although other functions
were tested with similar results. The α coefficient, which is related to the scale of the visual
system, was determined empirically in order to make the activation area of the place cell
large enough to cover the area of a grid cell module.

For algorithmic simplifications, the grid cells of a module form a regular orthogonal
grid of 11× 11 cells. This size was selected as a good compromise between precision and
computational speed. The estimated position given by a grid is obtained as the weighted
barycenter of the most active grid cell and its eight neighbors. The grid cell activity is
defined by Equation (5)

G(C, CG) = max
Hi

[ ∑
ei∈CHi

,ej∈CG

f2(d(ei, ej))] (5)

where f2 is a decreasing positive function ( f2(x) = max(0, 1− x/α′), with α′ = 4); the α
coefficient was chosen smaller than the one for place cells to make the activation area more
discriminative.

The agent has two control modes: manual control, where the experimenter controls
the agent using arrow keys, and automatic (or repeat) mode, where the agent autonomously
moves according to a given sequence of place cells. In repeat mode, the agent aligns itself
towards the next place cell of the sequence, then moves forward. The repeat mode can
adapt to environmental changes and use its specific sub-modes such as shortcut finding.

5.2. Effects of Grid Spacing

The spacing of grid cell modules may affect the precision of localization in the physical
space i.e., the accuracy of visual odometry. A module with a smaller spacing will allow
estimating the position and orientation of the agent in a smaller area around the active
place cell, but with higher accuracy.

To evaluate the effect of grid spacing on precision and sensitivity to noise, we tested
the navigation model with different grid cell spacings, from 0.1 to 1 BU (Figure 9). We
observed that with a very short spacing (0.1 BU), a large amount of grid cells were active,
with very little difference in the activity level between adjacent grid cells, making the
module very sensitive to noise (e.g., from image data). As a result, detecting when the
agent reached border grid cells became very inaccurate and less reliable. With a large
spacing (>0.7 BU), very few grid cells are simultaneously active as each grid cell maps a
greater area which decreases the precision of the estimated position. Moreover, because of
the greater module coverage, we observed more inaccuracies in place cell’s context updates,
leading to a lower precision in visual odometry.

Figure 9. Grid cell module with a spacing of 0.1 (a), 0.3 (b) and 0.9 BU (c) (chosen within the
considered variations of grid spacing [0.1; 1]), in the context given in Figure 8. With a low spacing (a),
estimated position is very sensitive to noise. With a larger spacing (c), the precision of the estimated
position drops as a grid cell represents a larger area.
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The collected results show that a spacing of 0.3 BU offers a good compromise between
precision and robustness to noise. For this reason, we use this spacing value in the
subsequent experiments.

5.3. Navigation Graph Construction: Place Recognition

The goal of this test is to evaluate the drift of the estimated position in relation to the
ground truth when exploring a new environment, and to show that known locations are
recognized. The graph construction is observed using a global grid that consists of the
repeated grid module (Figure 10). Ground truth and estimated positions are updated by
movement integration. The navigation system cannot access this representation. A path
was defined using manual control mode. Although progressing in the environment, the
navigation system tracks the position by adding new place cells.

Figure 10. Top: example of tracking when traveling through the main environment loop (Figure 8).
Yellow line indicates ground truth, cyan line indicates estimated position. Place cells are represented
with blue points, displaying the associated grid cell (note that the grid cell module is repeated).
Bottom: estimated position error through time, in Block Unit (BU). Color changes indicate place
cell changes.

Over five different runs, we observed an average error in position estimation compared
to ground truth (yellow path in Figure 10) of 0.63 BU, with a maximum peak of 1.90 BU on
one of the runs. After having completed the main environment loop, the first place cell
reacts with a high activity, allowing the system to connect first and last place cell, thus
closing the loop. At this connection point, we observed that the average error on the five
runs is only 0.69 BU. Figure 10 shows a typical run with the estimated (blue path) and
ground truth (yellow path) positions.
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When moving back the reverse way, or moving in areas with too few visual cues, the
system creates a new sequence of place cells. This makes the model able to compensate the
lack of visual cues using the sequential nature of the constructed model, as suggested by bi-
ological observations [25]. Figure 11 shows the completed graph covering the environment
proposed in Figure 8.

Figure 11. (a) the environment in which the test was conducted. (b) navigation graph obtained after covering the whole
environment. The distances between place cells are computed in the grid cell module space, which do not exactly match
physical distances.

5.4. Usage of the Navigation Graph

We tested two navigation procedures in repeat mode: forward and backward, on a graph
covering the main environment loop (Figure 8). Forward navigation follows a previously
defined path in the same direction as it was created, while backward mode traces the path
back to the starting point.

Forward navigation. Starting from the initial position (bottom left), the agent au-
tonomously follows the path encoded by the sequence of place cells, by self-orienting
towards the grid cell associated with the next place cell. The system sequentially loads
contexts from place cells, allowing redefinition of its position and moving towards the next
place cell. Figure 12 shows the trajectory successfully followed by the agent. The repeated
path is thus very close to the original, although turns are a little tighter as the agent tries to
move towards the next place cell in a straight line.

Backward navigation. Starting from the last place cell of the sequence, we activate
the backward procedure. We observe the agent returns to its initial position, enacting the
successive distances between place cells using only visual odometry. The navigation system
generates a new sequence of place cells, as it cannot recognize first sequence. The trajectory
is not as precise as in repeat mode, as the agent cannot re-estimate its position, although
the final error between final and initial positions is of about several BU, depending on the
first position (Figure 13).
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Figure 12. Forward navigation: the agent autonomously follows the path given by a sequence of
place cell starting in the bottom left. The autonomous trajectory (red) is very close to the manual
trajectory (black).

Figure 13. Backward navigation: the agent follows the path backwards to return to its starting
position (blue trajectory), using only visual odometry and relative distance between place cells. The
path is however not very precise due to the motion drift that is not corrected.

5.5. Robustness to Environmental Changes

Physical spaces are dynamic, their content and how they can be perceived change
over time and with the viewpoint; for instance, opening and closing doors in buildings can
cause the geometry of the environment to change. The robustness of the navigation model
to changes in the environment was tested by modifying the content of the environment.
Figure 14 provides an example of the modified initial environment (Figure 8). The place
cell context update is deactivated to force the agent to use previously recorded contexts
and avoid real-time updates; the repeat control mode to observe how the agent behaves.
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Figure 14. Robustness to environmental changes: (a) repeat mode in a modified environment. Despite
the environment changes, the trajectory (cyan) remains close from the one in the initial environment
(red). We observe that corner (a) and wall (b), which were moved but are still close to original
position, disrupt the position estimation in the grid cell module, causing deviations in the trajectory.
Figures (b,c) show the grid cells (square) and head direction cells (circle) activity in (b) reference and
(c) modified environments at the position marked with a circle: despite a very weak activity, the cells
can still estimate the correct position and orientation.

Despite significant changes in the environment, the agent can still move through the
sequence of place cells and successfully repeat the learned path. The trajectory remains
close from the reference trajectory, as the system only considers cues that are close from
predicted position. The path however deviates when cues are slightly moved, as they may
interfere with other cues’ positions. The system fails when a large amount of cues, larger
than remaining cues, are moved with the same offset.

5.6. Finding Shortcuts

The shortcut finding mechanism was evaluated in repeat mode with a specifically
modified initial environment. Figure 15 shows the tested environment and the obtained
results. First and last place cells of the main loop were disconnected, and the agent starts
from the third place cell’s position, preventing it from observing the last place cell and
moving directly towards it. We removed several blocks on the south wall to open a shortcut
in the environment.

The agent starts moving towards the visible place cell that is the closest from the last
place cell in the sequence, which is a place cell close to north-west corner. When moving
horizontally in the northern part of the environment, the agent can see an empty space
covering place cells that are close to the last place cell of the sequence on its right (associated
with positions on the south of the environment), and moves towards them. The agent
then moves towards the estimated position of those place cells, creating a new sequence of
place cell to track its position and updating the estimated position of the targeted place cell.
Then, the agent enters the south corridor, recognizes the environment and connects the
shortcut sequence, before moving towards the last place cell of the sequence.
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Figure 15. Forward navigation with shortcut finding system. First and last place cell are disconnected.
The agent moves towards the most distant place cell that it can observe, and when it passes close to
the shortcut, it observes a place cell that is very close from the destination place cell, and turns to
take the shortcut. The agent then creates a new sequence of place cell until it reaches the destination
place cell.

6. Conclusions and Discussion

This paper introduces a new approach to control the navigation of an agent (in
known/unknown, indoor/outdoor environment) inspired by three types of mammalian
navigation neurons, place, grid and head direction cells. This model can track the position
of an artificial agent and provides with high reliability navigational data needed to reach
a destination.

A simple visual system with limited field of view was used as input to test the robust-
ness of the system’s visual odometry. Despite the low precision of visual inputs, low variety
of visual environments, and the use of a unique grid cell module, the obtained results
show that the tracking mechanism successfully estimates the position and orientation of
the agent, thus confirming the correctness of the proposed model. The experiments on the
basic navigational tasks show that the proposed model is able to construct a navigation
graph and uses it successfully to follow a path and return to the starting position. The tests
also showed the system is able to discover shortcuts and add them to the navigation graph.

This robustness comes from (1) the prediction-oriented estimations which make the
system very tolerant to changes to the environment, (2) the use of interconnected local
models of the environment with independent reference frames makes the system very
tolerant to movement drifts and (3) the sequential nature of the system allowing it to
compensate the lack of visual cues when estimating the position in the navigation graph.
The constructed model of the environment can provide navigation data under the form of
movements required to move through a path, making it very easy to exploit with higher
level mechanisms.

Future works will focus on improving our model by:

• using multiple sensory inputs. The use of inertial data (e.g., IMU) will increase the
tracking reliability and enable navigation with few or no visual cues. Other sensory
modalities, such as touch and audio, could help to complete a context.

• improving the place cell graph management, with mechanisms to split or merge place
cells to avoid redundancies and correct observed errors (drift).

• using multiple grid cell modules with different orientations and spacings to increase
the accuracy and reliability of localization. Following the approach proposed by
Banino et al. [26] and Sparse Distributed Representations [27], associating a place
cell with grid cells from different modules will help define a more unique position in
space, as their combined activation will be sparser, which will increase the reliability
of a place cell’s recognition.
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• testing our model on physical devices. In a preliminary work, we successfully tested
a grid cell module with a stereo camera. We intend to make our model applicable
to robotic platforms, developmental agents, but also to assistive devices for people
with visual impairments or spatial neglect. This last use case implies that our model
can work with embedded cameras of limited field of view (we intend to use a stereo
camera worn on the chest of the user), which can move in any direction, and cannot
rely on absolute odometry (e.g., wheel encoders).

Moreover, this model shares very similar properties with the space memory architec-
ture [21], suggesting that our navigation mechanism could be combined with it, using
affordances instead of visual cues, to extend behavioral possibilities of developmental agents.
In this developmental perspective, it would be interesting to study how movements associ-
ated with grid cells and head direction cells could be learned from the interactions between
the agent and the environment.
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