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Abstract: This paper discusses the creation of an agent-based simulation model for interactive robotic
faces, built based on data from physical human–robot interaction experiments, to explore hypotheses
around how we might create emergent robotic personality traits, rather than pre-scripted ones based
on programmatic rules. If an agent/robot can visually attend and behaviorally respond to social cues
in its environment, and that environment varies, then idiosyncratic behavior that forms the basis
of what we call a “personality” should theoretically be emergent. Here, we evaluate the stability of
behavioral learning convergence in such social environments to test this idea. We conduct over 2000
separate simulations of an agent-based model in scaled-down, abstracted forms of the environment,
each one representing an “experiment”, to see how different parameters interact to affect this process.
Our findings suggest that there may be systematic dynamics in the learning patterns of an agent/robot
in social environments, as well as significant interaction effects between the environmental setup
and agent perceptual model. Furthermore, learning from deltas (Markovian approach) was more
effective than only considering the current state space. We discuss the implications for HRI research,
the design of interactive robotic faces, and the development of more robust theoretical frameworks of
social interaction.

Keywords: human–robot interaction; robotic face; personality; social interaction; agent-based simu-
lation; agent-based modeling

1. Introduction
1.1. Overview

A primary issue with creating robots and other interactive devices for human interac-
tion is how to create natural seeming behavior from what is otherwise pre-programmed,
prescriptive computer code. Naturally intelligent organisms, such as humans, do not all
behave the same way. There may be some underlying chemical or instinctive “program-
ming” at play, but the fruition of that is idiosyncratic in terms of individual behavior.
Indeed, recent research has shown that even simple sensory systems can produce complex
variable reactive behavior in simple organisms [1]. In laymen’s terms, we often speak
about people or animals as having a personality, some stable set of learned and/or innate
behavioral patterns unique to the individual. The question is how we might replicate such
idiosyncratic behavior in robots and interactive devices in an emergent yet replicable way.
These questions have deep implications for human–robot interaction (HRI) as well as the
design of robotic faces and virtual avatars.

A number of research efforts have been made toward solving this problem (see
Section 1.3 for more details). These largely fall into a couple of broad categories. The first
approach has been to make use of psychological theories of human personalities, focusing
on the “Big 5” personality traits as defined by psychologists [2]. These efforts take as their
starting point human-defined labels of these traits—openness, conscientiousness, extraver-
sion, agreeableness, neuroticism—as a top-down approach based on the assumption that
we can create simulated personalities through carefully engineered systems. The second
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approach has focused on agent-based modeling of personality, using dimension-based or
component-based models of personality traits and affect. For instance, cognitive appraisal
theory attempts to create cognitive “labels” for different components/dimensions of how
environmental stimuli are perceived and responded to in an effort to mimic natural organ-
isms [3]. This is more of a bottom-up approach, though the components/dimensions are
still based on human-defined labels of what constitutes a “personality”.

The main problem with many of these approaches to personality and affective com-
puting is that the underlying theories they are based on have fundamental conflicts both in
a biological sense as well as a computational sense. As Lisetti and Hudlicka (2015) have
pointed out [3]:

“The different theories often seek to explain different aspects of the overall phenomenon
of affect. Consequently, developing an overall theory for affect/emotion modeling would
require reconciling not just the theories themselves, narrowly construed, but also their
architectural assumptions. This aim, however, resembles the early dreams of strong AI,
and its disillusions.”

Their message being that when we take as our starting point human-defined labels of
personality, we are relying on the fundamental assumption that it is possible to engineer
robust systems of social interaction in AI/robots by examining complex examples of
personality in higher organisms and then create computational architectures to emulate
them through brute force. This, however, is not presumably how nature evolved the
personalities we now see in humans and other higher organisms [1]. Rather, it presumably
started with simple variable behaviors across individuals, and somehow molded those
over generations into the constructs which we call “personalities” today. An emergent
approach. The question then is whether such a process is reproducible in silico. If so,
that may reveal important implications toward creating more natural social interaction
behavior during human–robot interaction.

Our goal here is to explore these questions via simulation, though one based on an
actual physical robotic face. The environment of the simulation is setup to reflect the
sensory environment that the robotic face experiences while interacting with humans,
based on prior physical experiments (see Section 2.1) [4–7].

1.2. Approach

Our approach here takes a different tact. We start with the fundamental definition that
the ability to visually attend and behaviorally respond to social cues in its environment
lies at the core of any “personality trait” (see Section 2.1). We are not interested in creating
human-defined labels for personality, but rather asking the question: can we create an
architecture where variable robot behavior results emergently from variations in its social
environment, akin to the approach of behavior-based robotics and similar concepts that
take of so-called “weak AI” approaches [8,9]? If so, that would suggest that the under-
lying building blocks of personality might be produced via interactions with the social
environment in and of itself, given that that environment is malleable and non-uniform.

In simpler terms: if the social environment varies, and the agent has the capability
to attend to and behaviorally respond to social cues, then variable behavior that form the
basis of what we call “personality” should be emergent.

The focus here is on exploring first principles of how such emergent variable robot
behavior (EVRB) might arise during social interaction, rather than engineering a complete
robotic platform. However, the simulation experiments described below are based on
real-world human interaction experiments with a physical robotic face.

Part of the motivation for this study comes from previous work undertaken a few years
prior in an attempt to train neural networks to produce appropriate “life-like seeming”
behaviors during interaction between humans and robotic faces, which were not entirely
successful, in the sense that the produced models proved to be unstable. When the
human stimuli were altered from those used previously to learn behavioral patterns,
the robot would exhibit erratic behavior, learning and unlearning things in a frenetic
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manner [6]. Hence, our focus here is on the convergence toward stable solutions in the
face of environmental variation, not just a low training error rate. Learning one specific
thing very accurately but which cannot be adapted to the variation seen in real-world
environments is of limited utility. Indeed, stability is typically seen as one of the key
components of “personality” . . . to the point that unstable personalities are viewed as
maladaptive psychological disorders [10,11].

A couple of important points should be noted relative to other agent-based modeling
approaches to personality and affect (see Section 1.3.2 below). First, averse to more complex
approaches to agent emotions based on cognitive appraisal theory, such as the OCC
model [12], our approach is pared down to only the valence response to the environment
in a pre-cognitive sense, similar to how simple eukaryotes or human infants can respond
to stimuli without necessarily knowing what the object stimuli is [1,13]. We do so in order
to test how the ability to visually attend and behaviorally respond to social cues might
emerge from congruence with environmental stimuli (or inversely the lack thereof) [3].
This ties into our definition for the core of any artificial personality above. Additionally,
our approach to agent affect here could also be seen as a pared-down version of Scherer’s
component process theory (CPT) model, with ours operating only at the sensorimotor
level [14]. Similar approaches have been used to control behavior of mobile robots in some
previous HRI experiments [15]. We discuss more of this prior work in the next section.

1.3. Background
1.3.1. Robotic Personalities

There have been a number of efforts to develop robotic personalities over the past
couple of decades. Personality has come to be seen as a core component of human behavior,
and thus necessary to emulate in order to create more natural-seeming robotic behaviors [2].
Indeed, even if not explicitly included, people still often attribute personalities to robots,
making personality important from a design standpoint for robots in human spaces [16].

Many of these studies have based their development of robotic personalities on the
“Big 5” personality traits as defined by psychologists of what “personality” is, for example
extraversion and neuroticism (see Section 1.1) [17–23]. Meanwhile, other studies have
used similar human-defined scales, such as the Myers–Brigg personality scale [2]. A
predominant method of evaluation in either case is then to run human–robot interaction
experiments and evaluate human perceptions of the robot based on metrics such as trust,
acceptance, likeability, etc., using some instrument (e.g., the Godspeed scale [24]).

Other research has highlighted some of the problems of simply hard-coding the “Big
5” personality traits into robot programming, rather than trying to understand how person-
ality might emerge natively from the underlying architecture. One major limitation is that
those studies are in a sense just using robots as a platform to explore theories of human
personality traits mimicked on a machine, not really studying how robot personalities them-
selves might be formed [25]. While using robots to study human psychology is certainly a
worthwhile endeavor, it is not the only goal we should pursue. Others have criticized the
approach on the grounds that hard-coding personality traits does not represent a scalable
solution, and that more research needs to be performed with an emphasis on scalability [26].
Moreover, truly scalable models of artificial personality will need to be adaptable across
culture and context (see Section 1.3.3).

Research on robotic personalities also has a strong link to research on robotic facial
expressions, artificial emotions, and other displays of affect in robots and other interactive
devices [3]. Many of the studies are based on psychological models of emotion, such as
Ekman [27] and Russell [28]. In some HRI research, there is a blurring of the lines between
what we might consider mood/affect and personality [29,30]. At the same time, however,
psychological research has shown strong interaction effects between mood and personality,
and that even in humans it is sometimes difficult to clearly delineate between the two due
to the influence they mutually exert on general cognition and behavior [31–33]. We leave



Information 2021, 12, 103 4 of 22

it for others to settle that debate. For our purposes here, we take the strong interaction
between affect and personality as given, and do not attempt to delineate.

1.3.2. Agent-Based Modeling and Emotion

Along with research on personality and affect in physical robots, there has been a large
amount of research performed using agent-based modeling. Much of this work has focused
more on affect than personality in particular, though regardless it still contains useful
insights for designing social interaction and interactive systems [34]. For instance, there
has been significant amount of agent-based modeling research into emotional contagion in
social groups, and the mechanisms through which affect can spread between individuals
much the same as a viral contagion [35,36]. For development of artificial personalities, this
underscores the importance that personality and affect play not just in individual behavior,
but also in the social communication of information. Personality and affect do not exist in
a vacuum.

Other research has focused on how the “desirability” of events in the environment
can be used for virtual learning in agents [37]. Some researchers have also used belief-
desire-intent (BDI) models to evaluate how congruence (or lack thereof) between agent
goals and the environment can be used to generate both coherent internal states and
agent actions [38,39]. Elsewhere, Gratch and others have begun exploring the deeper
implications of agent-based modeling in how we think about the construction of artificial
psychologies and development of more natural seeming social interaction between humans
and robots, virtual avatars, and other interactive devices [40]. Virtual avatars in particular
have been a strong avenue for exploring potential pitfalls when attempting to deploy these
approaches during real-world interaction, such as uncanny valley effects that disrupt the
virtual experience [41].

There have also been attempts to consolidate all these agent-based simulation ap-
proaches for various aspects of cognition and affect, through the creation of cognitive
architectures [42]. A prominent example of this is the SOAR cognitive architecture [43].
Research in this vein is still ongoing, but undoubtedly a domain where development of
artificial personalities will play a role.

1.3.3. Human–Robot Interaction

From a more general stance of HRI and more broadly human–computer interaction
(HCI), the previous sections lead into questions of how we both consider and design
interaction, as well as how people relate to devices and technologies in ways that go
beyond the physical object itself. As Picard and others have argued, those devices become
evocative objects, to which we assign certain anthropomorphic traits that are tied to our
identities as human individuals [44]. As much as we shape technology, it shapes us [45].

The term affective phenomena includes emotion, affective communication, and per-
sonality (as defined by Lisetti and Hudlicka [2]). Simulated models of affective phenomena
allow us to test theories of human cognition, and build better interactive systems. Affective
systems in artificial agents are thus thought to be critical for creating social fluidity during
interaction, as well as for exploring approaches to create more natural goal-conflicted
agents that reflect how living organisms have to negotiate their environment in the face of
competing demands [3]. Social fluidity plays a critical role as well in creating a coherent
construct during interaction, which forms the basis of a “virtual experience” [46–48]. In-
deed, without a consistent coherent construct, there is no virtual experience, which is why
there is sometimes a discrepancy in HRI/HCI between carefully controlled lab studies and
less controlled in-the-wild studies [6,46]. There are also cultural and contextual issues at
play, which can impact the interaction. This necessitates that our approach to interaction
design, including robotic personalities, is adaptable across these variables [49].

Perhaps the most critical advantage of better understanding the formation of artificial
personalities in robots and other interactive devices is how it might enhance social cognition
of humans during technology interaction, reducing the cognitive load overhead [50–52].
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Emotion regulation and its congruence/incongruence with environmental stimuli plays a
critical role in human cognition. In fact, a breakdown of that system is thought to underlie
some psychological disorders, including personality disorders [53]. In HRI experiments,
children interacting with a social robot exhibited a strong innate tendency to create con-
gruence by aligning their behavior temporally with the robot’s [54]. As previous research
suggests, there are dynamical systems aspects of interaction design—that the environment
or interacting agent exhibit some synchrony in response to our actions—which play a core
role in both human cognition as well as the overall perceptual experience [5,55,56]. Part of
our goal here is to understand the dynamics of the interaction between the agent and its
environment, and how those dynamics lead to variable behaviors that could underpin the
bases of emergent artificial personality [57].

2. Materials and Methods
2.1. Prior Work on Robotic Faces

The simulation experiments described here are based on previous HRI experiments
with a physical robot face [4–7]. Those experiments consisted of a camera mounted on an
interactive robotic face in order to detect social cues in its environment while interacting
with humans. The robot had the ability to convey facial expressions in response to those
social cue stimuli, and was mounted on a neck mechanism with 2 degrees- of freedom
(both pan and tilt motion, similar to a human neck) enabling it to track stimuli in its
environment (see Table 3 in [4]). Previous research validated the robotic facial expressions,
both in-the-lab and in-the-wild experiments in public spaces (Figure 1), across multiple
cultural locations: USA, Japan, Germany. Later versions also added vocal speech ability [7].
Here, however, we focus on the visual system of the robot, as it is most pertinent.
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Figure 1. Examples (a,b) of human–robot interaction during a public art museum exhibit.

Using video images from its onboard camera, the robot calculated dense optical flow
to detect motion on a 120 × 120 pixel grid using OpenCV (https://opencv.org/, accessed
28 February 2021). Points of maximal flow (i.e., motion) were then used as part of a
visual attention system (along with face detection performed using Haar cascades), with
a maximum of four stimuli being held its attention array at any given moment based on
evidence of how the human visual attention system works [58]. The robot would then
selectively attend to those points in its visual field. An example of this in action can be
seen in Figure 2a (note that the participant’s face has been deliberately blurred in the image
here, for privacy reasons).

https://opencv.org/
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The idea here is to create a scaled-down version of the attention system of the physical
robot in order to create a simplified simulation for testing hypotheses around creating
variable robot/agent behavior without explicit programming. We reduce the scale down to
a 6 × 6 grid, which essentially equates to a lower-resolution visual system that samples
motion at a smaller number of specific points in the image (the center-points of the grid
squares). A representation of this can be seen in Figure 2b. Ostensibly, findings from this
lower-resolution version should be applicable to a higher-resolution version, just with
more computational complexity. Our goal here is to keep things as simple as possible
for the simulation, and minimize assumptions needed to be made. More details on the
simulation are provided in Sections 2.2 and 2.3 below. The scaled-down system also has
the added benefit of mimicking how early visual systems are thought to have evolved from
simple collections of a small number of photo-receptive cells (see Section 4) [1,59].

As mentioned in Section 1.2, our fundamental definition is this: if the social environ-
ment varies, and the agent has the capability to attend to and behaviorally respond to
social cues, then variable behavior that form the basis of what we call “personality” should
be emergent. At a high level, this entails creating an agent that perceives its environment
through sensory readings, makes a prediction of how its various potential actions might
alter its environment, and how those possible future environments might impact its in-
ternal affective state. In short, the agent/robot learns how the world responds to it, not
the other way around. The agent has no internal model of the state of the external world,
only a model of how its own behaviors are associated with its future affective state. The
environment in this sense is simply a medium upon which the agent projects its internal
state. Learning occurs as the agent observes if the environment responds to it as expected
or not. This is a slight, but fundamental, shift in perspective from environment oriented
to agent oriented that reflects our current scientific understanding of personalities and
personality disorders (see Section 4).

By then varying the environmental setup, we should see agents converge to variable
behavior patterns (or fail to converge in some cases). Such “behavioral stability” is one crit-
ical personality trait (see Section 1.2). We detail exactly how this architecture is constructed
from a technical standpoint in the next section.
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2.2. Simulation Architecture

The simulation here is based on four components: agent, environment, perceptual
apparatus, and the learning mechanism. These are described below. In the spirit of scientific
replicability, the Python code for these simulation experiments is made available at the
authors’ website (http://www.caseybennett.com/research.html, accessed date 28 February
2021). How the variables in the programming code map to the terms described below is
shown in Table 1.

Table 1. Parameter Mappings.

Type Parameter
Programming
Code Variable

Name
Brief Definition Possible Values Varied in

Simulation

Agent Affective State emot Agent’s internal
affective state 0–1 scale

Agent Agent Goal Type agent_goal_type Flag to control
type of agent goal Discrete Y

Agent Actions action_list Possible agent
actions Discrete

Environment Env Setup congruent_switch
Determines how

environment
responds

Discrete Y

Environment Env Step Size env_step_size
How quickly
environment

responds
0–1 scale

Environment Env Noise env_noise

How much
stochastic noise
there is in env

response

0–1 scale Y

Environment Env State states

Represents
strength of stimuli
(for each point in

env grid)

0–1 scale

Environment Env Deltas deltas
Change in env

state from previous
time to next

0–1 scale

Perception Env Learning Type env_learn_type
Controls how

agent learns from
sensory info

Discrete Y

Perception Env Perception
Model local_switch

Whether agent
uses only local or

global sensory info
Discrete Y

Attention Attention Decay
Rate att_decay_rate Controls the rate of

attentional decay Infinite

Attention Attention Span att_span
Timer delay before
attentional decay

kicks in
Infinite

Attention Dulling Threshold dull_thresh
Threshold of env
change triggering
attentional decay

0–1 scale

Neural Net NN Type nn_type Determines type of
neural net to use Discrete Y

General Max Iteration
Count max_iter

Maximum number
of iterations for

simulation
Infinite

http://www.caseybennett.com/research.html
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The agent (representing an embodied robotic face) contains a set of internal variables
related to its affective state, action choices, attention mechanisms, goal types, and sensory
information about the environment. Its internal affective state is modeled as a simple 0–1
emotion scale, with 0 representing negative internal emotion and 1 representing positive
internal emotion (0.5 in this case can be seen as “neutral”). This is purposely abstract, to
model in a simple way that there are some things in our environment we respond negatively
to and some we respond positively to (otherwise referred to as emotional valence [27,28]).
The action space is also kept abstract, represented as an array of integers from 0 to 3. The
effects of those actions on the environment depend entirely on the environmental setup,
described below. The agent also has an attention mechanism which allows it track relevant
stimuli in its environment (i.e., social cues). On the physical robot, this was modeled as an
ever-changing array of up to 4 stimuli. For simplification purposes in the simulation, we
limited it to only one stimuli at a time (though that could be increased in future work), to
which we henceforth refer to as the focal point of attention. Similar to the physical robot,
the simulated agent also had a mechanism for attentional decay. In other words, if a
stimuli did not change or move over time, then the agent’s interest would gradually “dull”,
similar to how attention works in natural organisms [60]. These attention parameters
were static here across experiments, and did not change. Finally, the agent needs some
sort of overall goal or motivation, otherwise there is nothing to learn as the agent can
just behave randomly. We tested three types of goals here relative to the agent’s internal
affective state: (1) maximizing the time spent in the positive emotion state, (2) maximizing
the difference from neutral emotion, whether positive or negative, and (3) having no goal.
In plain language, the first goal type could be thought of as pleasure-seeking behavior,
and the second more thrill-seeking dramatic behavior. The third goal type (no goal) is a
baseline condition where actions are chosen using some basic logic but with no real rhyme
or reason. It essentially represents random behavior.

The environment here represents the “sensory environment” of the agent, in this case
that reflects the visual field of the physical robotic face (see Section 2.1 for details). This was
setup as a 6 × 6 grid of what the robot “sees”. Each point on the grid could take on a value
of 0–1, abstractly representing the strength of some sort of stimuli (social cues, motion,
etc.). These values would change over time in response to agent actions. These responses
can be loosely categorized as congruent, incongruent, or random, based on previous HRI
research (see Section 1.3.3) [54]. Each of these variable responses are henceforth referred to
as environmental setups, some examples can be seen below:

1. Environment congruent response;
2. Environment incongruent response;
3. Environment random response;
4. Environment congruent some percentage of time (25%, 50%, 75%), else random;
5. Environment congruent after persistence (same agent action 3 times);
6. Environment congruent above thresholds (e.g., >0.7 or <0.3).

Here we consider only the first 3 in that list. The congruent response was defined as
having the ordinal value of agent actions (e.g., 0,1,2, etc.) align with the direction of change
in the environmental response, so that higher action values produced in increase towards
1, lower numbers produced a decrease towards 0, and numbers in the middle producing
no change (or a small random fluctuation around the current value). The incongruent
response was the opposite. Random response was, of course, completely random. The
size of the response was scaled by the distance from the current focal point, so that as the
distance from the current focal point increased the effect inversely decreased (based on
Euclidean distance). The idea here being that in a social environment, the effects of your
actions should have their primary effect on whatever social stimuli you are attempting
to interact with. Other environmental parameters included an environmental step size,
which represented how quickly the environment changed in response to agent actions,
along with an environmental noise factor, which controlled whether the environmental
response was stochastic or not (and to what degree). Both of those parameters could take
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on values on a scale of 0–1, but where not specified below were kept at small values (0.1
and 0.05, respectively).

In order to interact with the environment of course, the agent also needs some per-
ceptual apparatus. The agent maintained internal sensory readings about its environment
(one data point from each point of the grid). This was modeled in two ways: (1) sensory
readings of the current state, and (2) deltas (i.e., difference) of the current state from the
previous state. These represent a static vs. Markovian approach, respectively [61]. We
henceforth refer to these two models of sensory perception as environmental learning
types. We assume for simplicity that the agent can always see its entire visual field at any
given time. However, the agent’s perception could also vary depending on whether it only
considered local changes near its current focal point (which might be more relevant since
they are occurring close to the stimuli), or always considered global changes from its entire
environment (i.e., visual field in this case). Here, local was defined as the focal point itself
and its immediate neighbors on the grid (see Figure 2), with global being all points on the
grid. Hence, we tested different environmental perception models (local vs. global).

Changing the environment, and how the agent perceived the environment, forms the
basis of our experiments below. The goal is to show that the behavior of the agent will
converge to different behavioral patterns (in terms of learning stability), without being
explicitly programmed to do so.

The learning mechanism here was operationalized as a neural network, using the
Keras package in python running on top of TensorFlow (https://keras.io/, accessed on 28
February 2021). We experimented with a couple of different neural network architectures:
(1) a simple feed-forward multi-layer perceptron (MLP), and (2) a recurrent neural network
(RNN) with recurrent connections to give the agent a sort of “memory” of what it had
previously seen (via a long-short term memory, or LSTM [13]). To be completely clear, this
paper is not intended as an evaluation or comparison of different neural network models.
As such, the models were kept relatively plain vanilla, with an input layer with nodes for
each environmental sensory reading and possible agent actions (n = 37), a single hidden
layer that was half the size of the input layer, and an output layer to with a single node to
predict the agent’s future affective state. A visual representation of the MLP network is
shown in Figure 3. The RNN version is the same, just with an additional LSTM layer acting
on the environment input prior to the concatenate step. Three functions were written for
each neural network type: (1) a construct function to initialize the network, (2) an update
function to feed information in for learning at each iteration of the simulation run, (3) and
a predict function so the agent could call on the neural network for predictions in order
to choose an action. All the code for this is included simulation Python code available
on the authors’ website, as mentioned in the first paragraph of this section. There are
parameters in the code to explore the effects of factors such as increasing the number of
hidden layers and incorporating dropout layers, but those are not part of the experiments
here. We discuss the potential to utilize more complex neural network models in future
work in the Discussion section.

2.3. Experimental Design

The simulation itself can be represented by the pseudo-code shown in Figure 4. In
short, after initializing the agent and environment, the agent goes through a series of
iterations. On each iteration, the agent “moves” (which here would represent a shift in
its gaze direction) based on detected stimuli. It then predicts what will happen in the
future given various actions it could take (using its internal neural network), both how the
environment will change and the impact of that on its internal affective state. After that,
the agent chooses an action to perform, and the environment responds. Finally, the agent
senses the new environment, which triggers internal affective state changes, and uses the
deviance from the predicted environment and affective state to update its model of how
the world responds to it (represented as a neural network).

https://keras.io/
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A few additional details. For our main series of experiments, the maximum iteration
count was set to 1000, though for some subsequent experiments that was increased to 10,000.
For the affective state, it was updated based on how the environment changed from the
previous step to the next (i.e., the environmental “delta”), which varied depending on the
environmental setup (see Section 2.2). The information used to calculate that environmental
delta was determined by the environmental perceptual model (local vs. global). That delta
value was then added to the affective state, either increasing it (towards 1) or decreasing
it (towards 0). If the agent’s attention span had been exceeded, the affective state would
decay back towards neutral (0.5).
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Five of the parameters defined in Table 1 were varied in our experiments: Environ-
mental Setup, Environment Learning Type, Environment Perception Model, Agent Goal
Type, and Neural Network Type. Different combinations of each parameter setting formed
a “permutation”. Each permutation was repeated 30 times in order to estimate average
performance metrics, for a total of 2160 individual simulation runs for the main results.
The simulation analysis was exploratory.

Our evaluation metric here for each experimental hypotheses is taken as the “learn-
ing convergence”. We define this two-fold: (1) how quickly the robot learns how the
environment responds to its behaviors, and (2) how stable that solution is. These are
henceforth referred to as converge step and deconverge count, respectively. Converge
step represents the iteration step where the agent reached final learning convergence in
that experiment. Deconverge count represents the number of times the agent’s learned
model deconverged prior to final convergence. Here, convergence was defined as when
the change in mean squared error (MSE) from the previous iteration to the next dropped
below 0.001. Experimental permutations that converged more quickly and with less insta-
bility (deconvergence) were taken as more successful, whereas permutations that never
converged without subsequent deconvergence were assessed as unsuccessful. Beyond the
main experiments, we conducted additional experiments on the effects of environmental
noise, as well longer max iteration times.

3. Results
3.1. Main Results

For reference, the full results of the main experiments are included in Table A1 in the
Appendix A. The results are grouped by agent goal type. We note that as expected, agents
with “no goal” failed to achieve learning convergence (based on converge step and deconverge
cnt), while at the same time agents with the “different from neutral” goal also failed to stably
converge. For reasons outlined in previous sections, we take as stable convergence as our
primary metric here. As such, we focus in this paper on the results using the “max positive”
goal. The main results for that agent goal type are shown in Table 2.

Table 2. Main Results (Max Pos Goal Only).

Env Learn
Type NN Type Environment

Setup
Env

Perception Init Error Final Error Converge
Step

Deconverge
Cnt

Program
RunTime

States MLP Incongruent Global 0.93260 0.00050 692.2 103.0 1.49
Local 0.81140 0.00090 806.5 114.3 1.47

Congruent Global 0.74902 0.00158 848.2 125.8 1.50
Local 0.61600 0.00252 919.2 140.8 1.47

Random Global 1.07642 0.00212 996.7 161.1 1.50
Local 0.77879 0.00235 998.4 161.5 1.47

RNN Incongruent Global 0.25909 0.00020 908.5 94.9 20.59
Local 0.29707 0.00020 847.5 111.3 140.73

Congruent Global 0.29620 0.00046 837.9 93.4 20.66
Local 0.45748 0.00055 851.1 112.2 20.56

Random Global 0.31244 0.00059 988.6 109.2 20.70
Local 0.31294 0.00149 998.7 189.2 20.64

Deltas MLP Incongruent Global 0.38212 0.00174 623.0 89.5 1.49
Local 0.29870 0.00440 421.3 28.3 1.47

Congruent Global 0.27035 0.00038 481.6 45.4 1.49
Local 0.42274 0.01899 663.2 64.9 1.46

Random Global 0.25289 0.00311 999.4 164.9 1.50
Local 0.28992 0.01572 999.6 118.4 1.47

RNN Incongruent Global 0.26123 0.00058 821.3 110.2 20.55
Local 0.32758 0.00077 777.0 118.8 20.49

Congruent Global 0.37378 0.00292 757.8 100.3 20.55
Local 0.35068 0.00079 881.2 122.2 20.49

Random Global 0.45440 0.00126 997.9 166.4 20.57
Local 0.43835 0.00340 999.5 166.9 20.50
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There are some notable differences in the results, in particular a few rows in the
middle of Table 2 (in the Deltas+MLP section) that significantly outperformed most other
models. We highlight a few general trends in these results. First, the environmental setup
did impact the agent’s ability to learn. An environment that responds randomly to agent
actions, not surprisingly, failed to produce stable convergence, while both incongruent and
congruent environmental responses could be learned. Second, the optimal information for
the agent to utilize from the environment (i.e., environmental perceptual model) depended
on the environmental setup. For congruent response environments, it was better to utilize
global information. For incongruent response environments, it was better to use more
local information near the focal point. In layman’s terms, one could perhaps think of
this as a greater necessity of minimizing distractions in incongruent environments. We
also note that learning using deltas (how the environment was changing), rather than
absolute values of the environment’s current state, was more effective in achieving stable
learning convergence. Finally, although this paper is not focused on exploring different
neural network architectures, we do note that MLPs outperformed RNNs, though that
may not hold true in larger, more complex sensory environments than that used in these
experiments.

A head-to-head comparison of some of the parameters in isolation can be seen in
Table 3. We do note that this glosses over some of the interaction effects that can be seen
in Table 2. We tested for significant differences in each of the main parameter settings
using a fixed-effects 4-way ANOVA in R statistical software for both evaluation metrics
(converge step and deconverge count). Results are shown in Tables 4 and 5 (note parameter
names here are using the “programming code variable names” shown in Table 1). All
the parameters exerted main effects on one or both of the evaluation metrics, though
the environmental perception model was the weakest in that sense. However, both the
environmental setup (congruent.switch) and perceptual model (local.switch) also exerted
significant impact through interaction with each other and other parameters. We also
detected a significant interaction between all four parameters for the deconverge count.
Additionally, we stripped out the NN type parameter looking only at the MLP neural
network results, then reran the ANOVAs, and found the same pattern of effects (data not
shown for brevity). The main takeaway from Tables 3–5 in comparison to Table 2 is just
how important the interaction effects are here between the parameters in order to explain
the detailed minutiae of patterns seen in Table 2.

Table 3. Parameter Comparison.

Parameter Values Converge Step Deconverge Cnt

Env Learn Type States 891.1 126.4
Delta 785.2 108.0

NN Type MLP 787.4 109.8
RNN 888.9 124.6

Environment Setup Incongruent 737.2 96.3
Congruent 780.0 100.6

Env Perception Global 829.4 113.7
Local 846.9 120.7
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Table 4. Parameter Effects ANOVA—Converge Step. Asterisks denote significance level (*** <0.001, ** <0.01).

Parameter Df Sum Sq Mean Sq F Value Pr (>F) Sign.
Level

Main Effects
Env.Learn.Type 1 2,018,136 2,018,136 23.75 <0.001 ***
NN.Type 1 1,853,289 1,853,289 21.81 <0.001 ***
Congruent.Switch 1 8,122,924 8,122,924 95.58 <0.001 ***
Local.Switch 1 55,178 55,178 0.65 0.421

Interaction
Effects

Env.Learn.Type:NN.Type 1 957,834 957,834 11.27 <0.001 ***
Env.Learn.Type:Congruent.Switch 1 735,081 735,081 8.65 0.003 **
NN.Type:Congruent.Switch 1 1,262,596 1,262,596 14.86 <0.001 ***
Env.Learn.Type:Local.Switch 1 9776 9776 0.12 0.735
NN.Type:Local.Switch 1 19,313 19,313 0.23 0.634
Congruent.Switch:Local.Switch 1 79,877 79,877 0.94 0.333
Env.Learn.Type:NN.Type:Congruent.Switch 1 158,268 158,268 1.86 0.173
Env.Learn.Type:NN.Type:Local.Switch 1 132,167 132,167 1.56 0.213
Env.Learn.Type:Congruent.Switch:Local.Switch 1 156,891 156,891 1.85 0.175
NN.Type:Congruent.Switch:Local.Switch 1 1442 1442 0.02 0.896
Env.Learn.Type:NN.Type:Congruent.Switch:Local.Switch 1 216,495 216,495 2.55 0.111
Residuals 704 59,831,846 84,988

Table 5. Parameter Effects ANOVA—Deconverge Cnt. Asterisks denote significance level (*** <0.001, ** <0.01, * <0.05).

Parameter Df Sum Sq Mean Sq F value Pr (>F) Sign.
Level

Main Effects
Env.Learn.Type 1 60,830 60,830 27.78 <0.001 ***
NN.Type 1 39,043 39,043 17.83 <0.001 ***
Congruent.Switch 1 409,326 409,326 186.93 <0.001 ***
Local.Switch 1 8946 8946 4.09 0.044 *

Interaction
Effects

Env.Learn.Type:NN.Type 1 170,755 170,755 77.98 <0.001 ***
Env.Learn.Type:Congruent.Switch 1 9819 9819 4.48 0.035 *
NN.Type:Congruent.Switch 1 10,370 10,370 4.74 0.030 *
Env.Learn.Type:Local.Switch 1 49,601 49,601 22.65 <0.001 ***
NN.Type:Local.Switch 1 53,941 53,941 24.63 <0.001 ***
Congruent.Switch:Local.Switch 1 6593 6593 3.01 0.083
Env.Learn.Type:NN.Type:Congruent.Switch 1 4326 4326 1.98 0.160
Env.Learn.Type:NN.Type:Local.Switch 1 1181 1181 0.54 0.463
Env.Learn.Type:Congruent.Switch:Local.Switch 1 4008 4008 1.83 0.177
NN.Type:Congruent.Switch:Local.Switch 1 5038 5038 2.30 0.130
Env.Learn.Type:NN.Type:Congruent.Switch:Local.Switch 1 17,751 17,751 8.11 0.005 **
Residuals 704 1,541,569 2190

3.2. Effects of Environmental Noise

Beyond the main results, another question was how much stochastic noise could be
present in the environmental response before agent learning broke down. Ostensibly, if
an agent/robot cannot reliably detect environmental responses due to noise—whether
that be stochastic processes in the environment or measurement noise in its own sensory
detectors—then learning should be disrupted. To explore this, the environmental noise
parameter was varied between 0 and 30% (0.3). The results can be seen in Table 6.

The effects appear to be fairly stable, with some oscillation down below 10%. Con-
vergence values do gradually rise, and there appears to be a sharp demarcation point at
approximately 12–14% beyond which environmental noise causes the learning process to
completely breakdown. The specific numbers are interesting here, but they may merely
be paradigmatic of the parameters and settings used in this particular simulation. A dif-
ferent construction or more complex sensory environment may produce different specific
numbers. More research is needed in the future to explore that question. However, for our
purposes here, we did find that environmental noise in a simulation of social sensory envi-
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ronment does have the potential to impact/disrupt learning convergence in an agent/robot.
Accounting for environmental noise appears to be an important component for modeling
agent learning in a social environment.

Table 6. Environmental Noise Effects.

Env Learn
Type NN Type Environment

Setup
Env

Perception Env Noise Init Error Final Error Converge
Step

Deconverge
Cnt

Program
RunTime

Deltas MLP Incongruent Local 0% 0.38467 0.01003 401.9 30.4 1.72
2% 0.41105 0.01057 441.5 31.0 2.49
4% 0.29869 0.00141 452.4 36.1 3.31
6% 0.40636 0.00310 540.2 43.4 4.02
8% 0.31083 0.00050 529.7 56.4 4.62
10% 0.36615 0.00212 540.1 51.2 5.50
12% 0.33988 0.00223 557.8 46.8 6.22
14% 0.32184 0.01261 997.7 90.2 7.21
16% 0.34944 0.00567 998.7 106.2 8.04
18% 0.39220 0.00869 999.0 105.7 8.64
20% 0.39526 0.01029 997.8 116.4 9.50
25% 0.29403 0.01630 999.9 117.4 10.30
30% 0.28652 0.01482 999.3 114.5 11.15

Deltas MLP Congruent Global 0% 0.38020 0.00908 552.3 51.3 2.09
2% 0.31174 0.00068 448.4 41.3 2.83
4% 0.27282 0.00695 459.9 42.6 3.61
6% 0.51272 0.00131 477.4 44.6 4.46
8% 0.32698 0.01602 624.6 64.6 5.11
10% 0.28824 0.00155 551.6 51.8 5.82
12% 0.42805 0.00704 620.2 58.3 6.61
14% 0.29626 0.00981 992.8 97.0 7.58
16% 0.43348 0.02487 997.8 106.8 8.17
18% 0.27201 0.01394 996.4 109.0 9.19
20% 0.27935 0.02050 997.3 115.4 9.89
25% 0.30008 0.05376 997.7 114.3 10.81
30% 0.30225 0.04410 995.5 118.4 11.62

3.3. Extending the Maximum Iteration Limit

For a few of the higher performing models from the main results above, we were
curious what if any effect might occur over longer iteration times. How often would the
agent de-converge at a later point? Would the longer iteration times allow for recurrence in
the neural networks to have more of an effect (leading to better RNN performance)?

To explore these hypotheses, we increased the max iteration limit to 10,000 for two
of the best-performing environments in Table 2 above: the congruent global version and
the incongruent local version (both using deltas as for environmental learning). This was
performed for both the MLP and RNN networks, resulting in 4 total experiments. Results
can be seen in Table 5.

As we can see, there is now a greater spread in terms of converge step and deconverge
count, although the general relative pattern of results was the same as seen in Table 2.
The main takeaway from these experiments was that increasing the max iteration limit
did not substantively change the patterns of learning stability. Nor did it lead to better
RNN performance. As mentioned in Section 3.1, this may not, however, hold true in more
complex sensory environments.

3.4. Algorithmic Analysis

Another critical aspect of any model attempting to manifest artificial personalities
and/or personality is understanding the computational complexity required for encoding
the information into a computer system, robot, virtual avatar, etc. Such an analysis will be
important for comparing different models, and understanding resource needs. However,
computational complexity for a model such as the one used in this paper will heavily
depend on the choice of neural network architecture, which can vary widely. A more
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generalizable approach is to evaluate such a system based on principles of information
theory and the branching factor of the search space [62].

As such, we propose to use decision-theoretic approach (based on Shannon’s Infor-
mation Theory [63] to analyze this, which describes the number of bits needed to encode
the model based on the number of parameters and possible parameter settings. Given
Shannon’s equation:

H(X) =
n

∑
i=1

p(xi)I(xi) = −
n

∑
i=1

p(xi) logb p(xi) (1)

where we can calculate entropy for each parameter x, given i is each parameter setting, n is
the number of possible settings for that parameter, p() is the probability, and b is set to 2
in order to calculate binary bits. Totaling H(x) for the various parameters for our simple
model here equates to 6.755 bits. Such an approach could be used to compare models of
artificial personality in the future based on their information content (encoded bits) and
measurable performance. Ideally, we would prefer both high-performing models and
less-complex, parsimonious models (lower information content), but likely there will be
some tradeoff between performance and complexity.

4. Discussion
4.1. Summary of Key Findings

This paper describes the creation of an agent-based simulation model for interactive
robotic faces, built based on data from real-world physical human–robot interaction experi-
ments. We use this abstract simulation to explore hypotheses around how we might create
the building blocks of emergent robotic personality traits, rather than pre-scripted ones
based on programmatic rules. We ran a number of experiments based on those hypotheses,
evaluating how variations in the social environment of the robot can produce variations in
learning behavior in the simulated robot. The main findings can be summarized as follows:

1. Altering the environment, while holding the robot agent constant, can alter the robot’s
behavior and learning patterns (Table 2). In particular, certain environments were
notably better in producing stable behavioral learning convergence, whereas others
produced only chaotic behavior. This appears to support our primary hypothesis
from Section 1.2.

2. The environment here varied based on how it responded to the agent (environmental
setup), as well as how it was perceived by the agent (environmental perceptual model).
There were significant interaction effects between the two as well (Tables 3 and 4).

3. For congruent response environments, it is better to utilize global information. For
incongruent response environments, it is better to use more local information near
the focal point of the visual field. This can be seen in the interaction patterns between
the environmental perception and environmental setup parameters in Table 2. In
layman’s terms, one could perhaps think of this as a greater necessity of minimizing
distractions in incongruent environments.

4. The robot agent was much more effective at learning how to respond using environ-
mental deltas (difference of the current state from the previous state), rather than the
absolute environmental states themselves (current information only), as shown in
Table 2. In other words, a Markovian approach seemed more effective.

5. These effects are dependent on the robot agent having some sort of “goal”, even just a
simple goal like maximizing their positive emotion level (Table A1).

6. In terms of neural networks, MLPs in general performed better than RNNs. This
should be taken with caution, however. That may or may not be true, however, in
more complex sensory environments.

7. Environmental noise has a direct effect on this. Too much noise in the environmental
response (e.g., measurement noise from its own sensors) disrupts the agent’s ability
to achieve stable learning convergence (Table 6). Accounting for environmental
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noise appears to be an important component for modeling agent learning in a social
environment.

8. Extending the maximum iteration steps to a higher limit did not appear to alter the
above patterns (Table 7).

Table 7. Extending the Max Iteration Limit.

Env Learn
Type NN Type Environment

Setup
Env

Perception Init Error Final Error Converge
Step

Deconverge
Cnt

Program
RunTime

Deltas MLP Incongruent Local 0.23043 0.00002 1437.2 176.2 12.42
MLP Congruent Global 0.38931 0.00002 1122.5 120.5 13.53

Deltas RNN Incongruent Local 0.32601 0.00129 6198.7 908.3 230.76
RNN Congruent Global 0.38887 0.00012 6107.4 697.5 227.88

4.2. HRI Implications

The main findings above suggest a number of interesting broader implications for HRI,
beyond the results themselves. The first relates back to our arguments in Section 1.2, around
how the underlying building blocks of personality might be produced via interactions with
the social environment in and of itself. Can we create variable robotic personalities without
explicitly programming them? The results here seem to suggest—given an agent/robot that
learns how the environment responds to it and a variable environment—that there may be
systematic dynamics in the learning patterns of the agent. Those dynamics lead to variable
behaviors, which could underpin the bases of emergent artificial personality [5,55,56]. This
holds potential for HRI researchers to take advantage of when designing interaction. In
other words, what we may need is not more clever programming, but a better understand-
ing of the dynamics, in order to produce a scalable approach to idiosyncratic robotic social
behavior and robotic personalities.

Second, there were significant performance improvements in learning behavior when
using delta information (differences from previous state) rather than absolute state values.
This suggests a potential connection to Markov models in terms of temporal learning
for artificial personalities. Indeed, previous AI studies have shown the importance of
deltas for modeling temporal patterns [61]. When attempting to learn how to behave
temporally, there are limits to what can be gleaned from the current sensory environment,
and what may be more critical is for the agent/robot to understand how the world is
changing, rather than attempting to build a model of the current state of the world. There
is evidence for that sort of process (termed dynamic predictive coding) in the functioning
of biological human brains [64,65], as well as in previous HRI studies [66]. The relative
character of Markovian information also holds advantages over static information in that
it more naturally produces invariant representations, which can recognize situations that
are essentially the same despite slight permutations in appearance [67,68]. This finding
may hold significance for future HRI experiments in terms of designing robot perception
in social environments.

Third, the scaled-down approach taken here holds potential for helping us under-
stand the mechanics of social interaction from a more fundamental level, and how sensory
systems and social behavior co-evolved. Evolution did not start with fully formed social
mechanisms or “personalities”. Rather, it presumably started with simple variable behav-
iors across individuals, and somehow molded those over generations into the constructs
which we call “personalities” today. The scaled-down system mimics how early visual
systems are thought to have evolved from collections of a small number of photo-receptive
cells [59]. Recent research has shown that even such simple sensory systems can produce
complex variable reactive behavior in simple organisms [1]. Similar simplified systems
have also been developed to manifest approach/avoidance in robots using a small set of
parameters [69,70]. For instance, Jones et al. (2014) showed how complex robot interaction
behavior could arise from a simple control model based on epigenetic hormone switches
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that up or down regulate in response to the environment [70]. In that sense, developing a
more fundamental understanding of the building blocks of complex social behaviors in
higher organisms such as humans and how they developed will allow HRI researchers to
create more robust theoretical frameworks of social interaction, which will enable us to de-
sign more precise experiments targeting specific phenomena (e.g., personality components,
affective state, cultural aspects) [3,49].

Finally, much psychological investigation into human personalities focuses on patho-
logical cases, otherwise known as personality disorders. Studying pathological cases—
places where normal personality manifestations break down—can provide useful clues
to where “personality” and/or a “sense of self” comes from in natural cognitive systems.
Indeed, those break downs, and their developmental etiology, point to critical aspects
of personality and the formation thereof [10,71,72]. On the other hand, attempting to
engineer interactive robots and other agents based on such psychological research may
also provide a better understanding of how human personalities work, generating new
testable hypotheses for future psychological experiments. The HRI research presented here
is one example of that.

4.3. Limitations

There are a number of limitations to the research presented here. First of all, the
abstract aspects of the model (actions, emotions, environment, etc.) mean that we should
be cautious about over-interpreting the results. There are an endless array of different
parameter settings that could be explored, and here we only explored a subset of them due
to practicality. Along with that, when the simulated models are ported back to the physical
robot in future work (see next section), we may find differences between the simulation and
reality. The same issues apply to neural network architectures used here. For pragmatic
purposes, we simply chose an architecture and used it. Evaluating/comparing neural
network performance was not our goal here. That said, future research may find differences
depending on the architecture used. That remains to be seen, and is beyond the scope
of this work. Finally, one major limitation (described in Section 1.3.1) is that is no clear
delineation between some components of social interaction (e.g., personality and affective
state) currently exists in the literature. As such, we did not attempt to make that delineation
here. However, more robust theoretical frameworks of social interaction in HRI are needed
in the future to design more precise experiments.

We also would re-emphasize that this paper is not intended as an evaluation or com-
parison of different neural network models, so any strong conclusions in that regard should
not be drawn. The models here were kept simplistic by design, and more complex sensory
environments or more sophisticated architectures might reveal important differences be-
tween different types of neural networks (MLPs, RNNs, LSTMs, etc.), particularly in terms
of convergence dynamics. We leave that as an open question for future work.

4.4. Future Work

There are several avenues of potential future work related to the study presented here.
We present a few of those below:

1. Implementing the Simulation Model on the Physical Robotic Face: Since the agent-
based simulation is based on data from actual robotic face HRI interaction experi-
ments, it could be ported back to the physical robot for future HRI studies to compare
the simulation with physical reality.

2. Exploring Other Neural Network Architectures: In particular, as the main sensory
mode here is visual, it could be interesting to explore the use of convolutional neural
networks, especially with the full-scale visual images. In the same sense, adding
autoencoders may be useful to compress information in more complex sensory envi-
ronments.

3. Exploring Other Environmental Setups: This might entail adding additional vari-
ables to define the environment, or exploring larger state spaces or action spaces. More
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complex variations of congruence/incongruence could be implemented. Additionally,
other types of agent goals could be modeled.

4. Learned Attention Parameters: The parameters of the attentional mechanism could
be learned from interaction with the environment, rather than static pre-scripted
settings used here.

5. Exploring Instinctive Behaviors: This could be accomplished by differentially “weight-
ing” the connections between certain actions and affective states at the start of training,
by heavily weighting them closer to 1. The weights are currently initialized all the same.

6. Exploring the Effects of Cognitive Dissonance: This could be defined as when the
difference between the predicted next emotion and actual next emotion exceeds some
threshold. In other words, when the agent expects the environment to respond in one
way, but it instead responds completely differently.

7. Conscious vs. Automatic Response Mechanisms: As mentioned in the introduc-
tion, the simulation described here could be expanded to explore something akin to
behavior-based approaches [8,9], but geared toward personality traits. This relates
to the ongoing debate strong vs. weak AI, and whether overtly engineered systems
capable of “conscious thought” are necessary for intelligent behavior [64].

8. Failure Response: A critical issue in real-world interactive systems is the ability to
respond to “failures” that cause the system to crash, such as some event outside
the bounds of expected behavior occurring [73]. For example, this was a major
challenge for the robotic face art museum deployment shown in Figure 1 during
unconstrained human–robot interaction. Patterns of convergence/deconvergence in
social simulations may shed light on this issue.

9. Approach/Avoidance Behaviors: As mentioned in Section 4.2, similar simplified
models for robot control have been developed for approach/avoidance in a num-
ber of studies [69,70]. One potentially interesting alternative to the convergence-
based metric we used here would be a performance metric based on exhibited ap-
proach/avoidance behaviors relative to some simulated social stimuli.
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Appendix A

Table A1. Main Results (Full Table).

Agent Goal
Type

Env
Learn
Type

NN Type Environment
Setup

Env
Perception Init Error Final Error Converge

Step
Deconverge

Cnt
Program
RunTime

None States MLP Incongruent Global 0.60687 0.00100 990.2 132.7 1.51
None States MLP Incongruent Local 0.80881 0.00186 997.6 171.3 1.47
None States MLP Congruent Global 0.50813 0.00611 996.5 132.5 1.50
None States MLP Congruent Local 0.61027 0.00260 998.4 137.3 1.47
None States MLP Random Global 0.70943 0.00137 992.8 130.9 1.50
None States MLP Random Local 0.83843 0.00237 996.8 153.5 1.47
None States RNN Incongruent Global 0.22351 0.00031 980.4 65.3 20.66
None States RNN Incongruent Local 0.35286 0.00118 998.5 193.4 20.62
None States RNN Congruent Global 0.33759 0.00408 993.9 111.2 20.64
None States RNN Congruent Local 0.34856 0.00671 997.5 128.3 20.64
None States RNN Random Global 0.23767 0.00052 978.1 76.8 20.67
None States RNN Random Local 0.34436 0.00180 998.0 184.5 20.67
None Deltas MLP Incongruent Global 0.35786 0.00114 994.8 146.6 1.50
None Deltas MLP Incongruent Local 0.26401 0.00304 998.7 153.6 1.48
None Deltas MLP Congruent Global 0.40878 0.00170 996.7 132.0 1.50
None Deltas MLP Congruent Local 0.22136 0.00838 996.1 138.3 1.48
None Deltas MLP Random Global 0.31946 0.00113 997.1 144.4 1.49
None Deltas MLP Random Local 0.27330 0.00259 999.4 154.3 1.48
None Deltas RNN Incongruent Global 0.34608 0.00310 994.5 135.2 20.66
None Deltas RNN Incongruent Local 0.30158 0.00143 997.4 178.3 20.67
None Deltas RNN Congruent Global 0.24657 0.00077 994.9 111.5 20.72
None Deltas RNN Congruent Local 0.26918 0.00891 996.3 132.4 20.63
None Deltas RNN Random Global 0.34087 0.00046 989.6 129.2 20.68
None Deltas RNN Random Local 0.26489 0.00281 999.3 186.3 20.57

Diff Neutral States MLP Incongruent Global 1.05690 0.00259 981.8 124.1 1.50
Diff Neutral States MLP Incongruent Local 0.95328 0.00895 975.3 102.6 1.46
Diff Neutral States MLP Congruent Global 0.62204 0.00335 998.3 118.6 1.48
Diff Neutral States MLP Congruent Local 0.69515 0.01212 998.8 102.5 1.46
Diff Neutral States MLP Random Global 1.01896 0.00138 995.6 137.7 1.49
Diff Neutral States MLP Random Local 1.12872 0.00155 997.8 158.1 1.47
Diff Neutral States RNN Incongruent Global 0.42703 0.00315 994.5 111.8 20.67
Diff Neutral States RNN Incongruent Local 0.73010 0.00413 997.3 141.3 20.64
Diff Neutral States RNN Congruent Global 0.63140 0.00480 997.7 119.9 20.70
Diff Neutral States RNN Congruent Local 0.49112 0.00277 998.0 130.6 20.65
Diff Neutral States RNN Random Global 0.49125 0.00047 983.7 84.1 20.66
Diff Neutral States RNN Random Local 0.45876 0.00099 998.0 192.8 20.69
Diff Neutral Deltas MLP Incongruent Global 0.62197 0.00027 956.5 61.3 1.49
Diff Neutral Deltas MLP Incongruent Local 0.55085 0.00091 975.4 56.7 1.46
Diff Neutral Deltas MLP Congruent Global 0.55478 0.00187 981.6 53.1 1.49
Diff Neutral Deltas MLP Congruent Local 0.92185 0.00182 980.5 50.8 1.46
Diff Neutral Deltas MLP Random Global 0.76580 0.00121 995.9 142.0 1.49
Diff Neutral Deltas MLP Random Local 0.67409 0.00378 999.0 137.1 1.47
Diff Neutral Deltas RNN Incongruent Global 0.51839 0.00395 983.6 123.1 20.67
Diff Neutral Deltas RNN Incongruent Local 0.46090 0.00613 997.6 128.9 20.64
Diff Neutral Deltas RNN Congruent Global 0.59646 0.00454 996.2 146.2 20.81
Diff Neutral Deltas RNN Congruent Local 0.52317 0.00321 998.6 134.2 20.63
Diff Neutral Deltas RNN Random Global 0.41503 0.00085 995.0 137.0 20.70
Diff Neutral Deltas RNN Random Local 0.45784 0.00240 999.7 177.1 20.63

Max Pos States MLP Incongruent Global 0.93260 0.00050 692.2 103.0 1.49
Max Pos States MLP Incongruent Local 0.81140 0.00090 806.5 114.3 1.47
Max Pos States MLP Congruent Global 0.74902 0.00158 848.2 125.8 1.50
Max Pos States MLP Congruent Local 0.61600 0.00252 919.2 140.8 1.47
Max Pos States MLP Random Global 1.07642 0.00212 996.7 161.1 1.50
Max Pos States MLP Random Local 0.77879 0.00235 998.4 161.5 1.47
Max Pos States RNN Incongruent Global 0.25909 0.00020 908.5 94.9 20.59
Max Pos States RNN Incongruent Local 0.29707 0.00020 847.5 111.3 140.73
Max Pos States RNN Congruent Global 0.29620 0.00046 837.9 93.4 20.66
Max Pos States RNN Congruent Local 0.45748 0.00055 851.1 112.2 20.56
Max Pos States RNN Random Global 0.31244 0.00059 988.6 109.2 20.70
Max Pos States RNN Random Local 0.31294 0.00149 998.7 189.2 20.64
Max Pos Deltas MLP Incongruent Global 0.38212 0.00174 623.0 89.5 1.49
Max Pos Deltas MLP Incongruent Local 0.29870 0.00440 421.3 28.3 1.47
Max Pos Deltas MLP Congruent Global 0.27035 0.00038 481.6 45.4 1.49
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Table A1. Cont.

Agent Goal
Type

Env
Learn
Type

NN Type Environment
Setup

Env
Perception Init Error Final Error Converge

Step
Deconverge

Cnt
Program
RunTime

Max Pos Deltas MLP Congruent Local 0.42274 0.01899 663.2 64.9 1.46
Max Pos Deltas MLP Random Global 0.25289 0.00311 999.4 164.9 1.50
Max Pos Deltas MLP Random Local 0.28992 0.01572 999.6 118.4 1.47
Max Pos Deltas RNN Incongruent Global 0.26123 0.00058 821.3 110.2 20.55
Max Pos Deltas RNN Incongruent Local 0.32758 0.00077 777.0 118.8 20.49
Max Pos Deltas RNN Congruent Global 0.37378 0.00292 757.8 100.3 20.55
Max Pos Deltas RNN Congruent Local 0.35068 0.00079 881.2 122.2 20.49
Max Pos Deltas RNN Random Global 0.45440 0.00126 997.9 166.4 20.57
Max Pos Deltas RNN Random Local 0.43835 0.00340 999.5 166.9 20.50
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