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Abstract: This work makes multiple scientific contributions to the field of Indoor Localization for
Ambient Assisted Living in Smart Homes. First, it presents a Big-Data driven methodology that
studies the multimodal components of user interactions and analyzes the data from Bluetooth Low
Energy (BLE) beacons and BLE scanners to detect a user’s indoor location in a specific ‘activity-based
zone’ during Activities of Daily Living. Second, it introduces a context independent approach that
can interpret the accelerometer and gyroscope data from diverse behavioral patterns to detect the
‘zone-based’ indoor location of a user in any Internet of Things (IoT)-based environment. These
two approaches achieved performance accuracies of 81.36% and 81.13%, respectively, when tested
on a dataset. Third, it presents a methodology to detect the spatial coordinates of a user’s indoor
position that outperforms all similar works in this field, as per the associated root mean squared
error—one of the performance evaluation metrics in ISO/IEC18305:2016—an international standard
for testing Localization and Tracking Systems. Finally, it presents a comprehensive comparative study
that includes Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine,
k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression, to address the challenge of
identifying the optimal machine learning approach for Indoor Localization.

Keywords: big data; machine learning; indoor localization; ambient assisted living; internet of things;
smart homes; elderly population; indoor location; human–computer interaction; assistive technology

1. Introduction

Technologies like Global Positioning Systems (GPS) and Global Navigation Satellite
Systems (GNSS) have revolutionized navigation research by being able to track people,
objects, and assets in real-time. Despite the significant success of these technologies in
outdoor environments, they are still ineffective in indoor settings [1]. This is primarily
for two reasons, first, these technologies depend on line of sight communication between
GPS satellites and receivers which is not possible in an indoor environment and second,
GPS provides a maximum accuracy of up to five meters [2]. With Industry 4.0, there has
been an increasing need for developing systems for indoor navigation and localization for
the future of living and working environments, which would involve human–computer,
human–machine, and human–robot interactions in a myriad of ways. These environments
could involve Smart Homes, Smart Cities, Smart Workplaces, Smart Industries, and Smart
Vehicles, just to name a few. There are multiple application domains that are in need for
a standard methodology for Indoor Localization. A system for Indoor Localization may
broadly be defined as a system of interconnected devices, networks, and technologies that
help to detect, track, and locate the position of people and objects inside closed or semi-
closed environments, where technologies such as GPS or GNSS do not work [3]. As per [3],
the market opportunities of Indoor Localization related systems are expected to be in the
order of USD 10 billion by 2024 due to the diverse societal needs that such systems can
address. Some potential applications of such Indoor Localization related technologies could
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include (1) tracking the location of products during smart manufacturing in automated or
semi-automated manufacturing sites; (2) tracking the location and operation of unmanned
vehicles or robots in industrial settings; (3) detecting the precise location of an elderly fall for
communicating the same to emergency responders; (4) helping older adults with various
forms of Cognitive Impairments (CI) to perform their daily routine tasks by directing
them to specific locations for performing these activities; (5) tracking the precise location
of individuals with Dementia or Alzheimer’s when they face freezing of gait to alert
caregivers; (6) assisting the visually impaired to reach specific objects of interest in both
living and working environments; (7) helping individuals suffering from delirium to
navigate from one place to the other for performing different activities; (8) detection of the
precise location of the elderly when they face cramps or other forms of motor impairments;
(9) detecting the location of patients in hospitals to avoid the need for in-person monitoring;
and (10) automated tracking of different kinds of physical assets in Internet of Things
(IoT)-based functional and work-related environments.

Only one area of interest, Ambient Assisted Living (AAL) of Elderly People during
Activities of Daily Living (ADLs) in the future of technology-laden living environments, for
instance, Smart Homes and Smart Cities, will be addressed in this work. AAL may broadly
be defined as a computing paradigm that uses information technology and its applications
to enhance user abilities, performance, and quality of life through interconnected systems
that can sense, anticipate, adapt, predict, and respond to human behavior and needs.
Human behavior in the confines of their living and functional environments is characterized
by activities that they perform in these environments. In a broad scope, an activity may
be defined as an interaction between a subject and an object, for the subject to achieve a
desired end goal or objective. Here, the subject is the user who performs the activity and
the set of environment parameters that they interface with during this activity are known as
the objects. Based on the variations in the environment in which the activity is performed,
the same activity may involve different objects that a user interfaces with, to reach the end
goal. Similarly, the diversities in the user can also lead to different interaction patterns
with objects for performing the same activity in the same or in a different environment [4].
Activities can have various characteristic features. These include—sequential, concurrent,
interleaved, false start, and social interactions. Those activities that are crucial for one’s
sustenance and which one performs on a daily routine basis are known as Activities of
Daily Living (ADLs). There are five broad categories of ADLs—Personal Hygiene, Dressing,
Eating, Maintaining Continence, and Mobility [5].

People live longer these days due to advanced healthcare facilities. The population
of elderly people has been on a constant rise and there are around 962 million elderly
people [6] across the world. According to [7], by 2050, the population of elderly people is
expected to become around 1.6 billion and outnumber the population of younger people
globally. To add, the population of older adults, aged 80 years or more, is expected to
increase three times and reach around 425 million by 2050. Increasing age is associated with
physical disabilities, cognitive impairments, memory issues, and disorganized behavior
which limit a person’s ability to carry out their daily routine tasks in an independent
manner. The worldwide costs of looking after elderly people with various forms of
cognitive impairments, such as Dementia, is estimated to be around USD 818 billion and is
increasing at a very fast rate [8]. In the United States alone, approximately 5.8 million elderly
people currently have Dementia and 1 in every 3 seniors dies from Dementia. In 2020, care
of people with Dementia accounted for approximately USD 305 billion to the U.S. economy,
out of which the caregiver costs are estimated to be around USD 244 billion. It is predicted
that these costs are going to rise steeply over the next few years [8]. A major challenge
in this field is to make the future of Internet of Things (IoT)-based ubiquitous living
environments, such as Smart Homes and Smart Cities aware, adaptive, and personalized
so that they can contribute towards independent living and healthy aging of the elderly
while fostering their biological, psychological, behavioral, physical, mental, and emotional
well-being. Indoor Localization has an immense role to play towards addressing these
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challenges—both in terms of independent living and healthy aging of the elderly as well as
for addressing the huge burden of their caregiving costs.

Despite several advances [9–59] in this field, which have been reviewed in a detailed
manner in Section 2, multiple research challenges remain to be addressed. These include—
(1) inability of the activity recognition and the activity analysis-based AAL systems to track
the indoor location of the user during ADLs; (2) dependency of Indoor Localization systems
on context parameters local to specific IoT-based settings which limit the functionalities of
such systems to those specific environments; (3) need for better precision and accuracy for
detection of the indoor location of a user; and (4) need to deduce and identify the optimal
machine learning-based approach in view of the wide variety of learning approaches that
have been investigated by researchers for development of Indoor Localization systems.
Thus, addressing these above-mentioned challenges by exploring the intersections of Big
Data, Machine Learning, Indoor Localization, Ambient Assisted Living, Internet of Things,
Activity Centric Computing, Human–Computer Interaction, Pattern Recognition, and
Assisted Living Technologies to provide a long-term, robust, feasible, easily implementable,
sustainable, and economic solution to these global research challenges serves as the main
motivation for the work presented in this paper. To summarize, the scientific contributions
of this paper are as follows:

1. Big-Data driven methodology that studies the multimodal components of user inter-
actions and analyzes the data from BLE beacons and BLE scanners to track a user’s
indoor location in a specific ‘activity-based zone’ during Activities of Daily Living.
This approach was developed by using a k-nearest neighbor (k-NN)-based learning
approach. When tested on a dataset it achieved a performance accuracy of 81.36%.

2. A context independent approach that can interpret the accelerometer and gyroscope
data from diverse behavioral patterns to detect the ‘zone-based’ indoor location of
a user in any IoT-based environment. Here, the ‘zone-based’ mapping of a user’s
location refers to mapping the user in one of the multiple ‘activity-based zones’
that any given IoT-based environment can be classified into based on the associated
context attributes. This methodology was developed by using a Random Forest-based
learning approach. When tested on a dataset it achieved a performance accuracy
of 81.13%.

3. A methodology to detect the spatial coordinates of a user’s indoor position based on
the associated user interactions with the context parameters and the user-centered
local spatial context, by using a reference system. The performance characteristics
of this system were evaluated as per three metrics stated in ISO/IEC18305:2016 [31],
which is an international standard for testing Localization and Tracking Systems.
These metrics included root mean squared error (RMSE) in X-direction, RMSE in
Y-direction, and the Horizontal Error, which were found to be 5.85 cm, 5.36 cm,
and 7.93 cm, respectively. A comparison of the performance characteristics of this
approach with similar works in this field that used the RMSE evaluation method
showed that our system outperformed all recent works that had a similar approach.

4. A comprehensive comparative study of different machine learning approaches that
include—Random Forest, Artificial Neural Network, Decision Tree, Support Vector
Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression,
with an aim to address the research challenge of identifying the optimal machine
learning-based approach for Indoor Localization. The performance characteristics of
each of these learning methods were studied by evaluating the RMSE in X-direction,
the RMSE in Y-direction, and the Horizontal Error as per ISO/IEC18305:2016 [31].
The results and findings of this study show that the Random Forest-based learning
approach can be considered as the optimal learning method for development of
Indoor Localization and tracking related technologies.

This paper is organized as follows. We present a comprehensive overview of the
related works in this field in Section 2. In Section 3, a brief overview is given about
RapidMiner [60], a data science and machine learning software development platform, that
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has been used for development of all the methodologies proposed in this paper. Section 4
presents the methods and the steps associated with the development of the three novel
methodologies for Indoor Localization that have been proposed in this work. Section 5
discusses the results and findings associated with each of these methodologies. In Section 6,
we present the comparative study of different machine learning approaches that include—
Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN,
Gradient Boosted Trees, Deep Learning, and Linear Regression, with an aim to address
the research challenge of identifying the optimal machine learning-based approach for
Indoor Localization. Section 7 elaborates the research challenges in this field and discusses
how the work presented in this paper outperforms all similar works while addressing the
associated research challenges. It is followed by Section 8 where conclusion and scope for
future work are outlined.

2. Literature Review

In this section, we have reviewed different kinds of AAL-based systems and technolo-
gies that have primarily focused on Indoor Localization, Activity Recognition, and Activity
Analysis in Smart and Interconnected IoT-based environments, such as Smart Homes and
Smart Cities.

Machine learning approaches have been widely used by researchers to track people
and objects in indoor environments and settings. Musa et al. [9] developed a system that
used a non-line of sight approach and multipath propagation in the context of using the
ultra-wide band methodology. The system used a cross-fold validation method to train
a decision tree that could detect the indoor location of a user. A similar decision-tree
driven machine learning framework was developed by Yim et al. [10]. The framework
was equipped with the functionality to build the decision tree in the off-line phase and it
used the fingerprinting approach for Indoor Localization. Sjoberg et al. [11] developed a
visual recognition approach using the support vector machine (SVM) classifier. The system
consisted of a visual bag-of-words model and other visual features of the environment
that were used to train this classifier for Indoor Localization. A method of 2.5D indoor
positioning was proposed by Zhang et al. [12]. Here, the SVM classifier was trained to
detect the specific floor where a user is located based on the WiFi signal strength and
thereafter it obtained the user’s position information by analysis of other characteristics of
the associated altitude data. Zhang et al. [13] developed a k-NN classification approach
for Indoor Localization that used the signal strength fingerprint technology. The system
assigned weights to the samples based on their associated signal strengths to divide them
into clusters, where each cluster represented a specific location.

In [14], Ge et al. proposed an algorithm for indoor location tracking that was de-
veloped by using the k-NN approach. The algorithm used signal processing principles
to detect and analyze the data coming from access points in the user’s location to train
the k-NN classifier. In [15], Hu et al. proposed another k-NN based learning approach
that detected the location of the user based on the nearest access points of the user. One
of the key findings of the work was that the condition of k = 1 led to the best position-
ing performance accuracy. The artificial neural network approach (ANN) was used by
Khan et al. [16] for developing an indoor position detection system. The architecture of the
approach involved studying and interpreting the data from Wireless Local Area Network
(WLAN) access points and Wireless Sensor Networks (WSN) to train the artificial neural
network (ANN) that could perform virtual tessellation of the available indoor space. An-
other neural network driven system was proposed by Labinghisa et al. [17]. This approach
was based on the concept of virtual access points with an aim to increase the number of
access points without the requirements of any additional hardware. These additional access
points helped to track more user movement related data for training of the neural network.

A Wi-Fi fingerprint-based indoor positioning system was proposed by Qin et al. [18]
that was neural network driven. The system used a convolutional denoising autoencoder
to analyze and extract key features from the RSSI data, which were then used to train
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the neural network. The authors evaluated their system on two datasets to discuss its
performance characteristics. In [19], Varma et al. used the Random Forest learning approach
to perform Indoor Localization in an Internet of Things (IoT)-based environment during
real-time experiments. The authors set up an IoT-based space with 13 beacons. The signals
coming from these beacons, based on the user’s varying position, were used to train the
Random Forest model. A Wi-Fi signal analysis based indoor position detection system was
proposed by Gao et al. [20] that also used the Random Forest classifier. It was developed
and implemented by using the region-based division of location grids method to minimize
the maximum error. The system adopted the method of adjusted cosine similarity to match
the user’s position with the exact grid by analyzing the fingerprint information. Linear
regression methods have also been used by researchers to develop Indoor Localization
systems and technologies. For instance, in [21], the authors developed a learning model
where each anchor node had its own linear ranging method. Their linear regression
model studied the distance between different anchors to perform anchor distance-based
location detection.

The work proposed by Barsocchi et al. [22] involved development of a linear regression-
based learning approach that calculated the user’s distance from a reference point based
on RSSI values. The approach consisted of the methodology to map these values into
distances to detect the position of the user in the given environment. Zhang et al. [23]
developed a deep learning-based 3D positioning framework for a hospital environment.
The system used the data from the cell phone network as well as the Wi-Fi access points to
determine the exact position of the user in terms of the latitude, longitude, and the level of
the building at which they were present. Another deep learning-based Indoor Localization
system was proposed by Poulose et al. [24]. The system developed heat maps from the RSSI
signals obtained from the access points, to train the deep learning model. By conducting
experiments, the authors evaluated the effectiveness of their system for its deployment
in an autonomous environment. A Gradient Boosted Decision Tree approach was pro-
posed by Wang et al. [25] that used the fingerprint methodology to detect the location of a
user in an indoor setting. The authors used the concept of wavelet transform to filter the
noises in the channel state information data, which was then used by the system to update
the associated fingerprint information for the machine learning model. As can be seen
from [9–25] a range of machine learning approaches have been used for development of
various types of Indoor Localization systems for IoT-based environments. However, none
of these works implemented multiple machine learning models to evaluate and compare
their working to deduce the best machine learning approach in terms of the associated
performance accuracy. Due to the differences in the datasets used or the real-time data that
was collected, the associated data preprocessing steps that varied from system to system,
the differences in train to test ratio of the data, and several other dissimilar steps that were
associated with the developments of each of these machine learning models, their final
performance accuracies cannot be directly compared to deduce the best approach. The
challenge is therefore to identify the optimal machine learning model that can be used
to develop the future of Indoor Localization systems, Indoor Positioning systems, and
Location-Based Services.

In addition to machine learning-based approaches, context reasoning-based approaches
have also been investigated by researchers to develop Indoor Localization systems. Such
approaches are limited and functional only in the confines of the specific environments for
which they were developed. In [26], Lin et al. developed an indoor positioning system spe-
cific for the factory environments of the Hon-Hai Precision Industry. An intelligent indoor
parking system was developed by Liu et al. [27] that could help with indoor parking. The
system was implemented in a shopping mall environment to test its performance charac-
teristics. Jiang et al. [28] proposed an Indoor Localization system for hospital environments
that used concepts from GPS and UWB technologies. Barral et al. [29] developed a method-
ology that could track the location of forklift trucks in an industry-based environment.
Zadeh et al. [30] proposed an Indoor Localization framework for an academic environment
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to help with taking attendance of students. As can be seen from [26–30], these Indoor
Localization systems are specific to certain environments, as they are dependent on the
associated features and characteristics of the environment for which they were designed.
For instance, the system proposed in [29] cannot be deployed in any of the environments
described in [26–28,30]. The environments described in [26–30] represent just a few of the
IoT-based environments associated with the living and functional areas of humans in the
future of interconnected Smart Cities. As such context reasoning-based systems are not
functional in other IoT-based settings, the challenge is thus to develop a means for Indoor
Localization that is not environment dependent and can be seamlessly deployed in any
IoT-based setting irrespective of the associated context parameters and their attributes.

Here, we also review ISO/IEC 18305:2016, which is an international standard for
evaluating localization and tracking systems [31]. This standard was jointly prepared
and developed by the Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 31. ISO/IEC JTC 1/SC 31 is a standardization subcommittee of the joint
committee ISO/IEC JTC 1 of the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC), which develops and facilitates inter-
national standards, technical reports, and technical specifications in the field of automatic
identification and data capture techniques. This standard is one of the outcomes of the
EU FP7 project EVARILOS—Evaluation of RF-based Indoor Localization Solutions for the
Future Internet [32]. The main objective of this standard is to define a standard set of testing
and evaluation measures or methods that can be used to evaluate the performance metrics
of different types of Indoor Localization systems, Indoor Positioning systems, and Location
Based Services in different scenarios. It provides a comprehensive list of 14 such scenarios
and 5 types of buildings where this standard can be implemented. It is worth mentioning
here that the standard discusses these settings from the viewpoint of localization of a
person, object as well as a robot in such scenarios. Such definitions of scenarios include the
characterization of the associated motion as well as the definition of the number of entities
(human, objects, or robots) that are required to be tracked in that given scenario. It also lists
30 metrics for evaluating the performance characteristics in each case. The metrics related
to calculation of different kinds of errors are introduced in Chapter 8 of this standard.
Some of these metrics that have been widely used by researchers since the inception of this
standard include—RMSE, Mean of Error, Covariance Matrix of Error, Mean of Absolute
Error, and Mean and Standard Deviation of Vertical Error.

While several of these metrics have been used by researchers to evaluate their Indoor
Localization systems, we focus on one specific performance metric—the RMSE. The stan-
dard presents the formulae for determination of the RMSE in the X-direction, RMSE in the
Y-direction, and RMSE in the X-Y plane. When the RMSE is determined in the X-Y plane,
it is referred to as Horizontal Error as per the definitions of the standard [31]. Next, we
review some of the works related to Indoor Localization systems that have used the RMSE
method for evaluating their performance characteristics. In [33], the authors analyzed
the RSSI data coming from multiple anchor nodes set up in a Wireless Sensor Network
system. They used Kalman filter to determine the direction and speed of the user and their
system had a RMSE of 1.4 m. In [34], the authors developed a new RFID-based device that
could sense proximity tags in the environment to detect the indoor location of a user with a
RMSE of 0.32 m. Angermann et al. [35] developed a Bayesian estimation-based framework
for pedestrian localization and mapping that had a RMSE of 1 to 2 m. Evennou et al. [36]
used signal processing-based methods to develop an Indoor Localization system that had
a RMSE of 1.53 m. Wang et al. [37] used particle filters and extended the traditional WLAN
methods to develop a pedestrian tracking system that had a RMSE of 4.3 m. A Monte
Carlo-based Indoor Localization algorithm was proposed in [38]. The RMSE of this system
was 1.2 m. A SVM classifier was proposed in [39] that used smartphone data for performing
Indoor Localization. The performance characteristics presented in the paper show that
the value of the RMSE of this system was 4.55 m. Another smart phone-based system,
known as HIVE [40], that was Hidden Markov Model driven was proposed by Liu et al.
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The system had a RMSE of 3.1 m. The work by Chen et al. [41] involved fusion of data com-
ing from smartphone sensors, WiFi, and Landmarks, which were analyzed by a Kalman
Filter for Indoor Localization. This method had a RMSE of 1 m. Li et al. [42] proposed a
sensor technology-driven smartphone-based pedestrian location detection system that had
a RMSE of 2.9 m. In [43], the authors analyzed iBeacon measurements and a calibration
range, which was thereafter used to develop a Kalman filter for pedestrian dead reckoning.
The system had a RMSE of 1.28 m. As per [44] and [45], (1) the average dimensions of
newly built one-bedroom apartments and two-bedroom apartments in United States in
2018 were 757 square feet (70.3276 square meters) and 1138 square feet (105.7236 square
meters), respectively. Considering such dimensions of living spaces in the context of AAL
in Smart Homes, it is the need of the hour that the Indoor Localization systems and tracking
related technologies become more precise in terms of detecting the exact indoor location of
the user. The challenge is this context is thus to develop Indoor Localization systems that
have lesser RMSE as compared to [33–43].

AAL in Smart Homes is not only about tracking the indoor location of the user, it also
involves analyzing their behaviors and activity patterns to enhance their quality of life and
user experience in the context of diverse user interactions. Next, we review some of the
recent AAL-based technologies that have focused on activity recognition and analysis in
Smart Homes. An activity recognition framework was proposed by Ranieri et al. [46] for
AAL of elderly in Smart Homes. The framework focused on studying various parameters
of user interaction data from videos, wearable sensors, and ambient sensors to analyze
activities. An activity analysis approach for monitoring elderly behavior during daily
activities was proposed by Fahad et al. [47]. The objective of the work was to track elderly
behavior and detect any possible anomalies in the same that could have resulted from
cognitive or physical impairments or decline in abilities. A smart phone accelerometer-
based activity recognition framework was proposed by Suriani et al. [48]. The authors
developed the system by using spiking neural networks and used datasets to evaluate its
performance characteristics. A similar smartphone-based application was proposed by
Mousavi et al. in [49] which could detect falls in elderly. The system was trained using SVM
and had a performance accuracy of 96.33%. A wearable sensor driven fall detection system
was proposed by Alarifi [50]. The wearables were placed on six different locations on the
user’s body to track multimodal components of motion and behavior data, which were
studied and analyzed by a convolution neural network. In [51], Al-Okby proposed a smart
wearable device for detection of elderly falls. The device analyzed multimodal components
of the user’s motion and had the functionality to alert caregivers in the event of a fall.
As can be seen from these works [46–51], multiple components of human postures, pose,
motion, and behavior can be tracked and analyzed for development of AAL-based activity
recognition and fall detection systems. However, the main limitation of these systems is
their inability to track the location of the user. For instance, consider the example of an
elderly staying alone in an apartment located in a multistoried building. When this elderly
person experiences a fall, a fall detection system such as [51] could alert caregivers but the
lack of the precise location information could cause delay of medical attention or assistive
care. This is because the location of the elderly can be tracked in terms of the building
information from GPS, but the specific floor, apartment, or room-related information is
not available to the caregivers or emergency responders. Such delay of care can have both
short-term and long-term health-related impacts to the elderly. Thus, it is the need of
the hour that AAL-based systems not only track, monitor, and analyze elderly behavior
but they should also be equipped with the functionality to detect the indoor location of
the elderly.

Cloud computing-based approaches have also been used in recent studies [52–55] for
development of AAL-based systems and applications that can monitor human behavior
and trigger alarms as well as track the location of the user. While this concept of cloud
computing applied to AAL technologies holds potential, but these existing systems also
have several limitations. For instance—the system proposed by Navarro et al. [53] is
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environment specific and was designed, adapted, and built specifically for Fundació
Ave Maria [56], which is a non-profit organization in Spain, so, the same design cannot
not be seamlessly applied to any other environment consisting of varying environment
parameters that would be associated with diverse range of human behavior and user
interactions; the system proposed by Nikoloudakis et al. [52] uses an outdoor positioning
mechanism that can only detect whether the user leaves the premises of their location; the
work proposed by Facchinetti et al. [55] is a mobile app and that brings into context these
challenges—(i) elderly people are less likely to download a mobile app as compared to the
other age groups [57], (ii) elderly people are naturally resistant to using different kinds
of technology-based apps on their phones, tablets, and other interactive devices [58], and
(iii) older adults face multiple usability issues with such apps [59]; even though another
system proposed by Nikoloudakis et al. [54] presents approaches for both indoor and
outdoor positioning, it cannot model and analyze the fine grain levels of human activity
such as atomic activity, context attributes, core atomic activity, and core context attributes
along with their associated weights, in the context of dynamic user interactions during
ADLs. To add to the above, for all these systems [52–55], the RMSE for detection of the
indoor location of the user is also not less than 1 m. Thus, to summarize, the main research
challenges in this field are as follows:

1. The AAL-based activity recognition, activity analysis, and fall detection systems
currently lack the ability to track the indoor location of the user. It is highly essential
that in addition to being able to track, analyze, and interpret human behavior, such
systems are also able to detect the associated indoor location information, so that
the same can be communicated to caregivers or emergency responders, to facilitate
a timely care in the event of a fall or any similar health related emergencies. Delay
in care from a health-related emergency, such as a fall, can have both short-term and
long-term health related impacts.

2. Several Indoor Localization systems are context-based and are functional only in the
specific environments in which they were developed. For instance, [26] was developed
for factory environments, [27] was developed for indoor parking, [28] was developed
for hospital settings, [29] was developed for tracking forklift trucks in industry-based
settings, and [30] was developed for performing Indoor Localization in academic
environments for taking attendance of students. The future of interconnected Smart
Cities would consist of a host of indoor environments in the living and functional
spaces of humans, which would be far more diverse, different, and complicated
as compared to the environments described in [26–30]. The challenge is thus to
develop a means for Indoor Localization that is not environment dependent and can
be seamlessly deployed in any IoT-based setting irrespective of the associated context
parameters and their attributes.

3. In view of the average dimensions of the living spaces in Smart Homes, the RMSE
of the existing Indoor Localization systems are still high and greater precision and
accuracy for detection of indoor location in the need of the hour.

4. A range of machine learning-based approaches—Random Forest, Artificial Neural
Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees,
Deep Learning, and Linear Regression, have been used by several researchers [9–25]
for development of various types of Indoor Localization systems for IoT-based envi-
ronments. Identification of the optimal machine learning model that can be used to
develop the future of Indoor Localization systems, Indoor Positioning Systems, and
Location-Based Services is highly necessary.

Addressing these above-mentioned challenges by exploring the intersections of Big
Data, Machine Learning, Indoor Localization, Ambient Assisted Living, Internet of Things,
Activity Centric Computing, Human–Computer Interaction, Pattern Recognition, and
Assisted Living Technologies to contribute towards AAL in Smart Homes serves as the
main motivation for this work.
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3. Technology Review

This section briefly reviews RapidMiner, formerly known as Yet Another Learning
Environment (YALE) [60], which we have used for the work presented in this paper.
RapidMiner is a software tool that allows development and implementation of a wide
range of Machine Learning, Data Science, Artificial Intelligence, and Big Data related
algorithms and models. The initial version of this tool was developed back in 2001 at
the Technical University of Dortmund. From 2006, a company called Rapid-I started
implementing additional functionalities and features in the tool. A year later, the name of
the software was changed from YALE to RapidMiner and six years from then, the name of
the company was changed from Rapid-I to RapidMiner. As of current day, RapidMiner
is used both for educational research and for development of commercial applications
and products.

RapidMiner is available as an integrated development environment that consists
of—(1) RapidMiner Studio, (2) RapidMiner Auto Model, (3) RapidMiner Turbo Prep,
(4) RapidMiner Go, (5) RapidMiner Server, and (6) RapidMiner Radoop. For all the work
related to the methodologies proposed in this paper, we used RapidMiner Studio. For the
remainder of this paper, wherever we have mentioned “RapidMiner”, we have referred to
“RapidMiner Studio” and not any of the other development environments associated with
this software tool.

RapidMiner is developed as an open core model that provides a rich Graphical User
Interface (GUI) to allow users to develop different kinds of applications, generate work-
flows, and implement various algorithms. These applications, workflows, or algorithms are
known as “processes” and they consist of multiple “operators”. In a RapidMiner “process”,
each of its “operators” are associated with a specific functionality which is required for
working of the “process”. RapidMiner provides a range of built-in “operators” that can be
directly used with or without any modifications for development of a specific “process”.
There is also a certain category of “operators” that can be used to modify the characteristic
features of other “operators”. The tool also allows developers to create their own “opera-
tors” and these can be shared and made available to all other users of RapidMiner via the
RapidMiner Marketplace.

For development of any RapidMiner “process”, the associated “operators” are always
connected either in a linear fashion or in a hierarchical manner as shown in Figures 1 and 2,
respectively. In Figure 1, ‘Learner’, ‘Model Applier’, and ‘Evaluator’ refer to different
“operators” in RapidMiner. The inputs to these “operators” are shown by arrows pointing
towards these respective “operators” and the outputs of these “operators” are shown by
arrows pointing away from these respective “operators”. For instance, the input to the
‘Evaluator’ “operator” is Example-Set and the output produced by this “operator” is the
Performance Vector. Here, only three “operators” have been shown for representation of
the linear arrangement amongst “operators”, however, in an actual RapidMiner “process”,
the number of “operators” can vary as well as the specific “operators” could be different
from the three “operators” shown in Figure 1. Similarly, a typical RapidMiner “process” is
shown in Figure 2 which shows hierarchical arrangement amongst Methods 1, 2, and 3, each
of which are “operators” Here, the “operators” ‘Learner’, ‘Model Applier’, and ‘Evaluator’
are also connected in a hierarchical manner. In an actual RapidMiner “process” the number
and types of “operators” connected hierarchically could be different as compared to the
number and types of “operators” shown in Figure 2.
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Figure 1. Layout of a typical linear “process” in RapidMiner Studio. This “process” shows linear
arrangement amongst three RapidMiner “operators”—the ‘Learner’ operator, the ‘Model Applier’,
and the ‘Evaluator’ [4].

Figure 2. Layout of a typical hierarchical “process” in RapidMiner Studio. This “process” shows hier-
archical arrangement amongst Methods 1, 2, and 3 each of which are “operators”. The “operators”—
‘Learner’, ‘Model Applier’, and ‘Evaluator’ are also connected in a hierarchical manner [4].

The following are some of the salient features of RapidMiner Studio:

1. It provides built-in “operators” with distinct functionalities that can be directly used
or modified for development and implementation of Machine Learning, Data Science,
Artificial Intelligence, and Big Data related algorithms and applications.

2. RapidMiner is developed using Java. This makes RapidMiner “processes” platform
independent and Write Once Run Anywhere (WORA), which is a characteristic feature
of Java.

3. The tool allows downloading multiple extensions for seamless communication and
integration of RapidMiner “processes” with other software and hardware platforms.

4. Scripts written in any programming language, such as Python and R can also be
integrated in a RapidMiner “process” to add additional functionalities to the same.

5. The tool allows development of new “operators” and seamless sharing of the same
via the RapidMiner community.
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6. It also consists of “operators” that allow this software tool to connect with social
media profiles of the user, such as Twitter and Facebook, to extract tweets, comments,
posts, reactions, and related social media activity.

RapidMiner is developed as a client-server model. The server is made available as
on-premise, in public or as a private cloud infrastructure. There are two different versions
of RapidMiner available—the free version and the commercial version. The primary
difference between these two versions is that the free version has a data processing limit of
10,000 rows for any “process”. For all the work presented in this paper, the free version of
RapidMiner 9.8.001 was downloaded and installed on a Microsoft Windows 10 Computer
with Intel (R) Core (TM) i7-7600U CPU @ 2.80GHz, 2904 MHz, 2 Core(s) and 4 Logical
Processor(s). The datasets that were studied and analyzed in this paper did not have more
than 10,000 rows of data so this limitation of the free version of RapidMiner did not have
any effect on the methodologies or the associated results and findings.

There are a few similar software tools that allow seamless development and im-
plementation of Machine Learning, Data Science, Artificial Intelligence, and Big Data
related algorithms and applications. Two such software tools which are very popular
are—(1) Waikato Environment for Knowledge Analysis (WEKA) [61] and (2) MLC++ [62].
WEKA, developed in Java, allows development and implementation of various kinds
of machine learning methods—such as regression, classification, feature selection, cross-
validation, and bootstrapping. MLC++ is a C++ library that allows development and
implementation of only supervised machine learning algorithms. The primary limitation
of both WEKA and MLC++ is that they do not allow nesting of “operators” as supported
by RapidMiner. In RapidMiner, “operator” nesting can be done either in a linear form
or in a hierarchical form as shown in Figures 1 and 2, respectively. The only means for
implementing such a feature in WEKA or MLC++ is by creating duplicate copies of the
original dataset. However, this process is time consuming and requires a lot of memory
space. To add to the above limitation of WEKA, it needs the current dataset to be available
in the main memory of the system in which it is being executed. This also contributes
towards consumption of computer memory. Neither WEKA nor MLC++ allow inclusion
of programming scripts, such as scripts written in Python or R in their respective appli-
cations. To add to the above, MLC++ is not platform independent and neither does it
have the WORA feature. In view of the above limitations of WEKA and MLC++ and the
contrasting salient features of RapidMiner, RapidMiner was used for development of all
the methodologies outlined in this paper.

4. Development of the Proposed Methodologies for Indoor Localization

For development of the proposed methodologies for Indoor Localization for AAL
during ADLs performed in an IoT-based environment, such as a Smart Home, we posit
the following:

(a) The Received Signal Strength indicator (RSSI) data coming from BLE scanners and BLE
beacons can be studied and analyzed to detect the changes in a user’s instantaneous
location during different activities, which are a result of the varying user interactions
with dynamic context parameters.

(b) The dynamic changes in the spatial configurations of a user during different activities
can be interpreted by the analysis of the behavioral patterns that are localized and
distinct for different activities.

(c) Tracking and analyzing the user interactions with the context parameters along with
the associated spatial information, by using a reference system, helps to detect the
dynamic spatial configurations of the user.

Here, we use the concept of complex activity analysis for analysis of ADLs at a
macro and micro level. A complex activity may be broadly defined as a collection of
atomic activities (Ati), context attributes (Cti), core atomic activities (γAt), and core context
attributes (ρCt) along with their characteristics [63]. The atomic activities refer to the small
actions and tasks associated with an activity. The environment variables or parameters
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on which these tasks are performed are known as the context attributes. The core atomic
activities refer to the atomic activities that are crucial for completion of the given complex
activity and the context attributes on which these core atomic activities occur are known
as the core context attributes. The atomic activities that are performed at the beginning
and end of a given complex activity are known as start atomic activities (AtS) and end
atomic activities (AtE), respectively. The associated context parameters are known as
start context attributes (CtS) and end context attributes (CtE), respectively. This is further
elaborated in Figure 3. Figure 4 describes a few atomic activities and complex activities
in a typical environment [4]. Tables 1 and 2 show the complex activity analysis of two
typical ADLs, Preparing Breakfast and Eating Lunch [4], studied in terms of the associated
atomic activities, context attributes, core atomic activities, and core context attributes
along with their associated weights, which can be determined by probabilistic reasoning
principles [63]. As per [63], a greater weight of an Ati or Cti signifies greater relevance of
the same towards the given complex activity. Therefore, weights of all γAt and ρCt are
higher as compared to the rest of the Ati or Cti. The weights associated with the Ati, Cti,
γAt, ρCt, AtS, AtE, CtS, and CtE are used to determine the threshold function of the given
complex activity. The threshold function underlines the condition for completion of the
complex activity [63].

Figure 3. Representation of Atomic Activities and Complex Activities [4].

Figure 4. Description of Atomic Activities associated with two different Complex Activities in a
typical environment [4].
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Table 1. Analysis of a typical ADL, Preparing Breakfast (PB) from [4], studied in terms of the
associated atomic activities, context attributes, core atomic activities, core context attributes and their
threshold values.

Complex Activity WCAtk (PB Atk)—PB (0.73)

Ati

At1: Standing (0.10)
At2: Walking Towards Toaster (0.12)
At3: Putting bread into Toaster (0.15)

At4: Setting the Time (0.15)
At5: Turning off toaster (0.25)
At6: Taking out bread (0.18)

At7: Sitting Back (0.05)

Cti

Ct1: Lights on (0.10)
Ct2: Kitchen Area (0.12)
Ct3: Bread Present (0.15)

Ct4: Time settings working (0.15)
Ct5: Toaster Present (0.25)

Ct6: Bread cool (0.18)
Ct7: Sitting Area (0.05)

AtS and CtS At1, At2, and Ct1, Ct2
AtE and CtE At6, At7, and Ct6, Ct7
γAt and ρCt At3, At4, At5, At6 and Ct3, Ct4, Ct5, Ct6

Table 2. Analysis of a typical ADL, Eating Lunch (EL) from [4], studied in terms of the associ-
ated atomic activities, context attributes, core atomic activities, core context attributes, and their
threshold values.

Complex Activity WCAtk (EL Atk)—EL (0.72)

Ati

At1: Standing (0.08)
At2: Walking Towards Dining Table (0.20)

At3: Serving Food on a Plate (0.25)
At4: Washing Hand/Using Hand Sanitizer (0.20)

At5: Sitting Down (0.08)
At6: Starting to Eat (0.19)

Cti

Ct1: Lights on (0.08)
Ct2: Dining Area (0.20)
Ct3: Food Present (0.25)
Ct4: Plate Present (0.20)

Ct5: Sitting Options Available (0.08)
Ct6: Food Quality and Taste (0.19)

AtS and CtS At1, At2, and Ct1, Ct2
AtE and CtE At5, At6, and Ct5, Ct6
γAt and ρCt At2, At3, At4 and Ct2, Ct3, Ct4

As can be seen from Table 1, for the complex activity of Preparing Breakfast in the
environment described in [4], the atomic activities (Ati) are—Standing, Walking Towards
Toaster, Putting bread into Toaster, Setting the Time, Turning off toaster, Taking out bread,
and Sitting Back. The weights associated with these Ati are—0.10, 0.12, 0.15, 0.15, 0.25, 0.18,
and 0.05, respectively. The associated context attributes (Cti) are—Lights on, Kitchen Area,
Bread Present, Time settings working, Toaster Present, Bread cool, and Sitting Area. The
weights associated with these Cti are—0.10, 0.12, 0.15, 0.15, 0.25, 0.18, and 0.05, respectively.
These weights were assigned as per the probabilistic reasoning principles outlined in [63].
The Ati with the highest weights were identified as the Core Atomic Activities (γAt) as per
the definition of γAt in [63]. The corresponding context attributes were identified as Core
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Context Attributes (ρCt). Therefore, the list of γAt for this complex activity are—At3, At4,
At5, and At6. Their corresponding context attributes—Ct3, Ct4, Ct5, and Ct6 were therefore
considered as Core Context Attributes (ρCt). The Ati associated with the start and end of
this complex activity, or in other words the Start Atomic Activities (AtS) and End Atomic
Activities (AtE) are—At1, At2 and At6, At7, respectively. The corresponding context
attributes—Ct1, Ct2 and Ct6, Ct7 were therefore considered as Start Context Attributes
(CtS) and End Context Attributes (CtE), respectively. It is worth mentioning here that this
complex activity analysis was performed based on the specific environment parameters
described in [4] and this analysis can change if the same complex activity is performed in
an environment which has a different set of environment parameters as compared to the
environment described in [4].

As can be seen from Table 2, for the complex activity of Eating Lunch in the environ-
ment described in [4], the atomic activities (Ati) are—Standing, Walking Towards Dining
Table, Serving Food on a Plate, Washing Hand/Using Hand Sanitizer, Sitting Down, and
Starting to Eat. The weights associated with these Ati are—0.08, 0.20, 0.25, 0.20, 0.08, and
0.19, respectively. The associated context attributes (Cti) are—Lights on, Dining Area,
Food Present, Plate Present, Sitting Options Available, and Food Quality and Taste. The
weights associated with these Cti are—0.08, 0.20, 0.25, 0.20, 0.08, and 0.19, respectively.
These weights were assigned as per the probabilistic reasoning principles outlined in [63].
The Ati with the highest weights were identified as the Core Atomic Activities (γAt) as
per the definition of γAt in [63]. The corresponding context attributes were identified as
Core Context Attributes (ρCt). Therefore, the list of γAt for this complex activity are—At2,
At3, and At4. Their corresponding context attributes—Ct2, Ct3, and Ct4 were therefore
considered as Core Context Attributes (ρCt). The Ati associated with the start and end of
this complex activity or in other words the Start Atomic Activities (AtS) and End Atomic
Activities (AtE) are—At1, At2 and At5, At6, respectively. The corresponding context
attributes—Ct1, Ct2 and Ct5, Ct6 were therefore considered as Start Context Attributes
(CtS) and End Context Attributes (CtE), respectively. It is worth mentioning here that this
complex activity analysis was performed based on the specific environment parameters
described in [4] and this analysis can change if the same complex activity is performed in
an environment which has a different set of environment parameters as compared to the
environment described in [4].

In the following sub sections, we outline the methodologies for development of the
multimodal approaches for Indoor Localization for AAL for testing and evaluation of the
above three hypotheses.

4.1. Indoor Localization from BLE Beacons and BLE Scanners Data during ADLs

The following are the steps for development of this proposed functionality:

i. Set up an IoT-based environment, within a spatial context such as indoor layout
of rooms with furniture’s and appliances, using wearables and wireless sensors
to collect the Big Data related to different ADLs. The associated representation
scheme involves mapping the entire spatial location into non-overlapping ‘activity-
based zones’, distinct to different complex activities, by performing complex activity
analysis [63].

ii. Analyze the ADLs in terms of the associated atomic activities, context attributes, core
atomic activities, and core context attributes and their associated threshold values by
probabilistic reasoning principles [63].

iii. Infer the semantic relationships between the changing dynamics of atomic activities,
context attributes, core atomic activities, and core context attributes associated to
different ADLs to study and interpret the spatial and temporal features of these ADLs.

iv. Study the characteristics of the data coming from the wireless sensors to analyze the
associated RSSI data from BLE beacons and BLE scanners, recorded during different
ADLs, based on the user’s proximity to the context attributes in each ‘activity-based
zone’. This information helps to infer the user’s presence or absence in each of
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these ‘activity-based zones’. For instance, when the user performs a typical complex
activity—cooking using microwave, based on the user’s proximity to the microwave,
the user’s presence can be deduced in a ‘zone’ where the microwave is present.

v. Associate the relationships from (iii) with the characteristics of the RSSI data from
BLE beacons and BLE scanners and map the entire IoT-based environment into non-
overlapping ‘activity-based zones’, that are distinct to each ADL, by taking into
consideration all possible complex activities that may be performed in the confines
of the given IoT-based space. For instance, in a typical IoT-based environment [4],
if the complex activities performed include—Watching TV, Using Laptop, Listening
to Subwoofer, Using Washing Machine, Cooking Food, and Taking Shower; the
associated ‘activity-based zones’ could be TV zone, Laptop zone, Subwoofer zone,
Washing Machine zone, Cooking zone, and Bathroom zone. This inference of the
respective ‘zones’ is based on the complex activity analysis [63] of all these activities
as presented in [4].

vi. Split the data into training set and test set and train a learning model to study these
relationships and patterns in the data to detect the indoor location associated with the
given ADL, based on detecting the user’s presence or absence in a specific ‘activity-
based zone’ at a specific point of time.

vii. Analyze the performance characteristics of the learning model by using a confu-
sion matrix.

Step (i) above involves setting up a Big Data collection methodology to study, track,
and interpret the multimodal components of user interactions associated with different
complex activities performed in each of these ‘activity-based zones’. The data collection
could be performed by using the Context-Driven Human Activity Recognition Framework
that has already been developed, implemented, and tested at the Multimedia and Aug-
mented Reality Lab, in the Department of Electrical Engineering and Computer Science
at the University of Cincinnati. The results of the same were published in [64]. This
framework was developed based on the work by Ma [65]. This framework, developed in
the form of a software package, has multiple functionalities related to Big Data collection
and we briefly review the same here.

First, it uses Microsoft Kinect Sensors to track the varying changes in the postures,
gestures, and user behavior by performing skeletal tracking. In this process of skeletal
tracking, the human body is represented in the form of a skeletal with 20 joint points and
their associated characteristics. These joint points include—hip center, spine, shoulder
center, head, left shoulder, left elbow, left wrist, left hand, right shoulder, right elbow,
right wrist, right hand, left hip, left knee, left ankle, left foot, right hip, right knee, right
ankle, and right foot. Characteristics of these joint points—such as joint point distance,
joint point rotation, and joint point speed are tracked by this framework to detect and
reason various movements and behavioral patterns for performing activity recognition. For
instance, when a person is clapping, the distance between the joint point pairs (7,11) and
(8,12) decreases and then increases in a periodic manner, where 7, 11, 8, and 12 represent
the left wrist, right wrist, left hand, and right hand joint points, respectively. Based on
these joint point characteristics, the framework can classify behaviors as Type-1 and Type-2.
Behaviors associated with the lower limb are classified as Type-1 and behaviors associated
with the upper limb are classified as Type-2, respectively. The Type-1 behaviors that can
be recognized by this framework include—standing, walking, and sitting. The Type-2
behaviors that can be recognized by this framework include—waving, talking over cell
phone, reading book or magazine, sleeping while seated, seated relaxed, and making hand
gestures while talking. The third layer of the framework analyzes the relationships between
changing behaviors associated with different activities by interpreting the user interactions
with context parameters as well as the object behaviors in the user’s spatial environment.
It uses context-driven reasoning principles to perform complex activity recognition and
analysis. To add, this layer can also track the sequence in which different complex activities
are performed. The fourth layer of this framework allows capturing of social interactions
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and can perform all the functionalities of the above three layers while considering two
users in the given IoT-based space at any point of time. This framework was developed as
a Microsoft Windows-based application [64] that can seamlessly communicate and connect
with both wireless and wearable sensors used to collect Big Data related to different
complex activities. It consists of an intuitive user interface that shows the real-time Big
Data coming from the IoT-based sensors as well as it shows the analysis of the same to
deduce the associated activity being performed as per the methodologies outlined above.

For development of the proposed Big-Data driven methodology that studies the
multimodal components of user interactions and analyzes the data from BLE beacons and
BLE scanners to track a user’s indoor location in a specific ‘activity-based zone’ during
ADLs, we used an open-source dataset by Tabbakha et al. [66]. This dataset was chosen
because its attributes were same as the real-time data that could be collected and analyzed
by the Context-Driven Human Activity Recognition Framework [64] as outlined above.
This dataset contains activity and human behavior related data collected from both wireless
sensors and wearables in an IoT-based environment. The data attributes present in this
dataset include the accelerometer data, gyroscope data, and the RSSI data obtained from
BLE beacons and BLE scanners. The simulated smart home environment in which this
data was collected consisted of four rooms or ‘zones’—kitchen, bedroom, office, and toilet.
For collecting the data as presented in this dataset [66], the authors developed a wearable
device by using the Linkit 7697 and the MPU6050 sensors. This device was placed on the
user’s waist during each experimental trial. This wearable device tracked the behavior
related information of the user as well as collected position related data with respect to
the user’s location in each of the four rooms or ‘zones’. A BLE beacon was incorporated in
this wearable and Raspberry Pi-based BLE scanners were installed at different locations
of the IoT-based space. These scanners tracked the position of the user by sensing the
BLE beacon and interpreting the associated RSSI data. Each of these rooms or ‘zones’
had one BLE scanner placed on or near a context attribute associated with the distinct
complex activity that would be performed in that ‘zone’. The scanners were placed on the
kitchen table in the kitchen ‘zone’, on the bed in the bedroom ‘zone’, next to the working
table in the ‘office’ zone, and next to the toilet door in the toilet ‘zone’. The authors set
the advertising interval of the BLE beacon to 100 ms with the transmitting power of up
to −30 dBm. The scanner was programmed to report to the data collection server if the
beacon was missing or in other words if the user was not present in that ‘zone’. For such
scenarios, the associated RSSI value was updated to −120 in the dataset to indicate that the
BLE beacon was out of range. The behavior related data was collected by this wearable by
tracking the acceleration data (along the X, Y, and Z axes) and gyroscope data (along the X,
Y, and Z axes) associated with the user’s movements. The data of the accelerometer and
gyroscope from the wearable were sampled at the rate of 20 Hz. A total of 20 volunteers
(10 males and 10 females) had participated in the experimental trials. The attributes that
we used for development of this functionality included the RSSI data from BLE beacons
and BLE scanners in the simulated environment and the location information that was
associated with the different ADLs performed in this environment.

To study, analyze, and interpret these relationships that exist in the dataset, to detect
the associated spatial context, i.e., to infer the location of the user within a specific ‘activity-
based zone’ during ADLs, in the indoor room layout at a specific point of time, we used
RapidMiner [60], because of its salient features and characteristics that make it highly
suitable for development of such an application. These features and characteristics of
RapidMiner as well as additional details about the relevance for selection of RapidMiner
for this work were outlined in Section 3.

4.1.1. System Architecture of the Methodology for Indoor Localization from BLE Beacons
and BLE Scanners Data during ADLs

The flowchart of this proposed methodology is shown in Figure 5. This figure outlines
the operation of this methodology, as discussed in the previous section, at a broad level.
Here, by “Split Data”, we refer to splitting the data into training set and test set, with
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80% data being selected for the training and the remaining 20% being selected for the
testing. The “performance” in Figure 5 refers to evaluation of the performance of the k-NN
approach when tested on the test dataset. This was evaluated by using a confusion matrix.
Next, we outline how this flowchart was used for development of this methodology. We
used an open-source dataset by Tabbakha et al. [66] for development of this methodology.
This dataset was chosen because its attributes were same as the real-time data that could be
collected and analyzed by the Context-Driven Human Activity Recognition Framework [64]
as outlined above (Step i). The functionalities of this proposed approach, i.e., Steps (ii) to
(vii), were developed and implemented in RapidMiner as a “process” as shown in Figure 6.

Figure 5. The flowchart for the proposed methodology for detection of indoor location in a specific
‘activity-based zone’ by analysis of the RSSI data coming from BLE beacons and BLE scanners during
different ADLs.

Figure 6. The RapidMiner “process” for detection of indoor location in a specific ‘activity-based zone’
by analysis of the RSSI data coming from BLE beacons and BLE scanners during different ADLs.
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This “process” was developed as a combination of built-in “operators” and user
defined “operators” in RapidMiner. An overview of built-in “operators” and user-defined
“operators” in RapidMiner was presented in Section 3. We used the ‘Dataset’ “operator” to
import this dataset into the RapidMiner “process”. This “operator” was then renamed to
‘ADL & RSSI Data’ as for development of this “process” we needed to use only the activity-
based data and the associated RSSI signals coming from BLE Beacons and BLE scanners
during these ADLs. The semantic relationships between the changing dynamics of atomic
activities, context attributes, core atomic activities, and core context attributes associated to
different ADLs were then studied to interpret the spatial and temporal features of these
ADLs (Step iii). This was done as per the methodology used to analyze complex activities
(examples shown in Tables 1 and 2) and the associated “operator” that was developed was
named as ‘ADL Data Analysis’. The characteristics of the data coming from the sensors to
analyze the associated RSSI data from BLE beacons and BLE scanners, recorded during
different ADLs, were then studied and analyzed (Step iv) and the corresponding “operator”
that was developed was named as ‘Interpret RSSI Data’. Thereafter, we associated these
relationships obtained from the ‘ADL Data Analysis’ “operator” with the characteristic
features obtained from the ‘Interpret RSSI Data’ (Step v) to develop the ‘activity-based
zones’. We performed the same by developing an “operator”—‘ADL-based RSSI’. Then, we
used the built-in ‘Split Data’ “operator” to split the data into training set and test set with
80% of the data for training and 20% of the data for testing. A k-NN learning approach
was used to develop the machine learning model which was tested on the test set by using
the ‘Apply Model (k-NN)’ “operator”. K-NN and ‘Apply Model’ are built-in “operators”
in RapidMiner that can be directly used in any “process”. Thereafter, we used the built-in
‘Performance’ “operator” in RapidMiner to evaluate the performance characteristics of the
model in the form of a confusion matrix.

Figure 7 further clarifies the architecture of the proposed methodology as developed in
RapidMiner [60]. This figure shows the flow of control depicting the sequence of operation
of the different “operators” in this RapidMiner “process”. As can be seen from Figure 7, the
“operator” ‘ADL & RSSI Data’ is executed first, which is followed by the executions of the
‘ADL Data Analysis’, ‘Interpret RSSI Data’, ‘ADL-based RSSI’, ‘Split Data’, ‘k-NN’, ‘Apply
Model (k-NN)’, and ‘Performance’ “operators”, respectively. This RapidMiner “process”,
that studies the multimodal components of user interactions during ADLs and analyzes
the data from BLE beacons and BLE scanners to track a user’s indoor location in a specific
‘activity-based zone’—which could be either the kitchen or the bedroom or the office or the
toilet ‘zone’, achieved an overall performance accuracy of 81.36%. Further discussion of
these results, the associated performance characteristics, and the rationale behind using
confusion matrix for evaluation of this methodology are presented in Section 5.1.

Figure 7. The flow of control showing the sequence of operation of the different “operators” in the
RapidMiner “process” for detection of indoor location in a specific ‘activity-based zone’ by analysis
of the RSSI data coming from BLE beacons and BLE scanners during different ADLs.
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4.2. Context Independent Indoor Localization from Accelerometer and Gyroscope Data

The following are the steps for development of this functionality:

i. Set up an IoT-based environment, within a spatial context such as indoor layout
of rooms with furniture’s and appliances, using wearables and wireless sensors
to collect the Big Data related to different ADLs. The associated representation
scheme involves mapping the entire spatial location into non-overlapping ‘activity-
based zones’, distinct to different complex activities, by performing complex activity
analysis [63] as outlined in Section 4.1.

ii. Analyze the ADLs in terms of the associated atomic activities, context attributes, core
atomic activities, and core context attributes, and their associated threshold values
based on probabilistic reasoning principles [63].

iii. Infer the semantic relationships between the changing dynamics of atomic activities,
context attributes, core atomic activities, and core context attributes along with the
associated spatial and temporal information.

iv. Study and analyze the semantic relationships between the accelerometer data (in X, Y,
and Z directions), gyroscope data (in X, Y, and Z directions) and the associated atomic
activities, context attributes, core atomic activities, and core context attributes within
each ‘activity-based zone’.

v. Study and analyze the semantic relationships between the accelerometer data (in X, Y,
and Z directions), gyroscope data (in X, Y, and Z directions) and the associated atomic
activities, context attributes, core atomic activities, and core context attributes across
different ‘activity-based zones’ based on the sequence in which the different ADLs
took place and the related temporal information.

vi. Integrate the findings from (iv) and (v) to interpret the interrelated and semantic rela-
tionships between the accelerometer data and the gyroscope data with respect to dif-
ferent ADLs performed in all the ‘activity-based zones’ in the given IoT-based space.

vii. Split the data into training set and test set and develop a machine learning-based
model to detect the location of a user, in terms of these spatial ‘zones’ based on the
associated accelerometer data (in X, Y, and Z directions) and gyroscope data (in X, Y,
and Z directions).

viii. Evaluate the performance characteristics of the model by using a confusion matrix.

4.2.1. System Architecture of the Methodology for Context Independent Indoor
Localization from Accelerometer and Gyroscope Data

The flowchart of the proposed methodology is shown in Figure 8. For convenient rep-
resentation in this flowchart, accelerometer has been represented as “Acc” and gyroscope
has been represented as “Gyro”. This figure outlines the operation of this methodology,
as discussed in the previous section, at a broad level. Here, by “Split Data”, we refer to
splitting the data into training set and test set, with 70% data being selected for the training
and the remaining 30% being selected for the testing. The “performance” in Figure 8 refers
to evaluation of the performance of the Random Forest approach when tested on the test
dataset. This was performed by using the confusion matrix. Next, we outline the steps that
we followed for implementation of this methodology as a RapidMiner process. As outlined
in Section 4.1, for implementation of Step (i) above and for collection of Big Data related to
ADLs, the Context-Driven Human Activity Recognition Framework could be used, that
has already been developed, implemented, and tested at the Multimedia and Augmented
Reality Lab, in the Department of Electrical Engineering and Computer Science at the
University of Cincinnati. The results of the same were published in [64]. As this dataset
by Tabbakha et al. [66] already had the data that we could have collected by setting up
this data collection framework, so we used this dataset for development of the remaining
functionalities of this methodology from Step (ii) in the form of a RapidMiner “process” as
shown in Figure 9 by following the flowchart shown in Figure 8.
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Figure 8. Flowchart of the proposed methodology for detection of indoor location based on the
varying accelerometer and gyroscope data associated with distinct behavioral patterns related to
distinct ADLs performed in distinct ‘activity-based zones’.

Figure 9. The RapidMiner “process” for detection of indoor location based on the varying ac-
celerometer and gyroscope data associated with distinct behavioral patterns related to distinct ADLs
performed in distinct ‘activity-based zones’.

This “process” was developed as a combination of built-in “operators” and user
defined “operators” in RapidMiner. An overview of built-in “operators” and user-defined
“operators” in RapidMiner was presented in Section 3. We used the ‘Dataset’ “operator”
to import this dataset into the RapidMiner “process”. This “operator” was then renamed



Information 2021, 12, 114 21 of 56

to ‘Acc & Gyro Data’ as for development of this “process” as we needed to use only the
activity-based data and the associated accelerometer and gyroscope data. The semantic
relationships between the changing dynamics of atomic activities, context attributes, core
atomic activities, and core context attributes associated to different ADLs were then studied
to interpret the spatial and temporal features of these ADLs (Step iii). This was done
as per as per the methodology used to analyze complex activities (examples shown in
Tables 1 and 2) and the associated “operator” that was developed was named as ‘ADL Data
Analysis’. The functionality to study the semantic relationships between the accelerometer
data (in X, Y, and Z directions), gyroscope data (in X, Y, and Z directions) and the associated
atomic activities, context attributes, core atomic activities, and core context attributes
within each ‘activity-based zone’ was then developed (Step iv) in the form of an “operator”
which we named as ‘Analyze Acc & Gyro’. Thereafter, we developed the functionality to
study the semantic relationships between the accelerometer data (in X, Y, and Z directions),
gyroscope data (in X, Y, and Z directions), and the associated atomic activities, context
attributes, core atomic activities, and core context attributes across different ‘activity-based
zones’ based on the sequence in which the ADLs took place as well as the associated
temporal information, in the form of an “operator” which we named as ‘Acc & Gyro
2nd Step’ (Step v). The characteristic features of these “operators” were then merged to
develop the functionality to interpret the interrelated and semantic relationships between
the accelerometer data and the gyroscope data with respect to different ADLs performed in
all the ‘activity-based zones’ (Step vi). This was done by developing an “operator” which
we named as ‘ADL-based Acc, Gyro’. Then, we used the built-in ‘Split Data’ “operator”
to split the data into training set and test set with 70% of the data for training and 30%
of the data for testing. A Random Forest-based learning approach was used to develop
the machine learning model which was tested on the test set by using the ‘Apply Model’
“operator”. ‘Random Forest’ and ‘Apply Model’ are built-in “operators” in RapidMiner
that can be directly used in any “process”. Thereafter, we used the built-in ‘Performance’
“operator” in RapidMiner to evaluate the performance characteristics of the model in the
form of a confusion matrix.

Figure 10 further clarifies the architecture of the proposed methodology as developed
in RapidMiner [60]. This figure shows the flow of control depicting the sequence of
operation of the different “operators” in this RapidMiner “process”. As can be seen from
Figure 10, the “operator” ‘Acc & Gyro Data’ is executed first, which is followed by the
executions of the ‘ADL Data Analysis’, ‘Analyze Acc & Gyro’, ‘Analyze Acc & Gyro—2nd
Step’, ‘ADL-based Acc, Gyro’, ‘Split Data’, ‘Random Forest’, ‘Apply Model (RF)’, and
‘Performance’ “operators”, respectively.

Figure 10. The flow of control showing the sequence of operation of the different “operators” in
the RapidMiner “process” for detection of indoor location based on the varying accelerometer and
gyroscope data associated with distinct behavioral patterns related to distinct ADLs performed in
distinct ‘activity-based zones’.
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This methodology is based on interpretation of the accelerometer and gyroscope data
from diverse behavioral patterns to detect the ‘zone-based’ indoor location of a user in
any IoT-based environment. Here, the ‘zone-based’ mapping of a user’s location refers to
mapping the user in one of the multiple ‘activity-based zones’ that any given IoT-based
environment can be classified into based on the specific activity being performed by the
user. This classification of any given environment can be performed by the ‘ADL Data
Analysis’ “operator” by using the complex activity recognition and analysis principles.
The functionality of this “operator”, as described above, is neither environment specific
nor context parameter specific, thus its methodology can be applied for spatial mapping
of any given IoT-based space. The accelerometer and gyroscope data that are analyzed
and interpreted by this approach are a result or function of human behavior—that can
be studied in the form of associated postures, gestures, movements, and motions, found
in any IoT-based environment. Analysis of such behavior by the ‘Analyze Acc & Gyro’,
‘Acc & Gyro 2nd Step’, and ‘ADL-based Acc, Gyro’ is thus not dependent on a specific
set of context parameters local to any specific IoT-based setting. All built-in data analysis
related “operators” in RapidMiner are developed in a way so that they can be applied
to any kind of data and they do not need any specific features in the environment to
be present for their operation or function. The other “operators” that are a part of this
“process”—‘Split Data’, ‘Random Forest’, ‘Apply Model’, and ‘Performance’ are built-in
“operators” in RapidMiner and are therefore context independent. To summarize, all the
operators that were used to develop this RapidMiner process, shown in Figure 9, are
associated with distinct functionalities and characteristics that are not a function of any
specific context-based or environment-based features local to any specific environment.
In other words, these “operators” and thus the entire RapidMiner “process” as shown in
Figure 9, would function for analysis and interpretation of any kind of user interaction
data for performing the Indoor Localization of the user in that environment, based on
the associated behavioral patterns distinct to different ‘zones’ local to that environment.
This upholds the context independent nature of the entire RapidMiner “process” and thus
the proposed methodology in Section 4.2. When tested on a dataset, this methodology,
as shown in Figure 9, achieved a performance accuracy of 81.13%. Further discussion of
these results, the associated performance characteristics, and the rationale behind using
confusion matrix for evaluation of this methodology are presented in Section 5.2.

4.3. Detection of the Spatial Coordinates of the User in any ‘Activity-Based Zone’

The following are the steps for development of this functionality in the proposed framework:

i. Set up an IoT-based environment, within a spatial context such as indoor layout
of rooms with furniture’s and appliances, using wearables, and wireless sensors to
collect the Big Data related to different ADLs.

ii. The associated representation scheme involves setting up a context-based reference
system in the given IoT-based environment. This system would track the instanta-
neous X and Y coordinates of the user’s position information with respect to the origin
of this reference system.

iii. Study each ADL performed in a specific ‘activity-based zone’ in terms of the multi-
modal user interactions performed on the context parameters local to that ‘zone’. This
involves studying the atomic activities, context attributes, core atomic activities, core
context attributes, start atomic activities, start context attributes, end atomic activities,
and end context attributes.

iv. For each of these user interactions with the context parameters, track the spatial
configurations and changes in the user’s position information, by using this refer-
ence system.

v. Study the changes in the instantaneous spatial configurations of the user as per this
reference system with respect to the dynamic temporal information associated with
each user interaction performed in the given ‘activity-based zone’.
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vi. Study and record all the user interactions as per (v), specific to the given ADL, in a
given ‘activity-based zone’.

vii. Split the data into training set and test set and use the training set to train a machine
learning-based model for detection of the varying X and Y coordinates of the user’s
position information in any ‘activity-based’ zone, as per the dynamic user interactions
with context parameters.

viii. Evaluate the performance characteristics of the model by using the root mean squared
error method.

4.3.1. System Architecture of the Methodology for Detection of the Spatial Coordinates of
the User in any ‘Activity-Based Zone’

The flowchart for the proposed methodology is shown in Figure 11. This figure
outlines the operation of this methodology, as discussed in the previous section, at a
broad level. The distances from the three Bluetooth beacons that were used to develop the
context-based reference system are represented as Distance A, Distance B, and Distance C,
respectively. These distances were measured in meters. The actual X and Y coordinates of
the user were measured in centimeters with an accuracy of +/−1 cm in the dataset [67] by
analyzing the user’s relative position with respect to these three beacons at a given point
of time by using this reference system. In this figure, by “Split Data”, we refer to splitting
the data into training set and test set, with 70% data being selected for the training and
the remaining 30% being selected for the testing. The “performance” in Figure 11 refers
to evaluation of the performance of the machine learning approach when tested on the
test dataset. This was evaluated by using the RMSE method, where RMSE errors were
calculated separately in the X-direction and Y-direction as per ISO/IEC 18305:2016 [31].
This learning approach has been developed as a Random Forest model in this section.
However, instead of a Random Forest model, other learning approaches such as Artificial
Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees,
Deep Learning, and Linear Regression can also be seamlessly used for development of
this methodology by following the flowchart shown in Figure 11. In Section 6, we have
presented a comparative study where we implemented all these machine learning models—
Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-
NN, Gradient Boosted Trees, Deep Learning, and Linear Regression for development of
this methodology and compared their performance characteristics to deduce the optimal
learning model for development of such an Indoor Localization system for detection of the
spatial coordinates of the user in any ‘activity-based zone’.
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Figure 11. Flowchart for development of the methodology for detection of the varying X and Y
coordinates of the user’s position in any ‘activity-based’ zone, as per the dynamic user interactions
with context parameters related to different activities.

Next, we outline the steps for development of the methodology as a RapidMiner
process. As outlined in Section 4.1, for implementation of the Steps (i) and (ii) above and for
collection of Big Data, the Context-Driven Human Activity Recognition Framework could
be used, that has already been developed, implemented, and tested at the Multimedia and
Augmented Reality Lab, in the Department of Electrical Engineering and Computer Science
at the University of Cincinnati. The results associated with the same were published in [64].
As this dataset [67] already had the data and the corresponding data attributes, that we
could have collected by setting up this data collection framework, so we used this dataset
for development of the remaining functionalities of this methodology from Step (iii) in the
form of a RapidMiner “process”, as shown in Figure 12. This “process” was developed
as a combination of built-in “operators” and user defined “operators” in RapidMiner.
An overview of built-in “operators” and user-defined “operators” in RapidMiner was
presented in Section 3.
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Figure 12. The RapidMiner “process” for detection of the varying X and Y coordinates of the user’s
position in any ‘activity-based’ zone, as per the dynamic user interactions with context parameters
related to different activities.

This dataset used a reference system that was based out of comparing the user’s spatial
configuration, in terms of the actual distances—Distance A, Distance B, and Distance C,
with respect to 3 Bluetooth beacons while analyzing the associated temporal information.
This helped to detect the actual X and Y coordinates of the user in the given IoT-based
space. The data consisted of 250 rows. We used RapidMiner [60] to develop a “process”
to implement this functionality and evaluated its performance by using this dataset. The
same version of RapidMiner and the same computer, as outlined in Section 3, were used
for development of this “process”. We used the ‘Dataset’ “operator” to import this dataset
into the RapidMiner “process”. The ‘Data-Preprocess’ “operator” was developed and
then used to perform multiple preprocessing steps (Steps iii to vi) prior to splitting the
data for training and testing. We used 70% of the data for training and the rest was
used for testing. This data splitting was performed by the built in ‘Split Data’ “operator”.
A Random Forest learning approach was used to train the model by using the built-in
‘Random Forest’ “operator”. The ‘Apply Model’ “operator”, another built-in “operator”,
was used to apply the learning model on the test data and its performance characteristics
were evaluated by using the ‘Performance’ “operator” in RapidMiner. We used the root
mean square error (RMSE) method of evaluating the performance characteristics as per
ISO/IEC18305:2016 [31]. This RapidMiner “process” is shown in Figure 12.

Figure 13 further clarifies the architecture of this proposed methodology as developed
in RapidMiner [60]. This figure shows the flow of control depicting the sequence of
operation of the different “operators” in this RapidMiner “process”. As can be seen from
Figure 13, the “operator” ‘Dataset’ is executed first, which is followed by the executions
of the ‘Data Preprocess’, ‘Split Data’, ‘Random Forest’, ‘Apply Model’, and ‘Performance’
“operators”, respectively. The RMSE for detection of X and Y coordinates of the user’s
position were found to be 5.85 cm and 5.36 cm, respectively. The Horizontal Error, as
defined in ISO/IEC18305:2016 [31], was found to be 7.93 cm. Further discussion of these
results, the associated performance characteristics, and the rationale behind using RMSE
for evaluation of this methodology are presented in Section 5.3.
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Figure 13. The flow of control showing the sequence of operation of the different “operators” in
the RapidMiner “process” for detection of the varying X and Y coordinates of the user’s position in
any ‘activity-based’ zone, as per the dynamic user interactions with context parameters related to
different activities.

5. Results and Findings
5.1. Indoor Localization from BLE Beacons and BLE Scanners Data during ADLs

In this section we present and discuss the results associated with the development
of the proposed Big-Data driven methodology that studies the multimodal components
of user interactions and analyzes the data from BLE beacons and BLE scanners to track a
user’s indoor location in a specific ‘activity-based zone’ during Activities of Daily Living,
to test our first hypothesis—“The RSSI data coming from BLE scanners and BLE beacons can
be studied and analyzed to detect the changes in a user’s instantaneous location during different
activities, which are a result of the varying user interactions with dynamic context parameters”, as
outlined in Section 4.1.

Upon development of the RapidMiner “process” as shown in Figure 6 by following the
methods for development of this functionality (Section 4.1), we first studied the RSSI data
from BLE beacons and BLE scanners associated with the varying atomic activities, context
attributes, core atomic activities, and core context attributes associated with each of these
ADLs performed in the different ‘activity-based zones’. This is shown in Figures 14–16. In
each of these figures, the X-axis represents the specific rooms or ‘zones’ modelled in the
simulated Smart Home. The Y-axis represents the BLE scanner readings in different rooms
or ‘activity-based zones’. For instance, in Figure 14, the X-axis represents the different
locations and the Y-axis represents the RSSI data recorded by the different BLE scanners
present in the environment. From the dataset, it was observed that a BLE scanner provided
an RSSI value of −120 when the BLE beacon was far away from the scanner or was out of
its range. Therefore, for any value greater than −120, it could be concluded that the person
was in that room or ‘activity-based zone’. This is represented on the Y-axis. For instance, in
Figure 14, the RSSI data is greater than −120 for the kitchen sensors but equal to −120 for
sensors in all other rooms. This infers the presence of the person in the kitchen area.
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Figure 14. Analysis of RSSI data coming from different BLE scanners and BLE beacons when different
activities were performed in the kitchen.

Figure 15. Analysis of RSSI data coming from different BLE scanners and BLE beacons when different
activities were performed in the office area.

Figure 16. Analysis of RSSI data coming from different BLE scanners and BLE beacons when different
activities were performed in the toilet.
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The plots in each of these figures are color coded based on different complex activities
that were performed by the user in each of these rooms or ‘activity-based zones’—sleeping,
changing clothes, relaxing, moving around, cooking, eating, working, defecating, and an
emergency. An emergency constituted detecting the user in a lying position (either from a
fall or unconsciousness) in an environment where a user is not supposed to lie down, for
instance in the toilet. Figure 17 shows the output of the RapidMiner “process” (for the first
13 rows) which involved predicting the user’s location in a specific ‘activity-based zone’
during different ADLs based on the associated RSSI data coming from the different BLE
scanners and BLE beacons.

Figure 17. Output of the RapidMiner “process” (first 13 rows) shown in Figure 6 to detect a user’s
location during different ADLs based on the RSSI data coming from BLE scanners and BLE beacons.

The output of the RapidMiner “process” assigned a confidence value for predicting
the user’s location in each of these ‘activity-based zones’. The ‘activity-based zone’ with
the highest confidence value was the final prediction of the model—in terms of predicting
the user’s location. For example, in Row number 3 of Figure 17, the confidence values of
the model for the user’s presence in the bedroom, kitchen, office and toilet ‘zones’ were,
respectively, 0.607, 0.393, 0, and 0. As the confidence value of the model was highest for
the bedroom ‘zone’, so, the final prediction of the model (third attribute from the left in
Figure 17) was that the user was present in the bedroom. Table 3 consists of the description
of all the attributes represented in the output shown in Figure 17.

Table 3. Description of the attributes of the output of the RapidMiner “process” shown in Figure 17.

Attribute Name Description

Row No The row number in the output table
Location The actual instantaneous zone-based location of the user

Prediction (Location) The predicted instantaneous zone-based location of the user
Confidence (bedroom) The degree of certainty that the user was in the bedroom
Confidence (kitchen) The degree of certainty that the user was in the kitchen
Confidence (office) The degree of certainty that the user was in the office area
Confidence (toilet) The degree of certainty that the user was in the toilet

The performance characteristics of this model, in terms of predicting whether the user
was in the bedroom or kitchen or office area or toilet were evaluated by using a confusion
matrix. Here, the data attribute being predicted by this methodology was the ‘activity-
based zone’ and the associated values of the same were bedroom, kitchen, office, and toilet,
as per the characteristics of the dataset used [64] and the associated functionalities of this
approach (Section 4.1). As can be seen from Figure 17 and Table 3, none of these values
of the ‘activity-based zone’ were numerical values. Even though ISO/IEC18305:2016 [31]
recommends evaluating Indoor Localization systems either by using RMSE, or Mean of



Information 2021, 12, 114 29 of 56

Error, or Covariance Matrix of Error, or Mean of Absolute Error, or Mean, or Standard
Deviation of Vertical Error, etc.; such performance metrics can only be used when the
predicted attribute is of numerical type—such as the numerical value of the X-coordinate,
the numerical value of the Y-coordinate, the distance of the user from a specific reference
point, etc. For non-numeric data types such performance metrics do not work. This is
because one of the steps towards using the RMSE method of performance evaluation
involves calculation of the arithmetic mean of the squares of a set of numbers [68] and
similar mathematical operations are performed on the data when the other performance
metrics as stated in ISO/IEC18305:2016 [31] are used. For non-numerical data neither can
an arithmetic mean be computed nor can any mathematical operation be performed on the
data. Evaluating the performance characteristics of an approach that involves prediction
of non-numeric data by using a confusion matrix is a well-known practice in the field
of machine learning, pattern recognition, data science, and their interrelated fields [69].
Therefore, we used a confusion matrix to study the performance characteristics of this
methodology as proposed in Section 4.1.

The tabular representation and plot view of the performance characteristics, as ob-
tained from RapidMiner, are shown in Figures 18 and 19, respectively. As can be observed
from Figures 18 and 19, the model achieved an overall performance accuracy of 81.36%.
The respective class recall values were 85.00%, 70.00%, 88.89%, and 90.00% for predicting
the location of a user in bedroom, kitchen, office, and toilet, respectively. Further discussion
about how this approach and the associated results and findings address multiple research
challenges in this field is presented in Section 7.

Figure 18. A confusion matrix (tabular view) representing the performance accuracy of the Rapid-
Miner “process” shown in Figure 6 to detect a user’s location during different ADLs based on the
RSSI data coming from BLE scanners and BLE beacons.

Figure 19. A confusion matrix (plot view) representing the performance accuracy of the RapidMiner
“process” shown in Figure 6 to detect a user’s location during different ADLs based on the RSSI data
coming from BLE scanners and BLE beacons.
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5.2. Context Independent Indoor Localization from Accelerometer and Gyroscope Data

In this section we present and discuss the results associated with the development
of the proposed context independent approach that can interpret the accelerometer and
gyroscope data from diverse behavioral patterns to detect the ‘zone-based’ indoor location
of a user in any IoT-based environment, to test our second hypothesis—“The dynamic
changes in the spatial configurations of a user during different activities can be interpreted by
the analysis of the behavioral patterns that are localized and distinct for different activities”, as
outlined in Section 4.2. By using the RapidMiner “process” as shown in Figure 9 and
by following the proposed functionalities of our framework (Section 4.2), we studied the
variations of the accelerometer data (in X, Y, and Z directions) and gyroscope data (in
X, Y, and Z directions) as per the variations in behavioral and user interaction patterns
in the distinct ‘activity-based zones’ in the confines of the given IoT-based space. These
variations in behavioral patterns were a result of the user performing different ADLs,
characterized by distinct user interactions with the varying context parameters, in each of
these ‘activity-based zones’. This study is represented in Figures 20–25.

Figure 20. Analysis of the accelerometer data (in the X-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.

Figure 21. Analysis of the accelerometer data (in the Y-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.
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Figure 22. Analysis of the accelerometer data (in the Z-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.

Figure 23. Analysis of the gyroscope data (in the X-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.

Figure 24. Analysis of the gyroscope data (in the Y-direction) for different behavioral patterns
associated with different ADLs performed in the given simulated smart home environment.
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Figure 25. Analysis of the gyroscope data (in the Z-direction) for different behavioral patterns
associated with different ADLs performed in the given smart home environment.

Figure 26 shows the output of the RapidMiner “process” (for the first 13 rows) which
involved predicting the user’s location in a specific ‘activity-based zone’ based on the
associated accelerometer and gyroscope data. The output of the RapidMiner “process”
assigned a confidence value for predicting the user’s location in each of these ‘activity-
based zones’. The ‘activity-based zone’ with the highest confidence value was the final
prediction of the model—in terms of predicting the user’s location. For example, in Row
number 7 of Figure 26, the confidence values of the model for the user’s presence in the
bedroom, kitchen, office, and toilet were, respectively, 0.985, 0.003, 0.010, and 0.002. As
the confidence value of the model was highest for the bedroom so the final prediction of
the model (third attribute from the left in Figure 26) was that the user was present in the
bedroom. Table 4 consists of the description of all the attributes represented in the output
shown in Figure 26.

Figure 26. Output of the RapidMiner “process” (first 13 rows) shown in Figure 9 to detect a user’s
location during different ADLs based on the associated accelerometer and gyroscope data.

Table 4. Description of the attributes of the output of the RapidMiner “process” shown in Figure 26.

Attribute Name Description

Row No The row number in the output table
Location The actual instantaneous zone-based location of the user

Prediction (Location) The predicted instantaneous zone-based location of the user
Confidence (bedroom) The degree of certainty that the user was in the bedroom
Confidence (kitchen) The degree of certainty that the user was in the kitchen
Confidence (office) The degree of certainty that the user was in the office area
Confidence (toilet) The degree of certainty that the user was in the toilet
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The performance characteristics of this model in terms of predicting whether the
user was in the bedroom or kitchen or office area or toilet were evaluated by using a
confusion matrix.

Here, the data attribute being predicted by this methodology was the ‘activity-based
zone’ and the associated values of the same were bedroom, kitchen, office, and toilet, as
per the characteristics of the dataset used [64] and the associated functionalities of this
approach (Section 4.2). As can be seen from Figure 26 and Table 4, none of these values
of the ‘activity-based zone’ were numerical values. Even though ISO/IEC18305:2016 [31]
recommends evaluating Indoor Localization systems either by using RMSE, or Mean of
Error, or Covariance Matrix of Error, or Mean of Absolute Error, or Mean, or Standard
Deviation of Vertical Error, etc.; such performance metrics can only be used when the
predicted attribute is of numerical type—such as the numerical value of the X-coordinate,
the numerical value of the Y-coordinate, the distance of the user from a specific reference
point, etc. For non-numeric data types such performance metrics do not work. This is
because one of the steps towards using the RMSE method of performance evaluation
involves calculation of the arithmetic mean of the squares of a set of numbers [68] and
similar mathematical operations are performed on the data when the other performance
metrics as stated in ISO/IEC18305:2016 [31] are used. For non-numerical data neither can
an arithmetic mean be computed nor can any mathematical operation be performed on the
data. Evaluating the performance characteristics of an approach that involves prediction
of non-numeric data by using a confusion matrix is a well-known practice in the field
of machine learning, pattern recognition, data science, and their interrelated fields [69].
Therefore, we used a confusion matrix to study the performance characteristics of this
methodology as proposed in Section 4.2.

The tabular representation and plot view of the performance characteristics as obtained
from RapidMiner are shown in Figures 27 and 28, respectively. As can be observed from
Figures 27 and 28, the model achieved an overall performance accuracy of 81.13%. The
class recall values were 86.36%, 68.75%, 83.33%, and 88.89% for predicting the location of a
user in bedroom, kitchen, office, and toilet, respectively. Further discussion about how this
approach and the associated results and findings address multiple research challenges in
this field is presented in Section 7.

Figure 27. A confusion matrix (tabular view) representing the performance accuracy of the Rapid-
Miner “process” shown in Figure 9 to detect a user’s indoor location based on the associated
accelerometer and gyroscope data.
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Figure 28. A confusion matrix (plot view) representing the performance accuracy of the RapidMiner
“process” shown in Figure 9 to detect a user’s indoor location based on the associated accelerometer
and gyroscope data.

5.3. Detection of the Spatial Coordinates of the User in Any ‘Activity-Based Zone’

In this section we present and discuss the results associated with the development
of the proposed methodology to detect the spatial coordinates of a user’s indoor position
based on the associated user interactions with the context parameters and the user-centered
local spatial context, by using a reference system, to test our third hypothesis—“Tracking
and analyzing the user interactions with the context parameters along with the associated spatial
information, by using a reference system, helps to detect the dynamic spatial configurations of the
user”, as outlined in Section 4.3. The process involved setting up a context-based reference
system to track the user’s location in the confines of the given IoT-based environment
during different ADLs and consisted of multiple steps. The first step was to study each
ADL performed in a specific ‘activity-based zone’ in terms of the multimodal user in-
teractions performed on the context parameters local to that ‘activity-based zone’. This
involved studying the atomic activities, context attributes, core atomic activities, core
context attributes, start atomic activities, start context attributes, end atomic activities,
and end context attributes associated with all the complex activities. The second step
involved tracking the spatial configurations and changes in the user’s position information,
by using the reference system (Section 4.3), during all the varying interactions with the
context parameters. The methodology then studied the changes in the instantaneous spatial
configurations of the user as per this reference system with respect to the dynamic temporal
information associated with each user interaction performed in any given ‘activity-based
zone’ to train a machine learning model. Upon development of the RapidMiner “process”
as shown in Figure 12, we first studied the dynamic changes in the user’s distance from the
three beacons that were used to develop the reference system of this dataset [67]. This is
shown in Figures 29–32. The distances from these three beacons, measured in meters, are
represented as Distance A, Distance B, and Distance C, respectively, in these figures. These
distances were measured in meters and the actual X and Y coordinates of the user were
measured in centimeters with an accuracy of +/−1 cm in the dataset [67].
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Figure 29. Analysis of the variation of Distance A (user’s actual distance from one of the beacons)
at different timestamps, based on the associated changes in behavioral patterns. Due to paucity of
space the data associated with a few timestamps are shown here.

Figure 30. Analysis of the variation of Distance B (user’s actual distance from one of the beacons)
at different timestamps, based on the associated changes in behavioral patterns. Due to paucity of
space the data associated with a few timestamps are shown here.

Figure 31. Analysis of the variation of Distance C (user’s actual distance from one of the beacons)
at different timestamps, based on the associated changes in behavioral patterns. Due to paucity of
space the data associated with a few timestamps are shown here.
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Figure 32. Analysis of the variation of Distances A, B, and C plotted together at different timestamps,
based on the associated changes in behavioral patterns. Due to paucity of space the data associated
with a few timestamps are shown here.

The Random Forest model that we developed in RapidMiner (Figure 12) consisted
of 100 random trees, and used the least square criterion for splitting at each node. The
maximum depth of a tree was 10. This learning model assigned weights to each of these
distances—Distance A, Distance B, and Distance C to accurately track the user based on
the provided reference system. The weights that the model associated with Distance A,
Distance B, and Distance C were 0.531, 0.287, and 0.183, respectively, for determination of
the X-coordinate of the user’s location and these respective weights were 0.639, 0.170, and
0.191 for determination of the Y-coordinate of the user’s location.

Figure 33 shows one of these random trees that was developed by the Random Forest
model, as shown in Figure 12, and the reasoning-based description of this tree is shown
in Figure 34. This random tree was associated with detecting different values of the X-
coordinate of the user based on the associated rules at each node. We explain the working of
the tree for one such detection here, when the user was located at the X-coordinate—79.000
as per this reference system. This is marked in blue in Figure 33. The comparison started at
the topmost node—which for this tree was Distance A. This distance was lesser than or
equal to 1.331 m, so the control moved to the right half of the tree. Then, it checked the
value of Distance B, which was greater than 1.038 m, so it went to the left half of this node,
where it checked the value of Distance A again. This value was greater than 1.078 m so
it went to the right half and checked Distance B at the next node, which was less than or
equal to 1.373 m, so the control moved to the right half of this node for checking Distance
C. At this node, after performing the condition check, it moved to the left side of the node
as Distance C was greater than 0.729 m. Then, the control compared the values of Distance
A and Distance B with respect to a couple of more conditions at the respective child nodes
to finally deduce the X-coordinate of the user as 79.000.
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Figure 33. Representation of one of the Random Trees developed by the Random Forest-based
RapidMiner “process” shown in Figure 12. This random tree was associated with detecting different
values of the X-coordinate of the user based on the associated rules at each node.

Figure 34. Reasoning-based description of the Random Tree shown in Figure 33, that was associated
with detecting different values of the X-coordinate of the user based on the associated rules at
each node.

Figure 35 shows another of these random trees that was developed by the Random
Forest model, as shown in Figure 12, and the reasoning-based description of this tree
is shown in Figure 36. This random tree was associated with detecting different values
of the Y-coordinate of the user based on the associated rules at each node. We explain
the working of the tree for one such detection here, when the user was located at the
Y-coordinate—137.000 as per this reference system. This is marked in blue in Figure 35.
The comparison starts at the topmost node—Distance A and it is greater than 1.0008 m,
so the control moves to the left side of the tree to check Distance B. Here, the value of this
distance was greater than 1.334 m, so the control moved to the right side of this node to
check for another condition associated with Distance B. Here, it checked if the value of
Distance B was greater than 1.286 m or not. For this specific condition as Distance B was
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greater than 1.286 m so the control traversed to the left side of the node to its child node
which is associated with checking another condition at Distance A. This value was less
than or equal to 1.095 m, so the Y-coordinate of the user was deduced to be 137.000.

Figure 35. Representation of one of the Random Trees developed by the Random Forest-based
RapidMiner “process” shown in Figure 12. This random tree was associated with detecting different
values of the Y-coordinate of the user based on the associated rules at each node.

Figure 36. Reasoning-based description of the Random Tree shown in Figure 35, that was associated
with detecting different values of the Y-coordinate of the user based on the associated rules at
each node.

Figures 37 and 38 show the output of the RapidMiner “process” (for the first 12
rows), shown in Figure 12, which detected the X-coordinate and Y-coordinate of the user’s
location based on this methodology, as outlined in Section 4.3. This output was shown
by RapidMiner after taking into consideration all the predictions done by each of these
100 Random Trees which were a part of the developed Random Forest-based learning
model (Figure 12). The maximum depth of all these random trees was 10. Tables 5 and 6
consist of the description of all the attributes represented in Figures 37 and 38, respectively.
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Figure 37. Output (first 12 rows) of the RapidMiner “process” shown in Figure 12 for detection of the
spatial coordinates (X-coordinate) of the user in each ‘activity-based zone’.

Figure 38. Output (first 12 rows) of the RapidMiner “process” shown in Figure 12 for detection of the
spatial coordinates (Y-coordinate) of the user in each ‘activity-based zone’.

Table 5. Description of the attributes of the output of the RapidMiner “process” shown in Figure 37.

Attribute Name Description

Row No The row number in the output table
Position X The actual X coordinate of the user’s position

Prediction (Position X) The predicted X coordinate of the user’s position
Distance A The actual distance of the user from the first Bluetooth beacon
Distance B The actual distance of the user from the second Bluetooth beacon
Distance C The actual distance of the user from the third Bluetooth beacon

Time The associated timestamp information

Table 6. Description of the attributes of the output of the RapidMiner “process” shown in Figure 38.

Attribute Name Description

Row No The row number in the output table
Position Y The actual Y coordinate of the user’s position

Prediction (Position Y) The predicted Y coordinate of the user’s position
Distance A The actual distance of the user from the first Bluetooth beacon
Distance B The actual distance of the user from the second Bluetooth beacon
Distance C The actual distance of the user from the third Bluetooth beacon

Time The associated timestamp information
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The performance characteristics of this RapidMiner “process”, shown in Figure 12,
were evaluated by using the RMSE in RapidMiner and the findings are outlined in Table 7.
Here, as the predicted attributes were X-coordinate and the Y-coordinate values, both of
which were of numerical type, so we were able to use the RMSE method for performance
evaluation [68] as recommended by ISO/IEC18305:2016—an international standard for
evaluating localization and tracking systems [31]. While RMSE is sometimes calculated by
using vector analysis where a single value of RMSE is calculated instead of RMSE along X
and Y directions, but as ISO/IEC18305:2016 [31] provides 3 different formulae in Chapter 8,
for calculation of RMSE in X-direction, Y-direction, and the associated Horizontal Error, so
we calculated these performance metrics separately. The formulae for calculation of these
three performance characteristics, as mentioned in ISO/IEC18305:2016, are represented in
Equations (1)–(3).

εx,rms =

√√√√ 1
N

N

∑
i=1

ε2
x,i (1)

εy,rms =

√√√√ 1
N

N

∑
i=1

ε2
y,i (2)

εh,rms =
√

ε2
x,rms + ε2

y,rms (3)

where:

εx,rms stands for RMSE in the X-direction
εy,rms stands for RMSE in the Y-direction
εh,rms stands for Horizontal Error that considers RMSE in the X-direction and RMSE in the
Y-direction
ε2

x,i stands for squared errors in the X-direction
ε2

y,i stands for squared errors in the Y-direction

N stands for sample size

Table 7. Description of the performance characteristics of the Random Forest-based RapidMiner
“process” shown in Figure 12.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 5.85 cm
Root Mean Squared Error for detection of Y-coordinate 5.36 cm

Horizontal Error 7.93 cm

As can be observed from Table 7, the root mean squared error for detection of the
instantaneous X-coordinate and Y-coordinate values of the user’s position were found to
be 5.85 cm and 5.36 cm, respectively. To add to the above, the Horizontal Error was found
to be 7.93 cm. Further discussion about how this approach and the associated results and
findings address multiple research challenges in this field is presented in Section 7.

6. Deducing the Optimal Machine Learning Model for Indoor Localization

As outlined in Section 2, one the research challenges in this field of Indoor Localization
is the need to develop an optimal machine learning model for Indoor Localization systems,
Indoor Positioning Systems, and Location-Based Services. In [9–25], researchers have
used multiple machine learning approaches—Random Forest, Artificial Neural Network,
Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning, and
Linear Regression. However, none of these works implemented multiple machine learning
models to evaluate and compare the associated performance characteristics to deduce the
optimal machine learning approach. Due to the differences in the datasets used or the real-
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time data that was collected, the associated data preprocessing steps that were different,
variations in train and test ratio of the data, and several other dissimilar steps that were
associated with the developments of each of these machine learning models as presented
in [9–25], their final performance accuracies cannot be directly compared to deduce the best
approach. Thus, analyzing the performance characteristics of multiple machine learning
models, developed, implemented, and tested as per the same methodology, to deduce the
optimal approach for development of such Indoor Localization systems serves as the main
motivation for the work presented in the section.

In Section 4.3, we outlined the steps associated with the proposed methodology to
detect the spatial coordinates of a user’s indoor position based on the associated user
interactions with the context parameters and the user-centered local spatial context, by
using a reference system. Upon development of the same, as a RapidMiner “process”, as
shown in Figure 12, by using the Random Forest-based learning approach, we evaluated
its performance characteristics by calculating the RMSE for X coordinate, the RMSE for Y
coordinate, and the Horizontal Error—these are performance evaluation metrics mentioned
in ISO/IEC18305:2016 [31]. The RMSE for detection of the X-coordinate and Y-coordinate
were found to be 5.85 cm and 5.36 cm as per Equations (1) and (2), respectively. The
associated Horizontal Error as per Equation (3) was found to be 7.93 cm. These results are
shown in Table 7. In this section, we followed the same steps as outlined in Section 4.3 and
as per the flowchart shown in Figure 11, to develop, implement, and test this methodology
by using all the machine learning methods that have been used by researchers [9–25] in
this field. These machine learning methods included—Random Forest, Artificial Neural
Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep
Learning, and Linear Regression. As we had already developed this approach by using
the Random Forest approach (Figure 12 and Section 5.3), so, we did not repeat the same in
this section and we performed this study on all the other machine learning methods. For
each of these methods we developed a RapidMiner “process” by using the same version
of RapidMiner on the same computer as outlined in Section 3. Each of these processes
were developed as a combination of built-in “operators” and user defined “operators”
in RapidMiner. An overview of built-in “operators” and user-defined “operators” in
RapidMiner was presented in Section 3. We used the same system architecture as outlined
in Figure 11 for development of all the machine learning-based “processes” in RapidMiner
as discussed here, so, a separate system architecture is not provided in this section. The
specific steps that we followed for development of each of these RapidMiner processes
corresponding to these different machine learning methods are as follows:

i. Use the ‘Dataset’ “operator” to import the dataset [67] into the RapidMiner “process”.
ii. Utilize the ‘Data-Preprocess’ “operator” to perform multiple preprocessing steps

(Steps iii to vi in Section 4.3) prior to splitting the data for training and testing. We
developed this ‘Data-Preprocess’ “operator”.

iii. Use the built-in “operator” called ‘Split Data’ to divide the dataset into training set
and test set. The dataset [67] consisted of 250 rows. We used 70% of the data for
training and the remaining 30% for testing.

iv. Use the specific machine learning model to train the system. By specific machine
learning model, we mean either the usage of the Artificial Neural Network or Decision
Tree or Support Vector Machine or k-NN or Gradient Boosted Trees or Deep Learning
or Linear Regression. These machine learning models are present in RapidMiner
as built-in “operators” that can be directly used. However, a few of these learning
models in RapidMiner such as Artificial Neural Network, Support Vector Machines,
and Linear Regression sometimes need the ‘nominal to numerical’ “operator” for
training and testing of the model, based on the characteristics and nature of the
dataset being used.

v. Utilize the built-in ‘Apply Model’ “operator” to apply the learning model on the test
data. This “operator” was renamed in each of these “processes”, as per the specific
learning model that was being developed and evaluated, to indicate the differences
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in the associated functionalities of this “operator” for each of these RapidMiner
“processes”. For the RapidMiner “process” that used the Artificial Neural Network,
the ‘Apply Model’ “operator” was renamed to ‘Apply Model—ANN’. Similarly,
for the machine learning models—Decision Tree, Support Vector Machine, k-NN,
Gradient Boosted Trees, Deep Learning, and Linear Regression, this “operator” was
renamed to ‘Apply Model—DT’, ‘Apply Model—SVM’, ‘Apply Model—kNN’, ‘Apply
Model—GBT’, ‘Apply Model—DL’, and ‘Apply Model—LR’, respectively.

vi. Use the built-in ‘Performance’ “operator” to evaluate the performance characteristics
of the “process” by calculating the RMSE in X-direction, the RMSE in Y-direction,
and the Horizontal Error as per Equations (1)–(3), respectively. This “operator”
was renamed in each of these “processes”, as per the specific learning model that
was being developed and evaluated, to indicate the differences in the associated
functionalities of this “operator” for each of these RapidMiner “processes”. For the
RapidMiner “process” that used the Artificial Neural Network, the ‘Performance’
“operator” was renamed to ‘ANN-Performance’. Similarly, for the machine learning
models—Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep
Learning, and Linear Regression, this “operator” was renamed to ‘DT-Performance’,
‘SVM-Performance’, ‘kNN-Performance’, ‘GBT-Performance’, ‘DL-Performance’, and
‘LR-Performance’, respectively.

These RapidMiner “processes”, that were developed by using the learning approaches—
Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted
Trees, Deep Learning, and Linear Regression, are shown in Figures 39–45, respectively.
The corresponding performance metrics in terms of the RMSE in X-direction, the RMSE in
Y-direction, and the Horizontal Error are shown in Tables 8–14, respectively. We did not
develop the RapidMiner “process” by using the Random Forest approach in this section as
we had already developed the same in Figure 12 and discussed its performance charac-
teristics in terms of the RMSE in X-direction, the RMSE in Y-direction, and the Horizontal
Error in Table 7.

Figure 39. “Process” developed in RapidMiner that used an Artificial Neural Network (ANN)-
based learning approach and followed the steps outlined in Section 4.3 for detection of the spatial
coordinates of the user in each ‘activity-based zone’.

Table 8. Description of the performance characteristics of the Artificial Neural Network (ANN)-based
RapidMiner “process” shown in Figure 39.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 28.00 cm
Root Mean Squared Error for detection of Y-coordinate 16.16 cm

Horizontal Error 32.33 cm
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Figure 40. “Process” developed in RapidMiner that used a Decision Tree (DT)-based learning
approach and followed the steps outlined in Section 4.3 for detection of the spatial coordinates of the
user in each ‘activity-based zone’.

Table 9. Description of the performance characteristics of the Decision Tree (DT)-based RapidMiner
“process” shown in Figure 40.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 12.52 cm
Root Mean Squared Error for detection of Y-coordinate 6.19 cm

Horizontal Error 13.97 cm

Figure 41. “Process” developed in RapidMiner that used a Support Vector Machine (SVM)-based
learning approach and followed the steps outlined in Section 4.3 for detection of the spatial coordi-
nates of the user in each ‘activity-based zone’.

Table 10. Description of the performance characteristics of the Support Vector Machine (SVM)-based
RapidMiner “process” shown in Figure 41.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 27.92 cm
Root Mean Squared Error for detection of Y-coordinate 27.17 cm

Horizontal Error 38.96 cm
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Figure 42. “Process” developed in RapidMiner that used a kNN-based learning approach and
followed the steps outlined in Section 4.3 for detection of the spatial coordinates of the user in each
‘activity-based zone’.

Table 11. Description of the performance characteristics of the kNN-based RapidMiner “process”
shown in Figure 42.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 10.11 cm
Root Mean Squared Error for detection of Y-coordinate 2.96 cm

Horizontal Error 10.54 cm

Figure 43. “Process” developed in RapidMiner that used a Gradient Boosted Trees (GBT)-based learn-
ing approach and followed the steps outlined in Section 4.3 for detection of the spatial coordinates of
the user in each ‘activity-based zone’.

Table 12. Description of the performance characteristics of the Gradient Boosted Trees (GBT)-based
RapidMiner “process” shown in Figure 43.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 28.12 cm
Root Mean Squared Error for detection of Y-coordinate 27.65 cm

Horizontal Error 39.44 cm
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Figure 44. “Process” developed in RapidMiner that used a Deep Learning (DL)-based learning
approach and followed the steps outlined in Section 4.3 for detection of the spatial coordinates of the
user in each ‘activity-based zone’.

Table 13. Description of the performance characteristics of the Deep Learning (DL)-based RapidMiner
“process” shown in Figure 44.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 29.67 cm
Root Mean Squared Error for detection of Y-coordinate 12.04 cm

Horizontal Error 32.02 cm

Figure 45. “Process” developed in RapidMiner that used a Linear Regression (LR)-based learning
approach and followed the steps outlined in Section 4.3 for detection of the spatial coordinates of the
user in each ‘activity-based zone’.

Table 14. Description of the performance characteristics of the Linear Regression (LR)-based Rapid-
Miner “process” shown in Figure 45.

Description of Performance Characteristic Value

Root Mean Squared Error for detection of X-coordinate 28.064 cm
Root Mean Squared Error for detection of Y-coordinate 27.630 cm

Horizontal Error 39.382 cm
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The performance metrics—RMSE in X-direction, RMSE in Y-direction, and Horizontal
Error for all these machine learning models—Random Forest, Artificial Neural Network,
Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning,
and Linear Regression are summarized in Table 15. The analysis of these metrics is shown
in Figure 46.

Table 15. Comparison of the performance metrics of the different learning approaches—Random
Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted
Trees, Deep Learning, and Linear Regression.

Learning Approach Performance Metrics

RMSE in
X-Direction

RMSE in
Y-Direction

Horizontal
Error

Random Forest 5.85 cm 5.36 cm 7.93 cm
Artificial Neural Network 28.00 cm 16.16 cm 32.33 cm

Decision Tree 12.52 cm 6.19 cm 13.97 cm
Support Vector Machine 27.92 cm 27.17 cm 38.96 cm

k-NN 10.11 cm 2.96 cm 10.54 cm
Gradient Boosted Trees 28.12 cm 27.65 cm 39.44 cm

Deep Learning 29.67 cm 12.04 cm 32.02 cm
Linear Regression 28.06 cm 27.63 cm 39.38 cm

Figure 46. Comparison of the performance metrics of the different learning approaches—Random Forest, Artificial Neural
Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression,
shown in the form a Bar (Column) Style Plot.

From Table 15 and Figure 46 the following can be observed and deduced:

i. The Random Forest-based learning approach has the least Horizontal Error of 7.93 cm
and the Gradient Boosted Trees-based learning approach has the highest Horizontal
Error of 39.44 cm. Considering Horizontal Error as a function, where Horizontal
Error (x) gives the Horizontal Error of ‘x’, where ‘x’ is a machine learning model; the
Horizontal Errors of these machine learning models can be arranged in an increasing
to decreasing order as: Horizontal Error (Random Forest) < Horizontal Error (k-NN)
< Horizontal Error (Decision Tree) < Horizontal Error (Deep Learning) < Horizontal
Error (Artificial Neural Network) < Horizontal Error (Support Vector Machine) <
Horizontal Error (Linear Regression) < Horizontal Error (Gradient Boosted Trees).

ii. The RMSE in X-direction is least for the Random Forest-based learning approach
and is highest for the Deep Learning-based learning approach with the respective
values being 5.85 cm and 29.67 cm, respectively. Considering RMSE in X-direction as
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a function, where RMSE in X-direction (p) gives the RMSE in X-direction of ‘p’, where
‘p’ is a machine learning model; the RMSE in X-directions of these machine learning
models can be arranged in an increasing to decreasing order as: RMSE in X-direction
(Random Forest) < RMSE in X-direction (k-NN) < RMSE in X-direction (Decision Tree)
< RMSE in X-direction (Support Vector Machine) < RMSE in X-direction (Artificial
Neural Network) < RMSE in X-direction (Linear Regression) < RMSE in X-direction
(Gradient Boosted Trees) < RMSE in X-direction (Deep Learning).

iii. The RMSE in Y-direction is least for the k-NN-based learning approach with a value
of 2.96 cm and this metric is highest for the Gradient Boosted Trees-based learning
approach with a value of 27.65 cm. Considering RMSE in Y-direction as a function,
where RMSE in Y-direction (q) gives the RMSE in Y-direction of ‘q’, where ‘q’ is a
machine learning model; the RMSE in Y-directions of these machine learning models
can be arranged in an increasing to decreasing order as: RMSE in Y-direction (k-
NN) < RMSE in Y-direction (Random Forest) < RMSE in Y-direction (Decision Tree)
< RMSE in Y-direction (Deep Learning) < RMSE in Y-direction (Artificial Neural
Network) < RMSE in Y-direction (Support Vector Machine) < RMSE in Y-direction
(Linear Regression) RMSE in Y-direction (Gradient Boosted Trees)

As can be seen from (i) and (ii) above, the Random Forest-based learning approach
has the least RMSE in X-direction as well as the least Horizontal Error. The respective
values being 5.85 cm and 7.93 cm, respectively. Even though the k-NN based learning
approach has a lesser RMSE in Y-direction (2.96 cm) as compared to RMSE of Random
Forest in Y-direction (5.36 cm), the overall Horizontal Error for the k-NN based learning
approach is much higher as compared to the Horizontal Error of the Random Forest-based
learning approach with the respective values being 10.54 cm and 7.93 cm. Thus, for all
practical purposes it may be concluded that the Random Forest-based learning approach
is the optimal machine learning model for development of Indoor Localization systems,
Indoor Positioning Systems, and Location-Based Services. Further discussion about how
this comparative study and the associated results and findings address multiple research
challenges in this field is presented in Section 7.

7. Comparative Discussion

Despite several advances in the fields of Indoor Localization, Indoor Positioning
Systems, Human Activity Recognition, Activity Analysis, and Ambient Assisted Living,
there exist several research challenges in this field. The work presented in this paper at the
intersection of Big Data, Machine Learning, Indoor Localization, Ambient Assisted Living,
Internet of Things, Activity Centric Computing, Human–Computer Interaction, Pattern
Recognition, and Assisted Living Technologies, and their related application domains
aims to take a comprehensive approach to address these challenges. We introduced these
research challenges in Section 2. In this section, we further discuss the same and outline
how the work presented in this paper and the associated results and findings addresses
these challenges and outperform similar works in this field. This is discussed as follows:

1. Need for AAL-based activity recognition and activity analysis-based systems to be
able to track the indoor location of the user: The AAL-based systems currently lack
the ability to track the indoor location of the user. There have been several works
done [46–51] in these interrelated fields of activity recognition, activity analysis, and
fall detection, but none of these works have focused on Indoor Localization. Being
able to track the indoor location of a user is of prime importance and of crucial need
for AAL-based systems to be able to contribute towards improving the quality of
life of individuals in the future of living environments, such as, Smart Homes. For
instance, an elderly person could be staying in an apartment which is a part of a
multistoried building such as Taipei 101 [70] or Burj Khalifa [71]—both of which are
amongst the tallest buildings in the world. When this elderly person experiences a
fall, a fall detection system such as [51], could detect a fall and alert caregivers but the
current GPS-based technologies would only provide the building level information.
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The lack of the precise location information in terms of the specific floor, apartment,
and room, could cause delay of medical attention or assistive care. Such delay of care
can have both short-term and long-term health-related impacts to the elderly such as
long lie [72], that can cause dehydration, rhabdomyolysis, pressure injuries, carpet
burns, hypothermia, pneumonia, and fear of falling, which could lead to decreased
independence and willingness in carrying out daily routine activities. Long lie can
even lead to death in some cases. Thus, it is the need of the hour that AAL-based
systems should not only be able to track, monitor, and analyze human behavior but
they should also be equipped with the functionality to detect the indoor location of the
users. The work presented in this paper addresses this challenge by proposing a novel
Big-Data driven methodology that can study the multimodal components of user
interactions during Activities of Daily Living (ADLs) (Tables 1 and 2) and analyze the
data from BLE beacons and BLE scanners to track a user’s indoor location in a specific
‘activity-based zone’ during different ADLs (Figure 6). This approach was developed
by using a k-nearest neighbor (k-NN)-based learning approach (Section 4.1). When
tested on a dataset (Figure 17, Table 3) it achieved a performance accuracy of 81.36%
(Figures 18 and 19).

2. Need for context-independent Indoor Localization systems: As outlined in Section 2,
several recent works related to Indoor Localization systems are context-based and are
only functional in the specific environments for which they were developed [26–30].
These specific environments include—factories [26], indoor parking [27], hospi-
tals [28], industry-based settings [29], and academic environments [30]. For instance,
the methodology proposed in [29] is not functional in any of the settings described
in [26–28,30]. The future of interconnected Smart Cities would consist of a host of
indoor environments in the living and functional spaces of humans, which would
be far more diverse, different, and complicated as compared to the environments
described in [26–30]. The challenge is thus to develop a means for Indoor Localization
that is not environment dependent and can be seamlessly deployed in any IoT-based
setting irrespective of the associated context parameters and their attributes. The
work proposed in this paper addresses this challenge by proposing a novel context
independent approach that can interpret the accelerometer and gyroscope data from
diverse behavioral patterns to detect the ‘zone-based’ indoor location of a user in any
IoT-based environment (Section 4.2). This proposed approach (Figure 9) can study,
analyze, and interpret the distinct behavioral patterns, in terms of the associated
accelerometer and gyroscope data, local to each such ‘zone’, in the confines of any
given IoT-based space without being affected by the changes or variations in the
context parameters or environment variables. It uses a Random Forest-based learn-
ing approach for the training and the same was evaluated on a dataset (Figure 26,
Table 4). The performance accuracy of this method for detecting a user’s location in
each of these ‘zones’, that were present in this dataset [66], was found to be 81.13%
(Figures 27 and 28). Here, the ‘zone-based’ mapping of a user’s location refers to map-
ping the user in one of the multiple ‘activity-based zones’ that any given IoT-based
environment can be classified into based on the specific activity being performed by
the user. The accelerometer and gyroscope data are user behavior dependent and
not context parameter dependent and neither is this approach of spatially mapping
a given IoT-based space into ‘activity-bases zones’ dependent on any specific set of
context parameters, as explained in Section 4.2. This upholds the context indepen-
dent nature of this methodology. In other words, this proposed methodology can be
seamlessly applied to any IoT-based environment, including all the environments
described in [26–30], as well as in any other IoT-based setting that involves different
forms of user interactions on context parameters or environment variables, which can
be characterized by the changes in the associated behavioral data.

3. The RMSE of the existing Indoor Localization systems [33–43] are still high and
greater precision and accuracy for detection of indoor location is the need of the
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hour. Several performance metrics have been used by researchers for studying
the characteristics of Indoor Localization systems, Indoor Positioning Systems, and
Location-Based Services. However, ISO/IEC18305:2016, an international standard
for evaluating localization and tracking systems [31], which is one of the recent
works in this field, lists several metrics and the associated formulae for evaluating
the performance characteristics of such systems. These include the formulae for
determination of the RMSE in the X-direction, Y-direction, and in the X-Y plane.
When the RMSE is determined in the X-Y plane, it is referred to as Horizontal Error
as per the definitions of the standard [31]. We have presented and discussed the
associated formulae in Equations (1)–(3). Upon reviewing the recent works [33–43]
related to this field, as presented in Section 2, it can be observed that the RMSE
of the works are still significantly high in view of the average dimensions of an
individual’s living space. As per [44,45], (1) the average dimensions of newly built
one-bedroom apartments and two-bedroom apartments in United States in 2018 were
757 square feet (70.3276 square meters) and 1138 square feet (105.7236 square meters),
respectively. In view of these dimensions of these apartments, it can be concluded
that higher precision is needed for the future of Indoor Localization systems. Such
systems should have much lower values of RMSE in X and Y directions as well as their
overall Horizontal Error should be low. The work presented in this paper addresses
this research challenge by proposing a methodology to detect the spatial coordinates
of a user’s indoor position based on the associated user interactions with the context
parameters and the user-centered local spatial context, by using a reference system. In
Section 4.3 we have presented the steps for development of this approach for Indoor
Localization and the results of the same are discussed in Section 5.3. While RMSE
is sometimes calculated by using vector analysis where a single value of RMSE is
calculated instead of RMSE along X and Y directions, but as ISO/IEC18305:2016 [31]
presents two separate formulae (Equations (1) and (2)) for calculation of RMSE in
X-direction and RMSE in Y-direction and a third formula (Equation (3)) for Horizontal
Error calculation, so, we calculated RMSE in X and Y directions separately and then
calculated the Horizontal Error as per Equations (1)–(3), respectively. As can be seen
from the results (Table 7), the performance characteristics of our approach are—RMSE
in X-direction: 5.85 cm, RMSE in Y-direction: 5.36 cm, and Horizontal Error: 7.93
cm. As can be seen from [33–43], RMSE is usually represented in meters, so upon
converting these metrics from Table 7 to meters (correct to 2 decimal places) the
corresponding values are: RMSE in X-direction: 0.06 m, RMSE in Y-direction: 0.05 m,
and Horizontal Error: 0.08 m. The RMSE of these existing works [33–43], in increasing
to decreasing order are shown in Table 16.

Table 16. Summary of the various Indoor Localization approaches that used RMSE for evaluation of
the performance metrics.

RMSE Value (in Meters) Work(s)

0.32 Bolic et al. [34]
1.00 Chen et al. [41]

1 to 2 Angermann et al. [35]
1.20 Klingbeil et al. [38]
1.28 Chen at al. [43]
1.40 Correa et al. [33]
1.53 Evennou et al. [36]
2.90 Li et al. [42]
3.10 Liu et al. [40]
4.30 Wang et al. [37]
4.55 Pei et al. [39]

From Table 16, it can be concluded that Bolic et al.’s work [34] has the best performance
accuracy out of all the works reviewed in [33–43] with the RMSE being 0.32 m. Upon
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comparing the performance metrics of our approach (Table 7) with Bolic et al.’s
work [34], it can be easily concluded that our work outperforms the same in terms of
performance accuracy as the RMSE values (RMSE in X-direction: 0.06 m, RMSE in Y-
direction: 0.05 m, and Horizontal Error: 0.08 m) of our methodology are significantly
lower. As our work outperforms Bolic et al.’s work, which has the best accuracy
out of all the works reviewed in [33–43], so, it can also be concluded that our work
outperforms all the other works as well [33,35–43], in terms of the RMSE method of
performance evaluation, as recommended by ISO/IEC18305:2016 [31].

4. Need for an optimal machine learning-based approach for Indoor Localization: A
range of machine learning approaches—Random Forest, Artificial Neural Network,
Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning,
and Linear Regression, have been used by several researchers [9–25] for development
of various types of Indoor Localization systems for IoT-based environments. While
each of these systems seem to perform reasonably well but none of these works
attempted to develop an optimal machine learning model for Indoor Localization
systems. Additionally, due to variations in the data source, differences in the types
of data, varied methods of data collection, different training set to test set ratios,
dissimilar data preprocessing steps, as well as because of differences in the simu-
lated or real-world environments in which these respective systems were developed,
implemented, and deployed, the performance metrics of these systems cannot be
directly compared to deduce the optimal approach. These works [9–25] along with
the machine learning approaches that were used in each are outlined in Table 17.

Table 17. Summary of the various machine learning approaches that have been investigated by
researchers in this field.

Learning Approach Used Work(s)

Random Forest Varma et al. [19], Gao et al. [20]
Artificial Neural Network Khan et al. [16], Labinghisa et al. [17], Qin et al. [18]

Decision Tree Musa et al. [9], Yim et al. [10]
Support Vector Machine Sjoberg et al. [11], Zhang et al. [12]

k-NN Zhang et al. [13], Ge et al. [14], Hu et al. [15]
Gradient Boosted Trees Wang et al. [25]

Deep Learning Zhang et al. [23], Poulose et al. [24]
Linear Regression Jamâa et al. [21], Barsocchi et al. [22]

There is a need to address this research challenge of identifying the optimal machine
learning methodology for Indoor Localization. The work presented in this paper
addresses this challenge. In Section 6—we developed, implemented, and tested the
performance characteristics of different learning models to perform Indoor Local-
ization by using the same dataset [67], the same data preprocessing steps, the same
training and test ratios, and the same methodology, which we presented in Section 4.3.
The learning models that we developed and studied included—Random Forest, Artifi-
cial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted
Trees, Deep Learning, and Linear Regression. These models were developed to detect
the spatial coordinates of a user’s indoor location as per the methodology outlined
in Section 4.3. RapidMiner was used to develop these machine learning models,
and the corresponding RapidMiner “processes” are shown in Figures 12 and 39–45,
respectively. We evaluated the performance characteristics of these models based
on three performance metrics as outlined in ISO/IEC18305:2016—an international
standard for evaluating localization and tracking systems [31]. These include—RMSE
in X-direction, RMSE in Y-direction, and Horizontal Error (Equations (1)–(3)). The
performance characteristics of these respective machine learning models are shown
in Tables 7–14. In Table 15 and Figure 46, we present the comparisons amongst these
learning models to deduce the optimal machine learning approach for development
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of an Indoor Localization system. Based on the findings presented in Table 15 and
Figure 46, the following can be observed:

i. Out of all these learning approaches, the Random Forest-based learning ap-
proach has the least Horizontal Error of 7.93 cm. In an increasing to decreasing
order, the Horizontal Errors of these machine learning models can be arranged
as: Horizontal Error (Random Forest) < Horizontal Error (k-NN) < Horizontal
Error (Decision Tree) < Horizontal Error (Deep Learning) < Horizontal Error
(Artificial Neural Network) < Horizontal Error (Support Vector Machine) <
Horizontal Error (Linear Regression) < Horizontal Error (Gradient Boosted
Trees).

ii. Out of all these learning approaches, the RMSE in X-direction is the least for
the Random Forest-based learning approach, which is equal to 5.85 cm. In
an increasing to decreasing order, the RMSE in X-direction of these machine
learning models can be arranged as: RMSE in X-direction (Random Forest) <
RMSE in X-direction (k-NN) < RMSE in X-direction (Decision Tree) < RMSE in
X-direction (Support Vector Machine) < RMSE in X-direction (Artificial Neural
Network) < RMSE in X-direction (Linear Regression) < RMSE in X-direction
(Gradient Boosted Trees) < RMSE in X-direction (Deep Learning).

iii. Out of all these learning models, the RMSE in Y-direction of the k-NN-based
learning approach is the lowest and the RMSE in Y-direction of the Random
Forest-based learning approach is the second lowest. Their respective values
being 2.96 cm and 5.36 cm, respectively. In an increasing to decreasing order,
the RMSE in Y-direction of these machine learning models can be arranged
as: RMSE in Y-direction (k-NN) < RMSE in Y-direction (Random Forest) <
RMSE in Y-direction (Decision Tree) < RMSE in Y-direction (Deep Learning)
< RMSE in Y-direction (Artificial Neural Network) < RMSE in Y-direction
(Support Vector Machine) < RMSE in Y-direction (Linear Regression) RMSE in
Y-direction (Gradient Boosted Trees)

iv. From (i) and (ii), it can be deduced that for the RMSE in X-direction and for the
Horizontal Error (Equations (1) and (3)) methods of performance evaluation,
the Random Forest-based learning approach outperforms all the other learn-
ing approaches—Artificial Neural Network, Decision Tree, Support Vector
Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regres-
sion. Even though the k-NN-based learning approach performs better than
the Random Forest-based learning approach for determination of the RMSE in
Y-direction, as can be seen from (iii), however, the difference between RMSE in
Y-direction for the k-NN based learning approach and the RMSE in Y-direction
for the Random Forest based learning approach is not high. To add, for the
other two performance metrics—RMSE in X-direction and Horizontal Error,
the k-NN based learning approach does not perform as good as the Random
Forest-based learning approach and its error values are much higher. Thus,
based on these findings and the discussions, which are presented in an elab-
orate manner in Section 6, it can be concluded that a Random Forest-based
learning approach is the optimal machine learning model for development of
Indoor Localization systems, Indoor Positioning Systems, and Location-Based
Services.

8. Conclusions and Scope for Future Work

The future of technology-laden living and functional environments, for instance,
Smart Homes, Smart Cities, Smart Workplaces, Smart Industries, and Smart Vehicles,
would involve Human–Computer, Human–Robot, Human–Machine, and other forms
of human interactions with technology-laden gadgets, systems, or devices. Although
Global Positioning System (GPS) and Global Navigation Satellite Systems (GNSS) have
significantly revolutionized navigation research by being able to track people, objects, and
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assets in real-time, such technologies are still ineffective in indoor settings [1]. Indoor
Localization has multiple applications in the context of such forms of human interactions
with technology. As per [3], the market opportunities of Indoor Localization related systems
are expected to be in the order of USD 10 billion by 2024 due to the diverse societal needs
that such systems can address. There can be multiple use cases and applications of Indoor
Localization systems that can be investigated and studied. This paper focuses on one
specific application domain—Ambient Assisted Living (AAL) of elderly people in the
future of Internet of Things (IoT)-based living environments, such as Smart Homes and
Smart Cities. The work presented in this paper addresses multiple research challenges and
makes several scientific contributions to this field by integrating the latest advancements
from Big Data, Machine Learning, Indoor Localization, Ambient Assisted Living, Internet
of Things, Activity Centric Computing, Human–Computer Interaction, Pattern Recognition,
Assisted Living Technologies, and their related application domains.

First, to address the research challenge that the AAL-based systems and technolo-
gies [46–51] for activity recognition, activity analysis, and fall detection, currently lack the
ability to track the indoor location of the user; this paper proposes a novel Big-Data driven
methodology that studies the multimodal components of user interactions and analyzes
the data from BLE beacons and BLE scanners to track a user’s indoor location in a specific
‘activity-based zone’ during Activities of Daily Living. This approach was developed by
using a k-nearest neighbor (k-NN)-based learning approach. When tested on a dataset this
methodology achieved a performance accuracy of 81.36%.

Second, to address the limitation in several Indoor Localization systems [26–30], that
they are context-based and are only functional in the specific environments in which they
were developed; this paper proposes a context independent approach that can interpret
the accelerometer and gyroscope data from diverse behavioral patterns to detect the
‘zone-based’ indoor location of a user in any IoT-based environment. Here, the ‘zone-
based’ mapping of a user’s location refers to mapping the user in one of the multiple
‘activity-based zones’ that any given IoT-based environment can be classified into, based
on the specific activity being performed by the user. This methodology was developed by
using the Random Forest-based learning approach. When tested on a dataset this novel
methodology achieved a performance accuracy of 81.13%.

Third, to address the challenge that the RMSE of the existing Indoor Localization
systems are still high [33–43] and greater precision and accuracy for detection of indoor
location is the need of the hour; this paper proposes a methodology to detect the spatial
coordinates of a user’s indoor position based on the associated user interactions with the
context parameters and the user-centered local spatial context, by using a reference system.
The performance characteristics of this system were evaluated as per three metrics stated
in ISO/IEC18305:2016 [31], which is an international standard for testing Localization and
Tracking Systems. These metrics included root mean squared error (RMSE) in X-direction,
RMSE in Y-direction, and the Horizontal Error which were found to be 5.85 cm, 5.36 cm, and
7.93 cm, respectively. A comparison study of this approach with similar researches [33–43]
in this field showed that our system outperformed all these works that had used a similar
approach of performance evaluation.

Finally, in view of the fact that multiple machine learning-based approaches have been
used by researchers [9–25] and there is a need to identify the optimal machine learning
model that can be used to develop the future of Indoor Localization systems, Indoor
Positioning Systems, and Location-Based Services; the paper presents a comprehensive
comparative study of different machine learning approaches that include—Random Forest,
Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted
Trees, Deep Learning, and Linear Regression. The performance characteristics of each of
these learning methods were studied by evaluating the RMSE in X-direction, the RMSE
in Y-direction, and the Horizontal Error as per ISO/IEC18305:2016 [31]. The results and
findings of this study show that the Random Forest approach can be considered as the
optimal learning method for development of such technologies for all practical purposes.
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To the best knowledge of the authors, no similar work has been done yet and no
work in the field of Indoor Localization thus far has achieved such a superior performance
accuracy (RMSE for detection of X coordinate: 5.85 cm, RMSE for detection of Y coordinate:
5.36 cm, and Horizontal Error: 7.93 cm) as presented in this work. Future work would
involve—(1) Implementing and deploying all these proposed approaches for Indoor Lo-
calization in real-time in different IoT-based environments by using the Context-Driven
Human Activity Recognition Framework [64]. For real-time implementation of all these
proposed approaches, we plan on conducting experiments as per Institutional Review
Board (IRB) approved protocols by setting up an experiment procedure for data collec-
tion and analysis. The specific functionalities and characteristic features of the different
methodologies that we have outlined in Section 4.1, Section 4.2, Section 4.3 would then be
implemented in real-time. Thereafter, the performance characteristics from the real-time
data would be studied and compared with the findings presented in Section 5.1, Section 5.2,
Section 5.3 (2) Extending the functionalities of the two ‘zone’-based Indoor Localization ap-
proaches and evaluating their performance characteristics by using the RMSE approach as
well as by using some of the other performance metrics defined in ISO/IEC18305:2016 [31].
This would be performed either by analyzing the real-time data collected from (1) or by
using a different dataset that consists of user interaction data related to different ADLs and
the spatial coordinates of the user’s varying position recorded during the dynamic user
interactions associated with these different activities.
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