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Abstract: With the development of mobile technology, the usage of media data has increased
dramatically. Therefore, data reduction represents a research field to maintain valuable information.
In this paper, a new scheme called Multi Chimera Transform (MCT) based on data reduction with
high information preservation, which aims to improve the reconstructed data by producing three
parameters from each 16× 16 block of data, is proposed. MCT is a 2D transform that depends on
constructing a codebook of 256 picked blocks from some selected images which have a low similarity.
The proposed transformation was applied on solid and soft biometric modalities of AR database,
giving high information preservation with small resulted file size. The proposed method produced
outstanding performance compared with KLT and WT in terms of SSIM and PSNR. The highest SSIM
was 0.87 for the proposed scheme MCT of the full image of AR database, while the existed method
KLT and WT had 0.81 and 0.68, respectively. In addition, the highest PSNR was 27.23 dB for the
proposed scheme on warp facial image of AR database, while the existed methods KLT and WT had
24.70 dB and 21.79 dB, respectively.

Keywords: image processing; image compression; Karhunen-Loeve Transform; wavelet transform;
data reduction; biometric

1. Introduction

Feature detection is considered a major step of image processing and computer vision
for image compression, pattern recognition, image classification, and image registration.
These features have to be invariant to specific spatial transformations such as rotation, trans-
lation, and scaling [1]. The concept of feature detection has been used in different fields and
different applications such as medical images [2], remote sensing [3], face recognition [4],
human shape recognition [5], indexing and image retrieval [6]. Feature detection builds the
feature representation for any image and searches for the corresponding similarity between
the pixels for the same scene depending on the salient features that are extracted from the
image to increase the valuable information with reduced data [7].

Many transformations are used in image processing and data analysis, e.g., Karhunen-
Loeve Transform (KLT), Wavelet Transform (WT), Discrete Cosine Transform (DCT), Dis-
crete Fourier Transform (DFT), and Chimera Transform (CT), which reduce the amount
of the raw data or extract low level features to be used for further processing and de-
tection [8–12]. KLT is considered a representation of a stochastic process for an infinite
linear combination of orthogonal functions; it creates the most precise illustration (with
the assumption that the error has the same power in all dimension) of the original data.
This transform spreads an input data in terms of a set of basis, which is called “eigenval-
ues”, where it uses only few KLT coefficients to represent the most amount of the data [8].
Therefore, KLT can be used for features dimensionality reduction, while it could not cope
with clusterization tasks [13]. WT decomposes the image sub-blocks into different levels
of resolution, by taking only the low frequency band to introduce a new feature set; by
doing this, the wavelet coefficient size is reduced, and a compressed size of feature vector
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is produced that can be applied for any classification tool [14]. However, the number
of computations increased dramatically when a multi-level WT is applied on the data.
DCT demonstrates a finite sequence of data points as a sum of cosine functions oscillat-
ing at different frequencies; as the frequency increases, the coefficient’s value decreases,
and vice versa. Applying DCT for the input image and taking only some coefficients,
since the DC component and low frequency components carrying the maximum infor-
mation, this compressed vector can represent the original image, and any classification
model can be applied to this reduced size vector [15]. Fractal coding is an effective tool for
describing image textures. This transformation extracts the DC component of each image
block, and then calculates the contrast coefficients recursively to find the best geometric
shape of the block. For each range block, the corresponding best matching of domain block
can be estimated from the pool of domain block using self-similarity technique. On the
fractal decoding side, the contrast coefficients and DC component are recursively applied to
reconstruct the image (blocks), and consequently, the original image is constructed [16,17].

Hence, most image processing fields try to achieve maximum information with min-
imum data using different schemes. Lossless image compression techniques aim for
maximizing the information rather than minimizing the data, while lossy image compres-
sion approaches trying to optimize these two factors [18]. Image data reduction techniques
such as PCA, KLT, and feature detection target are considered a preprocessing step that is
used to minimize the data rather than maximize the information [19].

Some other factors are used to measure the efficiency of the transform, such as com-
plexity and execution time; however, other metrics need to be calculated such as the content
of minimum data metric, which is the ratio between the input (8× 8 or 16× 16 blocks) and
the output (a small number of integer values) of the process, and maximum information
metric, which represents Peak Signal to Noise Ratio (PSNR) and/or Structure Similarity
Index Measure (SSIM).

In this article, a scheme is proposed to obtain the maximum information from only
a small amount of image data using similarity and statistical operations. This scheme
is called Multi-Chimera Transform (MCT), which is used to represent each input data
of a 16× 16 block using 3 integer values (output) with a valuable information contents
(PSNR and SSIM). To show the effectiveness of the proposed scheme (MCT), we applied
it to biometric database for extracting useful information from facial image. The method
was compared with KLT, which is considered as a powerful transform for information
extraction, and WT, which is the most used transform for information compression.

Kukharev et al. presented a two-step approach that utilized as a first step Karhunen-
Loeve Transform (KLT) because it gives a good approximation of input data but with large
number of eigenvalues and as the second step Linear Discriminant Analysis (LDA) to re-
duce the data dimensionality. To show the useful advantage of their method, they applied
it on some image data and proved the method has a high compression level and opti-
mal representation in feature-space for image recognition and browsing large graphical
databases [13]. In [20], Haar-like features are used as a detection technique, whereas the
recognition stage of the system is based on eigenimages and principle component anal-
ysis. Hafed and Levine confirmed the effectiveness and robustness of using the discrete
cosine transform for feature extraction and showed that the KLT is more computationally
expensive in comparison with DCT regarding training [15]. Hui and Zak arranged the
magnitudes coefficients of the Fourier transform, which is applied to the patterns of the
data base, in a vector in descending order and selected the first P largest coefficients for use
in further processing instead of the original patterns. P is defined as a design parameter,
and the vector of P descending coefficients is referred to as the signature vector of the
corresponding pattern [11]. Aznaveh et al. decreased the large amount of memory required
to save the face database by applying KLT (also called Hotelling transform) to each block
of the image database separately [21].

This work proposes a robust scheme for maintaining valuable information with
data reduction, which can be applied on different applications such as object recognition,
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and biometric verification system. However, for evaluation purposes, our study focuses on
face biometric modality with the existence of occlusion using the proposed data reduction
transform MCT. The following four contributions are made:

1. We suggest a novel scheme for image transform, which can be used for data reduction
with maximum information.

2. A large-scale evaluation of the proposed scheme using 5913 facial images was per-
formed. The warp faces of AR had (2600) images, the full image of AR had (3315)
images, and the full image from websites had (16) images.

3. Implement a proposed scheme, which is invariant for subject diversities (142 persons),
light conditions (right side, left side, and both sides), facial expression (neutral,
smile, anger, scream), and facial occlusions (prescription eyeglasses, sunglasses, scarf,
and hat) within different sessions (two sessions 14 days apart).

4. The proposed scheme successfully maintained the information for solid biometric
such as face and ocular biometric modalities, and it could be applied to preserve
the information of soft biometric modalities such as eyebrow, eyeglasses, sunglasses,
scraf, and hat.

The remained of this paper is organized as follows. Section 2 focuses on the problem
of the data reduction. Section 3 introduces the suggested scheme. Section 4 represents the
study results and discussions. Section 5 states the conclusion and the future work.

2. Problem Statement of Image Data Reduction

A new strategy to transfer an image from spatial domain to a new innovator (Chimera)
domain is called Multi-Chimera Transform (MCT). In general, traditional transforms
such as DCT and WT, transform the image data from spatial domain to its domain us-
ing a set of orthogonal functions and the inverse of this process. These are shown in
Equations (1) and (2), respectively.

ci = Ψ(i)
n
~
i=1

D (1)

di = Ψ(i)−1
n
~
i=1

C (2)

where, D = [d1, d2, . . . , dn] is a vector of input data (data in spatial domain) and C =
[c1, c2, . . . , cn] is a vector of coefficient (data in innovator domain). Ψ is a set of orthog-
onal function and Ψ−1 its inverse (also a set of orthogonal function) and ~n

i=1 is the
convolution process.

The orthogonality of any transform, constraints it to use a unified type of func-
tion and therefore a limited number of useful patterns in 2D images will be resulted.
Chimera Transform overcame this challenge by proposing a hybrid set of patterns in form
of small image blocks called code-book to increase the information in Chimera domain [12].

2.1. The Concept of Multi-Chimera Transform (MCT)

Chimera Transform (CT) generated only one coefficient for each block. This could
be considered as a weakness issue of Chimera Transform as it used a small block size of
4× 4. This small block size is beneficial for image compression; however, it generates a
large amount of redundant information for feature detection. Therefore, a large block size
of 16× 16 could reduce the number of features; however, the reconstructed image would
be degraded. To enhance the reconstructed image, the Chimera Transform can be applied
many times to generate what is called a Multi-Chimera Transform (MCT).
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Equations (3) and (4) are the forward process, while, Equation (5) represents the
inverse process.

a1 = min { D }
bi = max { D− Ri }, i = 1, 2, ..., n

ci = argmax {Ψi ~ (D− Ri) }, i = 1, 2, ..., n

(3)

Ri =

{
0, i = 1.
a1 + ∑i−1

j=1

[
bj × f (cj)

]
, i = 2, ..., n.

(4)

Dr = a1 +
n

∑
i=1

[bi × f (ci)] (5)

where a1, bi, and ci are the MCT parameters, D is input sub-image (block), f (cj) is the
intended function of the codebook library for the index cj, and Dr is the reconstructed block,
Ψi is the codebook library, and n is the number of iterations in which two or three iterations
were used. Figure 1 shows the whole process of the proposed scheme of a Multi-Chimera
Transform (MCT).

Figure 1. The block diagram of the proposed Multi-Chimera Transform (MCT). (A) Coding process
and (B) Decoding process.

2.2. Codebook Generation of MCT

The codebook library (Ψi) is a set of 2D functions f (cj), which were stated in Equations (3)–(5).
These equations represent the core of MCT. Consequently, this library determines the ten-
dency of the MCT field. The essential concept of generating these function sets are the
Vector Coding (VC) technique. VC selects some samples of blocks from a set of images
to generate the codebook. This approach selects the most repeated patterns of standard
images. Thereafter, some blocks will be reconstructed without error while the majority of
the blocks will be approximated and replaced with the most similar available pattern in the
codebook. In general, VC is considered a simple approach but with high error in the recon-
structed image; thus, it needs a large codebook library to reduce the aforementioned error.

MCT introduces a novel technique to generate new patterns for optimizing the output
error in the reconstructed image. The codebook was generated from 16 selected images of
the same field. A total of 16 facial images were collected from different ethnicity and light
conditions to construct the codebook which was used for facial biometric modality. A large
set of data was composed from these selected images to obtain a small subsets of data.
These subsets contain the most similar patterns, with one pattern kept from each subset.
As a result, a diverse pattern is maintained in the codebook. This process will be discussed
in the following section.

3. The Proposed Approach

The overall steps within the proposed work are shown in Figure 2. These consist
of mask bank generation, parameter generation, and image restoration, which will be
explained in the next sections.
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Figure 2. The diagram of the overall Multi-Chimera Transform.

3.1. Mask Bank Generation

The first stage in the proposed approach is mask bank creation. This stage involves
progressive steps to create a mask bank, which is used to generate the required parameters
for the proposed work in the next stage. The steps are block generation, similarity score
creation, and mask bank implementation. Figure 3 shows the steps of the mask bank
generation stage, where R1 × C1 is the image dimension, and Ch1 is the gray value of
colored image.

Figure 3. The multi-chimera mask bank generation.

Initially, sixteen images of human faces of different ethnicity and varying light condi-
tions were read (as shown in Figure 4A) and resized to 256× 256 to generate three masks
bank of size 256× 16× 16 by end of this stage. The entire human face image was divided
into 256 blocks of size 16× 16, as shown in Figure 4B. This procedure was repeated on the
sixteen facial images to obtain a generated block of size 4096× 16× 16. The 4096 generated
blocks were collected from these 16 facial images as a result. Consequently, a 256 blocks
were constructed from each image as shown in Figure 4. Then, a Gaussian low pass filter
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was applied on each created block to smooth each individual entity. Then, the filtered
blocks were normalized using min-max normalization according to the Equation (6).

BLKnormi =
Blki −min(Blk)

max(Blk)−min(Blk)
(6)

where Blk is the input block, BLKnormi is the output normalized block and Blki is the
16× 16 block.

Figure 4. Blocks generation: (A) the 16 facial images for masks bank, and (B) the 256 generated blocks.

Subsequently, a Mean Absolute Error (MAE) was calculated for these 4096 normalized
generated blocks of size 16× 16, in order to build the MAE matrix of size (4096× 4096),
as outlined in the Equation (7). The MAE matrix was implemented to allocate the similarity
between the generated blocks which were acquired from these sixteen facial images.

MAEi,j =

Bn
∑

i=1,j=1
abs(Bi − Bj)

||Bj||
(7)

where MAEi,j is the generated mean absolute error, Bi and Bj are block vector of size
(16× 16), and Bn is the number of blocks.

A total of three masks of size (256× 16× 16) were selected for each row in MAE
matrix. The 16 most similar values out of 4096 were selected according to the following
strategies:

1. The most similar (minimum MAE) value was kept in the first mask bank while the
other 15 values were excluded.

2. The most similar (minimum MAE) value was subtracted from the most dissimilar
(maximum MAE) value; thereafter, the normalized subtracted value was kept in the
second mask bank while the other 14 values were excluded.

3. The seventh similar value was subtracted from eighth similar value then the sub-
tracted value was kept in the third mask bank and the other 14 values were excluded.

Figure 5 shows these three masks of size 256× 16× 16, which were concatenated into
a 4D matrix of size 256× 16× 16× 3, to form the resultant mask bank which was utilized
by the next two successive stages.
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Figure 5. The three generated masks.

3.2. Parameter Generation

The second stage of MCT is the parameter generation, which is shown in Figure 6
(the second stage of multi-chimera scheme). This stage consists of four steps which are;
block generation, block normalization, similarity allocation, and statistical calculation.
To this end, three parameters were generated from each acquired block of the input test
image. These parameters are minimum value (P1), maximum value (P2), and the index
(P3) of most similar block of the mask bank, where P1 is the matrix of a1, P2 is the matrix of
bi, and P3 is the matrix of ci.

Figure 6. The parameter generation stage.

In this stage, the test facial images were obtained from the AR database [22] with
two different image size sets, which were the warp faces (2599 facial images) and full
faces (3313 facial images). Firstly, the test image of size R2 × C2 was converted into
Bn = R2× C2× 256 blocks of size 16× 16, then the generated blocks were normalized.
Then, the similarity was allocated between the mask bank and the recently generated
normalized block. Finally, the column index of most similar blocks which had the lowest
value of MAE among other values, was saved into the P3 parameter.

On the other side, a statistical calculation was applied on the generated blocks.
Two statistical calculations were used in this stage which firstly included the minimum
value of each block of size 16× 16 (to obtain P1 parameter). A second statistical calculation
considered the maximum of each block which was subtracted from the minimum applied
on the same block to get the P2 parameter.

Typically, the procedure of this stage could be repeated N times. However, the proce-
dure was repeated three times for this proposed scheme, and for each iteration a certain
mask bank of size 256 × 16× 16 was used. For instance, for the first iteration, the first
mask (out of three masks that were stored in the bank) was used with the test image to
allocate the similarity between the input image and the saved mask bank. In the same
manner, for the second iteration, the second mask bank was used with the new subtracted
image instead of the test image to allocate the similarity between the new subtracted
image and the stored mask bank. This subtracted image was obtained from the next stage
(explained in the next section). Figure 7 shows the processes of parameter generation with
the first iteration.
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Figure 7. An example of the processes of parameter generation in the first iteration.

3.3. Image Restoration

The final stage of the proposed method was the image restoration, as shown in Figure 8.
This stage involved a number of subsequent steps to achieve two goals. The first goal was
to restore the test image, and the second one was to evaluate the proposed method.

Figure 8. The image restoration stage.

The first step of image restoration was the construction of the selected mask. To this
end, the block index parameter P3 allocated to the most similar block in the mask bank of
size 256 × 16 × 16. Then, this picked block of size 16× 16, was repeatedly accumulated
to obtain the selected blocks of size Bn × 16 × 16, where, Bn represents the number of
collected blocks and the calculation of Bn was outlined in Equation (8).

Bn = dR2 ∗ C2
256

e (8)

where R2 and C2 are the number of rows and columns of the input image, respectively.
Thereafter, the resultant blocks BlkRest of size Bn × 16 × 16 were restored using

the selected mask. MaskSelected, P1, and P2 are as outlined in Equation (9). Consequently,
the restored blocks of size Bn × 16 × 16 were arranged into the original size of the input
image (R1 × C1).

BlkRest = MaskSelected × P2 + P1 (9)

The restored image was evaluated visually using two metrics; namely, Peak Signal
to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The evaluation
process will be explained in detail in the next section.
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As outlined in the previous stage (parameter generation), the image restoration stage
was repeated N times. However, this stage was designed to be repeated three times.
For each iteration, the recent restored image was subtracted from original image; then, the
resultant image was normalized and sent to previous stage to generate new parameters (P1,
P2, and P3). Figure 9 shows a visual sample for this process. In addition, the coded image
was constructed using Equation (9).

Figure 9. A visual sample for image restoration: (A) Original image, (B) Restored image, (C) Filtered
restored image, and (D) Coded Chimera image.

4. Experiments

This section describes the AR database [22] that was used for evaluation. A compara-
tive evaluation was applied between the proposed approach and the standard transforms
such as Karhunen–Loève Transform (KLT) [23] and Wavelet Transform (WT) [24]. Further,
two matrices were used to measure the performance of our proposed method and to
compare the proposed MCT with the aforementioned transforms. All the experiments have
been implemented by dividing each image of size R2× C2 into Bn× 16× 16 input blocks.
Only three parameters of size Bn× 3 were used to obtain the reconstructed blocks.

4.1. Databases

The AR database [22] contains over 4000 colored facial images. These images include
different facial expressions which were collected from 126 subjects (70 men and 56 women)
during different illumination conditions and occlusions. A total of three occlusions were
involved in this database; namely, prescription eyeglasses, sunglasses, and scarf. These
occlusions represent the main challenge for facial biometric modality since they represent
important parts of the human face. In addition, four facial expressions were captured
including neutral expression, smile, anger, and scream. Additionally, three light condi-
tions were applied to the database; namely, left light, right light, and all side light. This
database was collected in two sessions separated by 14 days. Two subset were included
in this database, firstly, 2600 warp facial images of size 120 × 165 × 3 as (bmp) image
format. The second subset was 3315 facial images of size 768 × 576 × 3 as (raw) image
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format. Moreover, 16 images of different sizes and image formats were collected randomly,
to expand the visual evaluation.

4.2. Visual Comparative Evaluation

A visual comparative evaluation was applied on the warp subset of AR database as
shown in Figure 10. This evaluation involved different subjects (people), facial expressions,
occlusions, sessions and light conditions. The proposed scheme (MCT) demonstrates
powerful visual reconstruction versus the KLT and WT transforms.

Figure 10A shows an evaluation of the scheme, which was applied to neutral facial
expression without any occlusion. Similarly, Figure 10B involves a prescription eyeglass
occlusion while Figure 10C,D show other types of occlusion including sunglasses and scarf.
Figure 10E–G show evaluations which were applied on three facial expressions—screaming,
smiling, and anger, respectively. Figure 10H was applied on two types of occlusion; namely,
prescription eyeglasses and scarf.

The suggested scheme shows a reasonable visual performance on the solid biometric
modalities such as human face and ocular region. In addition, the suggested scheme
maintains the visual features of the soft biometric modalities such as eyebrows, prescription
eyeglasses, sunglasses, and scarf. As result, the suggested scheme could be applied as an
information extractor method for solid and soft biometric identification.

Figure 10. A visual comparative evaluation applied on warp face of AR database: (A) neutral
expression face during first session, (B) wearing prescription eyeglass with right light on during first
session, (C) wearing sunglasses during second session, (D) wearing scarf and right light on during
first session, (E) scream during second session, (F) smile face wearing prescription eyeglassduring
second session, (G) anger face during first session, (H) anger face wearing scarf and prescription
eyeglasses during second session.

In the same manner, Figure 11 shows a visual comparative evaluation applied on the
full image of the AR database. This evaluation included the similar diversity shown in
Figure 10; that is, different people, facial expressions, occlusions, sessions, and light condi-
tions. It is felt that the proposed scheme (MCT) shows a visual robustness in comparison
with KLT and WT transforms.
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Figure 11A shows a reconstruction for a neutral face expression, while Figure 11B–D
show a reconstruction for an occluded face with thin prescription eyeglasses, sunglasses
and scarf, respectively. Figure 11E–G show a reconstruction for three facial expressions,
namely, screaming, smiling, and anger, respectively. Finally, Figure 11H shows a recon-
struction for double occlusions, prescription eyeglasses and scarf.

Figure 11. A visual comparative evaluation applied on full image of AR database: (A) Neutral
expression face during first session, (B) wearing prescription eyeglass with both side light on
during first session, (C) wearing sunglasses during second session, (D) wearing scarf and right
light on during second session, (E) Scream during first session, (F) Smile face wearing prescription
eyeglassduring first session, (G) Anger face during first session, (H) Anger face wearing scarf and
prescription eyeglasses during first session.

In the a similar manner, Figure 12 shows a visual comparative evaluation was applied
to the random full image selected from websites. This evaluation included four facial
expressions that are mentioned in previous figures (Figures 10 and 11). In addition, two
occlusions were included in this evaluation that were prescription eyeglasses and hat.

Figure 12A shows a reconstruction for neutral face expression, while Figure 12B–D
shows a reconstruction for three facial expressions; namely, screaming, smiling, and anger
face. Figure 12E,F shows a construction for two occluded faces by thin prescription
eyeglasses and head hat, respectively.

The suggested scheme (MCT) indicates the superiority of reconstruction for solid
biometric modalities (face and ocular region) and for soft biometric modalities (eyebrow,
prescription eyeglasses, sunglasses, scarf, and head hat) over the KLT and WT. Meanwhile,
the aforementioned evaluations were applied on 5931 facial images which included 2600
warp faces of AR database, 3315 full images of AR database, and 16 random full images
from different websites.
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Figure 12. A visual comparative evaluation applied on full image from websites: (A) Neutral
expression face, (B) Screaming face, (C) Smiling face, (D) Anger face, (E) wearing prescription
eyeglass, (F) Face occlusion by hat.

4.3. Metric Comparative Evaluation

Figure 13 shows an evaluation applied on 2600 warp facial images inside the AR
database. In this evaluation, two metrics were used to measure the transforms performance
which were Peak Signal to Noise Ratio (PSNR) and Structure Similar Index Measure (SSIM).
In Figure 13A, the PSNR for MCT of the 2600 warp facial images surpassed the existed
methods of KLT and WT for all images. Also, the average PSNR for MCT was 27.2268
while the average PSNR for KLT and WT was 24.6990 and 21.7893, respectively.

On the other hand, Figure 13B shows a powerful structure similarity for MCT between
the 2600 reconstructed warp facial images and the original images with an average SSIM
of 0.80936. In comparison, the average SSIM for the existing KLT and WT methods
was 0.73963 and 0.40922, respectively. Further, the reconstructed MCT kept about 81%
of warp facial information, while the KLT and WT kept about 74% and 41% of facial
information, respectively.

Figure 13. A metric comparative evaluation applied on 2600 facial images of warp face dataset of AR
database. (A) PSNR and (B) SSIM.

Figure 14 shows a random view from the previous evaluation shown in Figure 13.
Eight random warp facial images were selected out of 2600 facial images of the AR database
to show a representative view of the difference between the proposed MCT and the existing
KLT and WT methods in respect to PSNR and SSIM. Additionally, sensitivity of PSNR
and SSIM for different facial expression and facial occlusion are shown. Images 1, 2, 5,
and 7 show the metric sensitivity for screaming, neutral, anger, and smile face. Meanwhile,
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images 3 and 8, show the metric sensitivity for persons wearing a prescription eyeglasses
as a software biometric.

Figure 14. A metric comparative evaluation applied on 8 random facial images of warp face dataset
of AR database. (A) PSNR and (B) SSIM.

Figure 15 shows an evaluation applied on the 3315 full facial images inside the AR
database. Two metrics were used; namely, PSNR and SSIM. PSNR evaluation is shown
in Figure 15A in which the KLT outperforms MCT and WT with a PSNR average of
22.3969 while the other two methods had values of 21.7271 and 20.0283, respectively.
However, the structure similarity of the proposed MCT still had the highest SSIM over
the other two existing methods for the entire 3315 full facial images. In Figure 15B, MCT
had an average SSIM of 0.86693 while KLT and WT had a SSIM of 0.81153 and 0.67574,
respectively. Therefore, the reconstructed full facial images kept about 87% of the original
facial information under the proposed method, while the KLT and WT kept about 81% and
68%, respectively.

Figure 15. A metric comparative evaluation applied on 3315 facial images of full face dataset of AR
database. (A) PSNR and (B) SSIM.

Figure 16 shows an evaluation applied on 16 random full facial images selected from
different websites. A similar manner of evaluation which was applied as per Figure 14;
this demonstrates a close sensitivity of PSNR and SSIM for different facial expressions
and facial occlusions in the full facial images. For instance, images 2, 5, 7, and 15 show
sensitivity for PSNR and SSIM for different facial expressions; namely, neutral, anger, smile,
and screaming face. Meanwhile, the images 4 and 9 show sensitivity to PSNR and SSIM for
two facial occlusion; namely, prescription eyeglasses and head hat. In most cases shown in
Figure 16, the proposed MCT shows superior outstanding performance over KLT and WT.
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Figure 16. A metric comparative evaluation applied on 16 facial images of full face dataset of AR
database. (A) PSNR and (B) SSIM.

Figure 17 shows a metric comparative evaluation for datasets with respect to PSNR
and SSIM. Figure 17A shows a PSNR comparison between three datasets in which the
proposed MCT of warp facial images got a highest value of 27.2268. The MCT, which was
applied on full images of the AR database and websites, obtained values of 22.3996 and
26.0928, respectively. The MCT application to warp facial images overcame the KLT and
WT of warp facial images within the same dataset. However, the MCT of the full images
of AR database was dropped by 0.6725 in comparison with KLT of the full images of AR
database. This was affected by the image background, which could be similar in some
cases to human skin color and to fabrics of some clothes (these two parameters do not exist
in the warp or the AR database for the same subjects). Additionally, the MCT was superior
in comparison to both KLT and WT for full images of websites.

In addition, Figure 17B shows the superiority of the proposed MCT over KLT and WT
in respect of SSIM. Therefore, the structural similarity between reconstructed images of
MCT and the original images in the entire used datasets was the highest for all methods.
It was noted, for the warp face of AR, the SSIM for MCT was 81%, while KLT and WT were
74% and 49%, respectively. In respect of the full images of AR, SSIM for MCT was 87%
while it was 81% and 68% for KLT and WT. Finally, the MCT of full images from websites
had 77%, while KLT and WT had 74% and 51%, respectively.

Figure 17. A comparative evaluation using (A) PSNR and (B) SSIM across all used datasets.

4.4. Complexity and Time Comparative Evaluation

In general, the calculation of the transform complexity is manifold and ambiguous;
so, in this work, the complexity metric will be summarized as a number of the mathematical
operations. This factor is ambiguous since it comprises mathematical operations such as
addition and multiplication, and the input of these operations could be an integer or floating
numbers. As a result, the number of mathematical operations is not an even-handed
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evaluation metric however, it can be considered as an acceptable metric for transform
complexity [25].

At this point, the complexity could be estimated for each block of size N × N as
follows, for 2D four levels, Haar WT the complexity (C(WT)) has O(8N2) and the KLT
complexity (C(KLT)) has O(N3) for coding and decoding sides. The coding complexity of
MCT (C(MCTc)) has O(2N3) and the decoding complexity of MCT (C(MCTd)) has O(4N).
To recap, the complexity of coding operation is sorted as C(MCTd) < C(WT) < C(KLT) <
C(MCTc).

However, because modern computers use parallel processing to execute the N × N
block operation simultaneously, the transform, which is dependent on block operation
(which both MCT and KLT and are dependent on), could be time superior.

On the other side, some transforms that depend on point operation (such as WT)
rather than block operation could be inferior. Therefore, the time execution of MCT and
KLT would be faster than WT. Table 1 shows the coding, decoding, and the total time for
the proposed MCT, KLT, and WT transforms on three datasets. It was calculated using an
Intel(R) Core(TM) i7− 4712HQ CPU 2.30 Ghz, and 16 GB of RAM.

Table 1. Execution time for the proposed MCT and the existed methods KLT and WT.

Dataset
Coding Time Decoding Time

MCT KLT WT MCT KLT WT

Warp Face AR 0.574 0.041 2.284 0.008 0.013 0.395

Full Image AR 2.801 0.040 9.959 0.048 0.027 1.728

Full Image Web 0.918 0.023 3.591 0.015 0.013 0.633

Average 1.431 0.035 5.278 0.024 0.018 0.919

Figure 18A shows the execution time of coding processes with an average of execution
time for WT which was higher than the MCT by 4 times. The average execution time of
MCT was higher than the KLT by 40 times. Figure 18B shows the execution time of the
decoding processes for which the average of execution time for WT was higher than the
MCT by 38 times, while the average execution time of MCT was higher than the KLT by
1.3 times. Moreover, the decoding time is considered more valuable than the coding time,
since the decoding operation could be used more frequently whilst the coding operation
could be used just once.

Figure 18. The execution time of (A) Coding operation and (B) Decoding operation for the proposed
MCT, and the other existed method KLT and WT across all used datasets.

5. Conclusions and Future Work

In this paper, a new transform was proposed for data reduction and was applied on
large evaluation of the AR database (warp face and full image face) along with selected



Information 2021, 12, 115 16 of 17

facial images from websites. The reconstructed images from the proposed transform have
a higher SSIM and PSNR values over the KLT and WT methods.

A large set of data was represented by a small number of parameters with valuable
information preserved. The proposed MCT can be used as an initial stage evaluation for
different applications such as biometric verification system, object recognition, semantic
segmentation, and image retrieval.

MCT is considered superior to other ranking transforms such as KLT and WT within
appointed pattern (warp faces), since KLT and WT are general transforms, whilst MCT
is a transform that depends on a particular codebook that is related to a particular field.
Specifically, the proposed scheme could be improved through the constructed codebook
unique to operation, in contrast with KLT and WT which have a stationary process.
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