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Abstract: In the era of big data, multi-task learning has become one of the crucial technologies for
sentiment analysis and classification. Most of the existing multi-task learning models for sentiment
analysis are developed based on the soft-sharing mechanism that has less interference between
different tasks than the hard-sharing mechanism. However, there are also fewer essential features
that the model can extract with the soft-sharing method, resulting in unsatisfactory classification
performance. In this paper, we propose a multi-task learning framework based on a hard-sharing
mechanism for sentiment analysis in various fields. The hard-sharing mechanism is achieved by a
shared layer to build the interrelationship among multiple tasks. Then, we design a task recognition
mechanism to reduce the interference of the hard-shared feature space and also to enhance the
correlation between multiple tasks. Experiments on two real-world sentiment classification datasets
show that our approach achieves the best results and improves the classification accuracy over the
existing methods significantly. The task recognition training process enables a unique representation
of the features of different tasks in the shared feature space, providing a new solution reducing
interference in the shared feature space for sentiment analysis.

Keywords: text classification; multi-task learning; hard-sharing mechanism; task recognition mechanism

1. Introduction

With the fast development of e-commerce, the automated sentiment classification
(ASC) method for reviews on various products is demanded in the field of nature language
processing (NLP) [1]. ASC methods classify the reviews into positive/negative sentiment
classes with satisfactory efficiency and accuracy [2]. More specifically, ASC intends to
explore the in-depth attitudes and perceptions (such as positive, negative) from the text
body associated with the user natural awareness.

Recently, many forms of neural networks (NN) have been proposed for ASC [3–5].
Inspired by the human behaviors that handle multiple tasks simultaneously, multi-task learn-
ing neural network (MTL-NN) is proposed, extending the NN with a more sophisticated
internal structure. The MTL-NN is a hierarchical structure of NN performing sentiment
analysis receiving data containing multiple tasks as input [1]. For example, an online
shopping website contains review comments associated with various products, such as
books, televisions, handphones, etc. Traditional single-task learning (STL) NN experiences
difficulties analyzing text pieces mixing different product types. MTL-NN handles the
entire text piece involving comments under different products. There are in general two
main mechanisms for multi-task learning methods: (a) the soft-sharing mechanism that
applies a task-specific layer to different tasks [6–8]; (b) the hard-sharing mechanism that
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utilizes a powerful shared feature space to extract features for different tasks [9–11]. There
are advantages and limitations for both sharing mechanisms.

With the continuous development of different versions of MTL, the soft-sharing mech-
anism has been widely adopted for ASC under different situations. However, there exist
problems for the soft-sharing mechanisms, such as handling the interference between tasks
and insufficient feature representations [12]. To address the above-mentioned issues, this
paper proposes a sentiment analysis model that is based on the hard-sharing mechanism.
A task recognition mechanism is proposed, which allows each task to obtain a unique
representation in the hard-sharing feature space. The implemented model consists of three
main steps. The first step consists of a lexicon encoder, which is used to encode the input
data. It adds position and segment embedding to the word embedding. The second step
contains a shared encoder, which is used to extract features from the data of several differ-
ent tasks. These features form a shared feature space that provides supportive features for
the subsequent private layers. The third step employs a private encoder, which consists of
two layers: one is the task-specific layer for recognizing sentiment information, and the
other is the task recognition layer.

The main contributions of our study can be summarized as follows:

• The proposed model addresses the issue of interference and generalization of the
shared feature space during multi-task learning.

• The proposed model comprises three encoders, including a lexicon encoder, a shared
encoder, and a private encoder, to improve the quality of extracted features.

• We propose a task recognition mechanism that makes the shared feature space have
unique representation for different tasks.

2. Related Works

As one of the popular fields of natural language processing (NLP) [13,14], various
sentiment classification methods were proposed in the recent years. For example, the
Word2vec [15] technique, proposed by Google in 2013, significantly improves the traditional
feature engineering methods for text classification. The Word2vec maps characters into
low-dimensional vectors, representing the intrinsic connections between words [16,17].
The Word2vec accelerates the development of deep learning techniques in the field of
sentiment classification

More recently, various deep learning algorithms were proposed for sentiment analysis,
such as TextCNN [18], TextRNN [7], HAN [19], etc. These algorithms use different neural
networks to process the text of different lengths. For example, convolutional neural
networks [20,21] are used to extract features from sentences. Recurrent neural networks
are used to extract features from paragraphs [22,23], and attention mechanisms are used to
extract features from articles [19,24]. However, these algorithms cannot be directly applied
to multi-task sentiment analysis.

The MTL approach allows the model to extract features from multiple tasks simultane-
ously. The MTL technique was firstly used in the field of computer vision [25,26]. Numerous
experiments have demonstrated that MTL is better than single-task learning methods on
multi-task sentiment analysis [27,28]. The latent correlations among similar tasks that can
be extracted by MTL are potentially helpful in improving the classification results.

Based on the neural network structure, MTL can be divided into soft-sharing MTL
and hard-sharing MTL [29]. The soft-sharing mechanism divides the features into shared
features and private features, which reduces the interference between multiple tasks [30,31].
However, it requires learning separate features for each task as private features. These
private features are not shared. Thus, the parameters are not used effectively [32]. The
hard-sharing mechanism allows the shared layer to extract features from all tasks, which
can be used by all tasks [6]. Multiple tasks interfere with each other in the shared layer,
but the interference between tasks is exploited to improve generalizability. To reduce the
interference, the hard-sharing mechanism provides a private layer for each task [33].
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3. Methodology

The overall structure of the model is shown in Figure 1, where the lexicon encoder
is used to encode the data for each task into a lexicon embedding. The shared encoder
extracts the semantic features from the embedding. A shared feature space is formed by
the semantic features extracted by the shared encoder. The private encoder consists of two
parts: one is task-specific layers, which are used to learn semantic features related to the
source of the review, and the other is the task recognition layer.
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3.1. The Lexicon Encoder

The lexicon encoder is a feature extraction encoder that addresses the issue of con-
verting input text to word vectors. The input to the lexicon encoder can be a sentence or
a paragraph. The output of the encoder is usually the representation of the sum of corre-
sponding token, segment, and position embedded. The embedded position is calculated
from the positions of input vectors, as shown in Equation (1).

PE(pos,2i) = sin
(

pos/100002i/dmodel
)

, (1)

PE(pos,2i+1) = cos
(

pos/100002i/dmodel
)

, (2)

where pos is the position of the input vector; i is the dimension, and dmodel is the dimension
of the word vector. The lexicon encoder converts the input X into dmodel dimension
embeddings for the shared encoder learning (Section 3.2).

3.2. Shared Encoder

The shared encoder is used to extract the common sentence features in multiple
tasks and places them into a shared feature space. To make the shared feature space
contain richer semantic features, the pre-trained Bidirectional Encoder Representations
from Transformers (BERT) model [34,35] is introduced into our shared encoder. The pre-
trained BERT model consists of multiple Transformer Encoders, which can be used to
encode sentences. The structure of the shared encoder is shown in Figure 2.
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From Figure 2, the transformer encoder model is composed of a stack of N = 6
identical layers and specifically addresses the issue of learning long-term dependencies,
which are composed of multi-head attention mechanisms and position-wise feed-forward
networks. The two sub-layers are connected by residual connection [20] and layer normal-
ization [21].

The multi-head attention allows the model to pay attention to the information in
different locations. Multi-head attention is composed of multi-dimensional self-attention,
which linearly projects the query keys and values h times. The self-attention consists
of queries and keys of dimension dk, and values of the dimension dv. We compute the
self-attention products with Equation (3):

Att(Q, K, V) = so f tmax
(

QKT
√

dk

)
V, (3)

where Q is the queries matrix; K is the keys matrix; V is the values matrix; and dk is the
dimension of the queries and keys. Finally, we utilize the softmax function to calculate the
weight of every input token.

On each of the projected versions, the self-attention is computed in parallel. The
outputs are concatenated. The final output can be calculated by projecting them again.

H(Q, K, V) = (h1 ⊕ h2 ⊕ · · · ⊕ hn)WO, (4)

hi = Att
(

QWQ
i , KWK

i , VWV
i

)
, (5)

where ⊕ is the concatenation operator; hi is the i-th attention representation of multi-head
attention. The projections are parameter matrices WQ

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , WO

i ∈ Rdmodel×dk .
Position-wise feed-forward networks are composed by two linear transformations

and a nonlinear activation function Relu:

FFN(x) = W2·Relu(W1x + b1) + b2 (6)

We utilize residual connections and layer normalizations to connect the input layer,
multi-head attention mechanisms, and position-wise feed-forward networks:

LN(x) = σ(x +F (x)), (7)

where F (x) represents the output of sub-layers; σ represents layer normalization; LN(x)
represents the output of the layer normalization.

3.3. Private Encoder

The private encoder is composed of a task-specific layer and a task recognition layer.
The task-specific layer is used to extract emotion features that are independent of tasks.
Therefore, there are multiple multi-scale CNN layers, which are designed for different
tasks. The task recognition layer is used to learn task-recognized features. The overall
structure of the private encoder is shown in Figure 3.

From Figure 3, the multi-scale CNN is composed of multiple convolution layers. Each
convolution layer is composed of multiple convolution kernels of different sizes that are
used to extract text features of different scales in the shared feature space.
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Let xi:i+j refer to the concatenation of words xi, xi+1, · · · , xi+j. A convolution
operation is a convolution filter wh ∈ Rhk sliding on a window of size h to generate new
features. For example, convolution is calculated on the words xi:i+h−1. A new feature can
be generated by

ci = f (wh·xi:i+h−1 + b), (8)

where b ∈ R is a bias term; f is the ReLU activation function.
We apply the convolution filter to all possible word combinations {x1:h, x2:h+1, · · · , xn−h+1:n}.

A feature map can be generated by:

ch = [c1, c2, · · · , cn−h+1], (9)

where ch ∈ Rn−h+1. We apply the max-pooling operation [3] to further process the feature
ch. The maximum value of ch as a feature.

ĉh = max{ch}. (10)

Multiple features ĉh of different length h are extracted by multiple convolution filters
of different sizes, which represent token information of different lengths. The final fea-
tures ĉ are concatenated by the multiple features ĉh extracted by convolution kernels of
different sizes.

3.4. The Task Recognition Mechanism

Inspired by adversarial training [32], we propose a task recognition mechanism that
uses the three encoders to learn the different features between each task while performing
sentiment classification.

In the training process, for a text dataset containing N samples {xi, yi}, we utilize the
cross-entropy function as the loss function. It is calculated that the cross-entropy of the
true and the predicted distributions occurs on all the tasks. The model is optimized in the
direction of minimizing the cross-entropy value.

L(ŷ, y) = −
N

∑
i=1

C

∑
j=1

yj
i log

(
ŷj

i

)
, (11)

where yj
i is the ground-truth label; ŷj

i is prediction probabilities, and C is the class number.
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Task Discriminator. The task discriminator is used to map the shared representation
of sentences into a probability distribution, estimating the probabilities of the original task
for the encoded sentences.

During the task recognition training process, a separate multi-scale CNN layer is
designed for each task. There are independent parameters in different multi-scale CNN
layers. Therefore, the interference between different tasks can be relieved. Suppose that
the input sample belongs to task k, the corresponding multi-scale CNN is MCNN(k). The
output is:

ŷ(k) = MCNN(k)
(

x(k)
)

, (12)

where x(k) is a sample of task k; ŷ(k) is prediction probabilities of task k. For the data of
multiple tasks, we calculate the weighted sum of the loss for each task.

LTask =
K

∑
k=1

αkL
(

ŷ(k), y(k)
)

, (13)

where αk is the weight for each task k. K is the number of tasks.
A task recognition training process is designed to learn different features from among

tasks and influence the representation in the shared feature space by backpropagation. The
schematic diagram of task recognition training is shown in Figure 4.
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Recognition Loss. Different with most existing multi-task learning algorithms, we
add an extra recognition loss Lrec to add task-recognized features to shared feature space.
The recognition loss is used to train a model to produce task-recognized features such that
a classifier can reliably predict the task based on these features. The original loss of the
task recognition training process is limited since it can only be used in binary situations.
To overcome this, we extend it to multi-class form, which allows our model to be trained
together with multiple tasks:

Lrec = −
1
K

K

∑
k=1

N

∑
i=1

C

∑
j=1

pj
i log

(
p̂j

i

)
(14)

where K is the total number of tasks, N is the total number of samples, and C is the number
of samples for task i. For each i, there are samples j ∈ (1, C). pj

i represents the predicted task

that the sample j belongs to. Therefore, pj
i is the task label, and p̂j

i is prediction probability

of pj
i . It is noted that the Lrec requires only the input sentence x and does not require the

corresponding label y. The final loss function of the model can be written as:

L = Ltask + λLrec, (15)

where λ is a constant coefficient.
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4. Experimental Process and Results
4.1. Dataset and Metrics

As shown in Table 1, the dataset that we employed in this experiment contains
16 different datasets from several popular review corpora, including books, electronics,
DVD, kitchen, apparel, camera, health, music, toys, video, baby, magazines, software,
sports, IMDB, and MR. The first 14 datasets are product reviews, which are collected by
Blitzer et al. [33]. The remaining two datasets are movie reviews, which are from the IMDB
datasets [34] and the MR datasets [18]. There are about 2000 reviews for each commodity,
for a total of about 32,000 reviews. The goal is to classify a review as either positive or
negative. All the datasets in each task are partitioned randomly into the training set,
validation set, and test set with the proportion of 70%, 20%, and 10%, respectively. The
detailed statistics about all the datasets are listed in Table 2.

Table 1. Instances of the testing dataset I.

Commodity Type Example Label

Books
this is a resource used by all nps i have talked to. great addition to your library. 1

it was a mistake to buy it. only few pages were interestin 0

Electronics
great product but is only $ 30 at iriver.com’s stor 1

i dont like this mouse, i brought, and never work, its useles 0

DVD
an awesome film with some suspense and raunchiness all rolled in to one 1

i love pablo’s act on comedy central. this one does n’t even touch it 0

Kitchen
it is very light and worm. i love it. definitely worth the price! 1

for the price, you get what you pay for. they are not the best quality 0

Apparel recipient was very satisfied with this blanket as pb are his initials 1
a red star !?!? i bet this wo n’t sell well in eastern europe. 0

Camera
everything was excellent. the digital camera, the delivery. thank you a lot !!!! 1

have had it for a few weeks and glad i brought it great procuc 0

Health
great tasting bar. nice and soft make it easy to eat 1

it does n’t get hot enough, nor does it stay hot for more than 10 min 0

Music
i just love lynch mixed with dooms production. it is what real is 1

this cd isnt real good if you like compilations than get the ruff ryders c 0

Toys these make meals a lot more fun for children... i know my son loves them 1
fisher price is selling the same item for only $ 33. $ 139.99 has to be a mistake 0

Video
this is an excellent documentary of shangri-la and its elusive transcendental nature 1

i love norm macdonald and this is the dumbest movie of all tim 0

Baby great product—i heard from other mommies that this was the pump to get; i agree 1
rent a hospital grade medalia pump. you wont be sorr 0

Magazines the magazine was shipped in a timely manner, i would use this vendor again 1
i still have not received this magazine, what is taking so long !! 0

Software
my husband is using the rosetta stone spanish program and loves it 1

the “bad serial number” routine as the first reviewer. 0

Sports excellent quality; much easier to put on than the cap i used before 1
this pillow is too small and it is not comfortable at all 0

IMDB
this is a truly magnificent and heartwrenching film !!! 1
argh! this film hurts my head. and not in a good way. 0

MR
it’s a feel-good movie about which you can actually feel good. 1

a decidedly mixed bag. 0
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Table 2. Dataset I statistics.

Commodity
Type

Training Set Validation Set Test Set
Total

Positive Negative Positive Negative Positive Negative

Books 798 802 105 95 97 103 2000
Electronics 705 693 97 103 198 202 1998

DVD 802 798 95 105 102 98 2000
Kitchen 706 694 102 98 192 208 2000
Apparel 690 710 95 105 215 185 2000
Camera 706 692 99 100 194 206 1997
Health 812 788 98 102 90 110 2000
Music 698 702 103 97 199 201 2000
Toys 794 806 99 101 107 93 2000

Video 694 706 93 107 213 187 2000
Baby 800 700 103 97 97 103 1900

Magazines 682 688 101 99 217 183 1970
Software 788 727 102 98 110 90 1915

Sports 712 687 98 102 190 210 1999
IMDB 795 805 98 102 101 99 2000

MR 778 822 102 98 106 94 2000
Total 11,960 11,820 1590 1609 2428 2372 31,779

In addition, we collected four different types of commodity review datasets of daily ne-
cessities, literature, entertainment, and media from the raw data provided by Blitzer et al. [33]
and formed dataset II. Each item in dataset II has more entries compared to dataset I. We
also divided the training set, validation set, and test set for dataset II, and ensured that the
number of positive and negative samples in each set did not differ much. Instances and
statistics of dataset II are shown in Tables 3 and 4.

Table 3. Instances of the testing dataset II.

Commodity Type Example Label

Daily Necessities great product—i heard from other mommies that this was the pump to get; i agree 1
rent a hospital grade medalia pump. you wont be sorr 0

Literature
an excellent book for anyone that barbecues 1

imposible to do so with no item received 0

Entertainment
thank you, i like this program and it does what i need it to do 1

i would not buy it ! hard to use. my machine runs slower since the install. 0

Media
i received “the piano” promptly, and in pristine, excellent condition. 1

if this is n’t worst dead album then in the dark is 0

Table 4. Dataset II statistics.

Commodity Type
Training Set Validation Set Test Set

Total
Positive Negative Positive Negative Positive Negative

Daily Necessities 1609 1486 199 199 187 213 3893
Literature 2257 2305 308 292 420 380 5962

Entertainment 2285 2219 299 301 407 393 5904
Media 2978 3007 389 411 613 584 7982
Total 9129 9017 1195 1203 1627 1570 23,741

In the experiment, we use the same evaluation criteria for each commodity review
data set and each method, which are accuracy and F1-score.



Information 2021, 12, 207 9 of 13

4.2. Compared with Other Sentiment Classification Methods

In order to verify the effectiveness of our proposed MTL-REC sentiment classi-
fication model, we select seven existing sentiment classification models for compara-
tive study, including CNN [16], LSTM [35], bidirectional LSTM (Bi-LSTM) [36], LSTM
with Attention (LSTM_Att) [17], MTL-CNN [7], MTL-GRU [37], MTL-ASP [12]. The
initial hyper-parameter settings for all deep learning models include: number of hid-
den layers: 3; hidden layer size: 64; convolutional kernel sizes of the three hidden
layers: 3, 4, and 5, respectively (only for CNN); optimizer: Ranger; learning rate: 0.2;
dropout rate 0.5; epoch: 5; λ = 0.5. The source code of all models is available at:
http://www.github.com/zhang1546/Multi-Task-Learning-for-Sentiment-Analysis.git (ac-
cessed on 12 May 2021).

The experimental results are shown in Tables 5 and 6.

Table 5. Performance of single-task model and multiple tasks on multiple tasks dataset I.

Task
Single Task Multiple Tasks

CNN LSTM Bi-LSTM LSTM_Att Avg. MTL-CNN MTL-GRU MTL-ASP Proposed

Books 0.87 0.865 0.9 0.9 0.884 0.89 0.88 0.84 0.915
Electronics 0.825 0.84 0.848 0.852 0.841 0.862 0.842 0.868 0.885

DVD 0.8 0.835 0.87 0.855 0.840 0.85 0.82 0.855 0.875
Kitchen 0.848 0.878 0.85 0.855 0.858 0.86 0.872 0.862 0.865
Apparel 0.875 0.865 0.872 0.86 0.868 0.855 0.872 0.87 0.895
Camera 0.855 0.878 0.865 0.85 0.862 0.88 0.892 0.892 0.888
Health 0.845 0.855 0.865 0.83 0.849 0.885 0.875 0.882 0.865
Music 0.825 0.838 0.825 0.812 0.825 0.842 0.83 0.825 0.845
Toys 0.845 0.875 0.89 0.88 0.873 0.855 0.865 0.88 0.875

Video 0.872 0.88 0.882 0.875 0.877 0.878 0.885 0.845 0.91
Baby 0.885 0.875 0.875 0.855 0.873 0.89 0.9 0.882 0.865

Magazines 0.852 0.85 0.865 0.855 0.856 0.882 0.9 0.922 0.9
Software 0.89 0.905 0.885 0.885 0.891 0.905 0.895 0.872 0.91

Sports 0.858 0.858 0.85 0.84 0.852 0.875 0.862 0.857 0.908
IMDB 0.84 0.86 0.89 0.875 0.866 0.865 0.855 0.855 0.925

MR 0.73 0.74 0.715 0.755 0.735 0.72 0.7 0.767 0.79

AVG 0.845 0.856 0.859 0.852 0.853 0.862 0.859 0.861 0.882
STD 0.0373 0.0348 0.0416 0.0326 0.0347 0.0402 0.0471 0.0327 0.0321

Table 6. Performance of single-task model and multiple tasks on multiple tasks dataset II.

Task
Single Task Multiple Tasks

CNN LSTM Bi-LSTM LSTM_Att Avg. MTL-CNN MTL-GRU MTL-ASP Proposed

Daily
Necessities 0.850 0.850 0.865 0.852 0.854 0.855 0.848 0.865 0.878

Literature 0.860 0.834 0.845 0.831 0.843 0.851 0.829 0.850 0.865
Entertainment 0.870 0.861 0.851 0.878 0.865 0.874 0.869 0.860 0.898

Media 0.845 0.854 0.865 0.863 0.857 0.845 0.866 0.858 0.880

AVG 0.856 0.850 0.857 0.856 0.855 0.856 0.853 0.858 0.880
STD 0.0108 0.00991 0.00876 0.0171 0.00805 0.0108 0.0160 0.00540 0.0118

Table 5 shows the accuracy of 16 sentiment classification tasks. Table 6 shows the accuracy
of four sentiment classification tasks. The column of Avg. shows the average accuracy of the
previous four single models. The highest accuracy rates are bolded in Tables 5 and 6. From
Table 5, we can see that multi-task learning models work better than single tasks in most tasks.
From Table 6, we can see our proposed MTL-REC model outperforms all compared existing
methods in all the cases. The classification accuracy improvements are visualized in Figure 5. In
Figure 5, it is noted that the classification accuracy improvement with the proposed method over
all compared methods is from 2% to 7%. The significant classification accuracy improvement

http://www.github.com/zhang1546/Multi-Task-Learning-for-Sentiment-Analysis.git
http://www.github.com/zhang1546/Multi-Task-Learning-for-Sentiment-Analysis.git
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is mainly achieved by the hard-sharing mechanism and the task recognition training process.
The task sharing layer reduces the interference between multiple tasks. Table 5 also shows that
the CNN extracts text features similar to that of GRU and LSTM encoders and takes less time.
In Table 6, the average accuracy of the multi-task learning model is almost the same as that of
the single-task learning model. Table 7 shows a statistical test over the results shown in Table 5.
The difference between the proposed method and each compared method is evaluated using
the Wilcoxon signed-rank test. The p-values show that the proposed method is significantly
different from the compared methods. Table 8 shows the overall time and memory used by
different methods on dataset I and II. The proposed MTL-REC encoder improves the sentiment
classification performance significantly, but requires more running time and memory. The time
complexity of the sentiment analysis is usually not the main concern, since the feature extract
part can always be performed offline.

Information 2021, 12, 207 10 of 13 
 

 

 
Figure 5. Visualization of the maximum, minimum, and averaged classification accuracy of all 
compared methods. 

Table 7. The total time and memory used by different methods. 

Statistical Methods 
Levene’s Test Wilcoxon Signed-Rank Test 

p-Value Evaluation p-Value Evaluation 
Proposed-CNN 0.93 homogeneity of variance 1 significant difference  
Proposed-LSTM 0.781 homogeneity of variance 0.998 significant difference  

Proposed-Bi-LSTM 0.977 homogeneity of variance 0.999 significant difference  
Proposed-LSTM_Att 0.717 homogeneity of variance 1 significant difference  
Proposed-MTL-CNN 0.952 homogeneity of variance 0.997 significant difference  
Proposed-MTL-GRU 0.723 homogeneity of variance 0.994 significant difference  
Proposed-MTL-ASP 0.858 homogeneity of variance 0.991 significant difference  

Table 8. The total time and memory used by different methods. 

Task 
Single Task Multiple Tasks 

CNN LSTM Bi-LSTM LSTM_Att MTL-CNN MTL-GRU MTL-ASP Proposed 
Time (s) 30.93 34.32 57.29 58.83 30.80 58.75 188.28 3282 

Memory (MB) 577 647 647 647 577 647 649 1145 

4.3. Model Self-Comparision 
To demonstrate the effectiveness of the proposed method, a comparative experiment 

is conducted. Tables 9 and 10 reflect the fact that the BERT and task recognition training 
process are helpful in sentiment classification tasks. 

  

Figure 5. Visualization of the maximum, minimum, and averaged classification accuracy of all
compared methods.

Table 7. The total time and memory used by different methods.

Statistical Methods
Levene’s Test Wilcoxon Signed-Rank Test

p-Value Evaluation p-Value Evaluation

Proposed-CNN 0.93 homogeneity of variance 1 significant difference
Proposed-LSTM 0.781 homogeneity of variance 0.998 significant difference

Proposed-Bi-LSTM 0.977 homogeneity of variance 0.999 significant difference
Proposed-LSTM_Att 0.717 homogeneity of variance 1 significant difference
Proposed-MTL-CNN 0.952 homogeneity of variance 0.997 significant difference
Proposed-MTL-GRU 0.723 homogeneity of variance 0.994 significant difference
Proposed-MTL-ASP 0.858 homogeneity of variance 0.991 significant difference

Table 8. The total time and memory used by different methods.

Task
Single Task Multiple Tasks

CNN LSTM Bi-LSTM LSTM_Att MTL-CNN MTL-GRU MTL-ASP Proposed

Time (s) 30.93 34.32 57.29 58.83 30.80 58.75 188.28 3282
Memory (MB) 577 647 647 647 577 647 649 1145
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4.3. Model Self-Comparision

To demonstrate the effectiveness of the proposed method, a comparative experiment
is conducted. Tables 9 and 10 reflect the fact that the BERT and task recognition training
process are helpful in sentiment classification tasks.

Table 9. Performance improvement using BERT and task recognition training on multiple tasks dataset I.

Task
Without BERT Without Task Recognition Mechanism With BERT

Acc F1 Acc F1 Acc F1

Books 0.915 0.915 0.91 0.91 0.915 0.912
Electronics 0.832 0.819 0.855 0.844 0.885 0.876

DVD 0.84 0.845 0.855 0.853 0.875 0.876
Kitchen 0.85 0.84 0.852 0.844 0.865 0.856
Apparel 0.865 0.87 0.892 0.9 0.895 0.902
Camera 0.878 0.873 0.88 0.881 0.888 0.888
Health 0.875 0.859 0.875 0.857 0.865 0.846
Music 0.832 0.835 0.862 0.859 0.845 0.845
Toys 0.875 0.886 0.87 0.883 0.875 0.886

Video 0.888 0.894 0.905 0.911 0.91 0.914
Baby 0.9 0.895 0.855 0.854 0.865 0.862

Magazines 0.878 0.881 0.878 0.887 0.9 0.91
Software 0.915 0.922 0.915 0.922 0.91 0.916

Sports 0.872 0.862 0.885 0.875 0.908 0.901
IMDB 0.91 0.91 0.91 0.913 0.925 0.925

MR 0.755 0.749 0.81 0.812 0.79 0.788

AVG 0.867 0.866 0.876 0.875 0.882 0.881
STD 0.0390 0.0417 0.0268 0.0300 0.0321 0.0346

Table 10. Performance improvement using BERT and task recognition training on multiple tasks dataset II.

Task
Without BERT Without Task Recognition Network With BERT

Acc F1 Acc F1 Acc F1

Daily Necessities 0.85 0.84 0.852 0.841 0.878 0.869
Literature 0.864 0.867 0.869 0.875 0.865 0.871

Entertainment 0.854 0.854 0.884 0.884 0.898 0.899
Media 0.852 0.855 0.882 0.884 0.88 0.882

AVG 0.755 0.749 0.81 0.812 0.882 0.881
STD 0.00539 0.00957 0.0128 0.0177 0.0118 0.0119

In Tables 9 and 10, the highest accuracy rates and F1 scores are highlighted using
bold font. According to Tables 9 and 10, the sentiment classification performance is further
improved with BERT and the proposed task recognition mechanism.

5. Conclusions

In this paper, we propose a multi-task learning framework for sentiment classification
with a novel task recognition mechanism. We introduce the pre-trained BERT as our shared
encoder to further improve the performance of the shared encoder. In addition, we propose
a task recognition training process, which enhances the shared feature space to obtain more
task-recognized features. We designed a series of experiments to validate our proposed
method. The experimental results show that the sentiment classification results of our
proposed model are superior to existing state-of-art methods. Both semantic features and
task-recognized features are extracted, enhancing the overall classification performance.

It is noted that we introduce the pre-trained BERT model, which reduces the efficiency
of the algorithm and leads to longer computation times. The proposed method shows a
significant improvement on the accuracy of sentiment classification.
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As one of the future works, we will improve on the shared encoder to reduce the time
complexity of the proposed multi-task learning algorithm. In addition, more challenging
datasets, such as unbalanced, noisy datasets, and datasets in different languages, will be
tested on the proposed method.
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