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Abstract: With the increase and diversification of network users, the scale of the inter-domain
routing system is becoming larger and larger. Cascading failure analysis and modeling are of great
significance to improve the security of inter-domain routing networks. To solve the problem that the
propagation principle of cascading failure does not conform to reality, a Cascading Failure Model
for inter-domain routing systems with the Recovery Feedback Mechanism (CFM-RFM) is proposed
in this paper. CFM-RFM comprehensively considers the main factors that cause cascading failure.
Based on two types of update message propagation mechanism and traffic redistribution, it simulates
the cascading failure process. We found that under the action of the recovery feedback mechanism,
the cascading failure process was accelerated, and the network did not quickly return to normal, but
was rather quickly and extensively paralyzed. The average attack cost can be reduced by 38.1% when
the network suffers the same damage.

Keywords: inter-domain routing system; cascading failure; recovery feedback mechanism; propaga-
tion mechanism

1. Introduction

With the rapid development of the information age, the network environment changes
with each passing day. Border Gateway Protocol (BGP) is the postal service of the Internet.
When someone submits data across the Internet, BGP is responsible for looking at all
of the available paths that data could travel, and it picks the best route, which usually
means hopping between autonomous systems. This process is BGP routing. Due to the
security defect of the BGP protocol, the inter-domain routing system faces many security
threats [1–5]. The local failure caused by an intentional attack or self-failure in the network
may continue to spread and spread rapidly, and eventually cause the whole network to be
paralyzed on a large scale. This phenomenon is called cascading failure, and it acts as a
disaster amplifier in the network.

The widespread CodeRedII and Nimda worms in 2001 caused continuous shocks
in the routing system of the global Internet [6]. In 2017, a configuration error by Google
engineers forced eight million users in Japan to disconnect for an hour [7]. In 2020, due to a
BGP routing error of CenturyLink, the whole Internet cascading reaction occurred, causing
many services connected to the Internet to go down, such as Steam, AWS, and Discord. As
can be seen from the above security events, cascading failures occur from time to time in
inter-domain routing systems, and such security risks cannot be ignored. Some researchers
have proposed a series of attacks that can cause the cascading failure of inter-domain
routing systems, such as CXPST (Coordinated Cross Plane Session Termination) [8] attacks,
BGP stress attacks [9], and DNP (Distributed Network Paralyzing) attacks [10]. Once these
kinds of attacks are achieved, the inter-domain routing system will suffer huge losses.
Therefore, cascading failure analysis and modeling are very necessary to maintain the
security of inter-domain routing systems.
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In recent years, some researchers have done some work on modeling for cascading
failure. Motter et al. [11] first introduced the linear relationship between capacity and
initial load of node and proposed a classic Motter Lai (ML) model. ML model believes that
each node in the network has a rated capacity, and the network is in the state of free-flow
operation under normal circumstances. When some nodes are attacked and fail, the load
will be distributed to neighbor nodes. When the neighboring node receives this additional
load, the total load exceeds the rated capacity and will fail, thus forming a chain reaction.
The ML model lays a foundation for the future study of cascading failure.

For inter-domain routing networks, the model differences proposed by researchers are
mainly reflected in the way the initial load is defined and the failure propagation strategy.
The CFM model proposed by Guo et al. [12] defines the initial load of the node according to
the degree of the node, and the failure propagation strategy is closely related to the degree.
Liu et al. [13] improved the CFM model and set the betweenness as a measure of node
load, which is more accurate than the definition of the CFM model but did not consider the
business relationships [14] of the inter-domain routing system. LU et al. [15] found that
there is a business relationship between nodes in the inter-domain routing network but may
not necessarily be able to communicate, which is caused by a business relationship. Based
on the business relationship, they proposed the Inter-domain Routing System Betweenness
(IRS) and added the recovery mechanism into the model. However, there is no distinction
between the traffic of control plane and data plane, and the IRS only defines the initial load.
The failure propagation strategy in the model still uses priority allocation, which does not
reflect the role of IRS. ZHU et al. [16] deeply analyzed the failure mechanism and believed
that the reasons for node failures and link failures are different. Node failures are caused
by control plane traffic overload. Link failures are caused by data plane traffic overload.
Compared with other models, it restores the real situation better. However, the model still
uses betweenness and has no recovery mechanism, which is not reasonable.

In summary, the current model does not consider the impact of the recovery process
on cascading failure. BGP UPDATE messages are generated when a node or link is
restored from a failed state to a normal working state. The UPDATE message generated by
occasional recovery does not affect. A large number of UPDATE messages are generated
when some important nodes or links are repeatedly switched between the failed and
normal states (the BGP session is continuously reset). This will cause the inter-domain
routing system to fall into an oscillating process. Aiming at the above problems, this
paper deeply studies the working mechanism of autonomous domain routers, focusing on
analyzing the inter-domain routing system business relations and routing strategies. Based
on previous research, a cascading failure model of inter-domain routing system with the
recovery feedback mechanism is proposed.

The remainder of this paper is arranged as follows: The related works are described in
Section 2. In Section 3, we analyze the cascading failure principle for the inter-domain rout-
ing system. Section 4 describes the operating mechanism of CFM-RFM. Section 5 introduces
experiments and analysis. Section 6 summarizes the study and provides our conclusions.

2. Related Work
2.1. Optimal Valid Path Prediction Method for Inter-Domain Networks

The key to traffic reallocation is how to redistribute traffic after link failures. To
simplify the model, most current studies usually assume that the load will be distributed
to the neighbors after link failures. This assumption is not consistent with the fact in the
inter-domain routing system. During routing, all traffic passing through a failed link is
rerouted and reasonably allocated to other links. The key here is how to find the routing
path between the two routers. Some studies [8] believe that the shortest path between two
points is the routing path. The inter-domain routing network is a network that considers
business relationships. Some connected paths are invalid because they cannot communicate.
Zhang et al. [17] proposed Optimal Valid path Prediction method (OVP) for inter-domain
networks. Based on the shortest path algorithm, this algorithm considers the business
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relationship between networks, which is more practical. This paper will calculate IRS based
on OVP to implement the traffic redistribution process.

2.2. Types of Attacks and Costs

Degree [18], IRS [15], and link IRS attack strategies are mentioned in this paper. The
IDegree(o) of degree importance refers to the number of neighbors around node o. The
IVIRS(k) of IRS importance refers to the number of optimal valid paths through node k.
The IEIRS(mn) of link IRS importance refers to the number of optimal valid paths through
link mn. Usually, the attack cost is positively correlated with the importance value [19],
which can be defined as:

COSTi(N) = α ∑
j∈N

Ii(j), i ∈ P (1)

where, α is the correlation coefficient, and this paper α = 1. N is the set of nodes or links
that were initially attacked. P is a collection of three attack strategies.

3. Analysis of the Cascading Failure Principle for the Inter-Domain Routing System

Most current studies of cascading failure do not distinguish data plane flow from
control plane flow. In the inter-domain routing system, data plane traffic and control
plane traffic cannot be confused. Data plane traffic refers to the data traffic forwarded by
the routing nodes. Control plane traffic refers to the traffic used to maintain connections
between routes between domains, including UPDATE messages, KEEPALIVE messages,
OPEN messages, NOTIFICATION messages, etc. Usually, the data plane and control plane
has limited resources. Data plane traffic mainly consumes link bandwidth resources, while
control plane traffic mainly consumes CPU and memory resources of the router [20]. A
large number of UPDATE messages on the control plane arrive at the node at the same
time, which causes the node to fail because the CPU and memory resources of the node
are exhausted. The failure of the link is caused by the surge of traffic overload of the data
plane service that needs to be forwarded in a short time.

After analyzing BGP behavior under the influence of worms [21], it is found that a
small number of BGP session resets produce many UPDATE messages. This is a recovery
feedback mechanism. BGP session reset is the process of session recovery. The UPDATE
generated in this process will feedback to the whole network and have a huge impact.
Therefore, according to the different stages of failure propagation, this paper believes that
cascading failure is caused by three factors. One is that the failure of the node causes the
propagation process of the UPDATE message (FP), which leads to the exhaustion of more
node resources. The other is the traffic redistribution (TR) caused by link failure, which
leads to more link failure due to overload. Thirdly, the re-triggered UPDATE message
propagation (RP) can have a greater impact on the network in the process of the node or
link recovery. FP and TR are completed in the failure phase, while the RP is completed in
the recovery phase.

4. CFM-RFM
4.1. Notations

All parameters mentioned in this article are defined in Table 1. Some important
parameters will be analyzed and explained later.
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Table 1. Commonly used notations.

Notations Descriptions

G = (V, E) Topology of inter-domain routing network.
V The set of nodes.
E The set of links.
vi A node vi ∈ V.
eij A link eij ∈ E.

Li/Lij The load of vi or eij.
Ri The capacity of vi.
Cij The capacity of eij.
β Tolerance parameter.

∆Ti Recovery delay of vi.
∆Tij Recovery delay of eij.

γ Basic unit flow.
VIRS Betweenness.
EIRS Betweenness of links.
Ri The set of reachable nodes of vi.

4.1.1. The Load and Capacity of Nodes

Nodes represent autonomous domains of inter-domain routing networks. The number
of UPDATE messages currently received by the node is used as the load of the node. The
number of UPDATE messages that the node can process in a short time is abstracted into
the capacity R of the node. R can be set to a fixed value [22]. This paper assumes that when
the number of UPDATE messages received by a node in a short time is less than R, the
node can process these UPDATE messages. If the number of UPDATE messages exceeds R,
the node is considered invalid.

4.1.2. The Load and Capacity of Links

The load of a link is the product of the optimal number of valid paths through the link
and the corresponding traffic. To simplify the model, it is assumed that the traffic passing
through each optimal and valid path is γ, the load can be defined as:

Lij = ∑
∀m,n∈V

γNOVPSmn(i,j) (2)

where NOVPSmn(i,j) represents the optimal number of effective paths through eij between
vm and vn. When γ = 1, it is EIRS. The formula is as follows:

EIRSij = ∑
∀m,n∈V

NOVPSmn(i,j) (3)

Motter et al. [11] believe that the capacity is proportional to the initial load, and this
paper uses the same definition. Cij is as follows:

Cij = (1 + β)Lij(0) (4)

where Lij(0) represents the initial load of eij.

4.2. Propagation Mechanism of UPDATE Messages
4.2.1. Failure of the Node Causes the Propagation Process of the UPDATE Message

Both failures of node and link failure may cause neighbors to generate UPDATE
messages. As shown in Figure 1a, the blue node is the normal working node and the red
node is the failure node. When vk fails, the neighbors will send UPDATE messages to Rk.
Each node that receives the UPDATE will parse the message. The forward continues until
Rk have received the UPDATE message.
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Figure 1. Propagation process of UPDATE messages.

4.2.2. Re-Triggered UPDATE Message Propagation

Both recoveries of node and link failure may cause neighbors to generate UPDATE
messages. As shown in Figure 1b, the blue node is the normal working node and the red
node is the node to be restored. When vk is restored, the neighbors will send UPDATE
messages to Rk. Each node that receives the UPDATE will parse the message. The forward
continues until Rk have received the UPDATE message.

4.2.3. Pseudocode

Algorithm 1 shows the steps for the propagation mechanism of UPDATE messages. It
can be written down as fUPDATE().

Algorithm 1. The propagation algorithm.

Input: G, LoadNode, InvalidNodeSet, RecoverNodeSet
Output: The updated state of the node
1: While InvalidNodeSet 6= Φ do
2: Find all the neighbors (NeighborSet) of the node in the InvalidNode;
3: NeighborSet sends UPDATE messages to reachable vp,vp ∈ R;
4: LoadNode [vp]← LoadNode [vp] + 1;
5: IF LoadNode [vp] > R, InvalidNodeSet.add (vp), RecoverNodeSet.add (vp);
6: End while
7: While RecoverNodeSet 6= Φ and t = ∆T do
8: Find all the neighbors (NeighborSet) of the node in the RecoverNodeSet;
9: NeighborSet sends UPDATE messages to reachable vq,vq ∈ R;
10: LoadNode [vq]← LoadNode [vq] + 1;
11: IF LoadNode [vq] > R, InvalidNodeSet.add (vq), RecoverNodeSet.add (vq);
12: End while

4.3. Traffic Redistribution

At the beginning of the model operation, the Lij(0) and Cij can be calculated according
to the network topology. During the operation of the model, OVPS(i, j) will change
dynamically after the failure of the node or link, which will lead to the change of Lij.
Algorithm 2 shows the steps for the traffic redistribution algorithm. It can be written down
as fTR().
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Algorithm 2. Traffic redistribution algorithm.

Input: G, LoadLink, InvalidLinkSet, OptimalValidPaths,α
Output: The updated state of the link
1: Check p in OptimalValidPaths;
2: While emn ∈ p and emn ∈ InvalidLinkSet do
3: For eij ∈ p do
4: LoadLink [eij]← LoadLink [eij] − α;
5: End for
6: OptimalValidPaths.delete (p);
7: End while
8: Find the new optimal valid path pab;
9: OptimalValidPaths.add (pab);
10: For eij ∈ pab do
11: LoadLink [eij]← LoadLink [eij] + α;
12: IF LoadLink [eij] > Cij, InvalidLinkSet.add (eij);
13: End for

4.4. Modeling the Process of Cascading Failure

As shown in Figure 2, the evolution process of cascading failure is mainly divided
into three stages: the initial stage of cascading failure, the propagation stage of cascading
failure, and the equilibrium stage of the system.

Figure 2. Process of cascading failure.

• Failure

When there is no external influence, the inter-domain routing system runs stably. A
node or link is affected at a certain moment, the state will change. It can be expressed
as follows:

UW
(E,V)

A(MA.SF)→
µ

UF
(E,V) (5)

where U(E,V) is the state of the node and link, W is the state of normal working and F is
the state of failure. A(MA) is malicious attack and A(SF) is self-failure. µ is the judgment of
failure, can be expressed as follows:

µ =

{
Li(t0) > R

Lij(t0) > Cij
(6)
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• Propagation

This stage mainly includes three processes. The first is the update message flooding
process caused by node failure and link failure, which can be expressed as follows:

U(E,V)|W→F → fUPDATE() (7)

The second is the traffic redistribution process after a link failure, which can be
expressed as follows:

U(E)|W→F → fTR() (8)

The third is the update message flooding process caused by recovery of failed nodes
and links, which can be expressed as follows:

U(V,E)|F→W → fUPDATE() (9)

• Equilibrium

Since there are factors and recovery mechanisms that cause node or link failure in the
model, there are two balanced states in the final model. One is that all nodes in the network
fail and the entire network is paralyzed. The other is that the network returns to normal
working after shaking.

5. Experiments and Analysis
5.1. Data and Parameter Setup

Considering the difference between the network scale and the rate of the number of
nodes to the number of links, Canada and India were selected from the as-relationships
data of the CAIDA [23] project in March 2021 to form the network topology, including
the autonomous domain relationship and business relationship of nodes and links. The
information for India and Canada is shown in Table 2. It includes parameters related to the
model operation.

Table 2. Parameter setup.

Parameter Value_India Value_Canada

Num_V 2406 1523
Num_E 4052 2508

Step 50 50
γ 1 1
β 0.3 0.3
Ri 250 150

∆Ti 5 5
∆Tij 5 5

5.2. Metric of Evaluation for Cascading Failure

To quantify the extent of cascading failure effects, the calculation method of the failure
rate is defined as follows:

f =
NFv + NFe

W
(10)

where NFv represents the number of failed nodes. NFe represents the number of failed
links. NFv + NFe represents the number of all failures in the network. W represents the
total number of initial nodes and links.

5.3. Impact of Recovery Feedback Mechanism

To verify the recovery feedback mechanism, a Cascading Failure Model based on
Double Damage Factor (CFM-DDF) without RP was introduced for comparison. Under
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the three attack strategies, the top 1% nodes or links of the two networks were removed to
observe the failure situations simulated by different models.

As shown in Figure 3, the recovery feedback mechanism is a facilitator to cascading
failure. When the step is at 18–20 and 30–40, the CFM-RFM considering the RP produces a
large number of UPDATE messages due to the recovery mechanism, which accelerates the
cascading failure process and causes the improved network to collapse more quickly. It
reflects that the increase in the number of UPDATE messages is positively correlated with
the degree of network failure, which is also in line with the actual situation. In the CFM-
DDF without RP, the network quickly returns to normal under the recovery mechanism.
The number of UPDATE messages goes to 0.

Figure 3. Under the three attack strategies, the top 1% nodes or links of the two networks were removed to observe the
change in failure rate and number of UPDATE as step increases by different models. The solid blue line refers to the
CFM-DDF, and the solid red line refers to the CFM-RFM. The dotted line indicates the number of UPDATE. The types of
attacks and countries have been indicated in the figure.
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In CFM-RFM, the VIRS attack is the most efficient for the Indian system. At step = 18,
the network is completely down for the first time. Under the ERIS attack, the network is
completely paralyzed for the first time when step = 20. Under the degree of attack strategy,
the network is paralyzed at step = 22. In Canada, the effect of the degree attack strategy
and the VIRS attack strategy is roughly the same, due to the attack nodes selected by the
two strategies are relatively similar. The EIRS attack strategy is the worst, with step = 40
causing the network to crash completely.

Comparing the inter-domain routing systems of the two countries, the change in the
number of updates in Canada was larger than that in India after the attack. It may be
caused by differences in network structure. In Figure 3f, under the ERIS attack, failure and
recovery are closely linked and alternate. The failure rate changes at a little speed and the
failure scale of the network gradually expands until the network collapses completely.

5.4. Analysis of Attack Costs

As shown in Figure 4, in the inter-domain routing system of two countries, the failure
rate in CFM-RFM is larger when the attack cost is the same. In India, when the failure rate
of CFM-RFM is 1, the failure rate of CFM-DDF is only 55.7%. Attack costs can be reduced
by 35.8% in CFM-RFM. In Canada, when the failure rate of CFM-RFM is 1, the failure rate
of CFM-DDF is only 49.3%. Attack costs can be reduced by 40.4% in CFM-RFM.

Figure 4. The change process of failure rate with the increase of attack cost.

5.5. Validity of CFM-RFM

To verify the validity of the model, security events supported by data sets in recent
years are analyzed. The most typical one is the cascading failure of the inter-domain
routing network caused by the outbreak of the Code Red II worm on 19 July 2001. Because
of its huge impact, there is much richer public data on the Internet monitored by various
institutions. The relevant data of the inter-domain routing system in Code Red II is selected
to verify the validity of the model. Taking the rrc00 data set of the RIPE [24] project as an
example, the UPDATE messages data of 19 July 2001 can be statistically extracted from the
data and used as the update changes in the real network for comparison with the update
changes generated by the model simulation.

As shown in Figure 5a, the UPDATE changes after Code Red II attacks at 15:00. It can
be seen that after the outbreak of the worm, there are roughly three peaks in the UPDATE
message changes. The first spike was due to a worm attack that caused the BGP session
connection to drop and some routers to overload or crash, which in turn caused a large
number of withdrawal notifications from their peers. When the router restarts and begins
to re-establish the BGP session, the status update information from the peer is required.
This is the reason for the second peak. After the router has obtained all the status updates
from its peers, it will propagate all the updated statuses to its peers. This caused the third
peak of message changes [25].
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Figure 5. Raw data and CFM-RFM data.

As shown in Figure 5b, CFM-RFM simulates the change of the UPDATE message
during the cascading failure after the attack. Since real-time cannot be simulated, it is
represented by a logical time step. It can be seen that the main change trend and the interval
between the three peaks are roughly similar to the real UPDATE message changes after
the attack. It reflects the general law of the trend of the real UPDATE message. Therefore,
it is considered that CFM-RFM can better describe the cascading failure process of the
inter-domain routing system.

6. Conclusions

To construct a reasonable cascading failure model for inter-domain routing systems,
CFM-RFM with recovery feedback mechanism is proposed in this paper. We apply three
attack strategies, using CFM-DDF and CFM-DDF respectively to simulate the cascading
failure process of two real inter-domain routing systems. The simulation results show that
the UPDATE generated during the process of restoring the BGP session can promote the
cascading failure and verify the recovery feedback mechanism. In addition, Compared
with CFM-DDF, CFM-RFM can reduce the cost of attack while achieving the same damage
effect. Completely disabling the Indian network can reduce the attack cost by 35.8%,
while in Canada, it can reduce the attack cost by 40.4%. We also compared the UPDATE
change data generated by the CFM-RFM simulation during the cascading failure with the
UPDATE change data generated by the real cascading failure events. The results are similar,
which proves the rationality of the model. In future work, we plan to find the important
nodes in the inter-domain routing system. This is of great significance to the protection of
inter-domain routing systems and the formulation of attack strategies.
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