
 information

Article

Combine-Net: An Improved Filter Pruning Algorithm

Jinghan Wang 1,†, Guangyue Li 1,*,† and Wenzhao Zhang 2

����������
�������

Citation: Wang, J.; Li, G.; Zhang, W.

Combine-Net: An Improved Filter

Pruning Algorithm. Information 2021,

12, 264. https://doi.org/10.3390/

info12070264

Academic Editors:

Lorenzo Carnevale, Massimo Villari

and Dimitris Apostolou

Received: 15 April 2021

Accepted: 21 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Application, China University of Geosciences, Wuhan 430074, China;
jinghan_wang@cug.edu.cn

2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310007, China;
wz.zhang@zju.edu.cn

* Correspondence: guangyueli@cug.edu.cn
† J.W. and G.L. contributed equally to this work.

Abstract: The powerful performance of deep learning is evident to all. With the deepening of research,
neural networks have become more complex and not easily generalized to resource-constrained
devices. The emergence of a series of model compression algorithms makes artificial intelligence
on edge possible. Among them, structured model pruning is widely utilized because of its versatil-
ity. Structured pruning prunes the neural network itself and discards some relatively unimportant
structures to compress the model’s size. However, in the previous pruning work, problems such as
evaluation errors of networks, empirical determination of pruning rate, and low retraining efficiency
remain. Therefore, we propose an accurate, objective, and efficient pruning algorithm—Combine-Net,
introducing Adaptive BN to eliminate evaluation errors, the Kneedle algorithm to determine the
pruning rate objectively, and knowledge distillation to improve the efficiency of retraining. Results
show that, without precision loss, Combine-Net achieves 95% parameter compression and 83% com-
putation compression on VGG16 on CIFAR10, 71% of parameter compression and 41% computation
compression on ResNet50 on CIFAR100. Experiments on different datasets and models have proved
that Combine-Net can efficiently compress the neural network’s parameters and computation.

Keywords: network pruning; model compression; knowledge distillation; artificial intelligence;
edge computing

1. Introduction

With the increasing popularity of Internet of Things technology (IoT), different kinds
of sensors emerge, carrying a massive amount of raw data. How to efficiently extract
useful knowledge from such an amount of raw data has become a problem. Thanks to
recent advances in deep learning, state-of-the-art deep learning models achieved significant
performance improvements in a broad spectrum of areas with enough data, including
computer vision [1], speech analysis [2], smart sensing [3], etc. However, to achieve better
results, deep learning models usually have to go wider and deeper, which incurs high
computational costs in terms of storage, memory, latency, and energy. As a result, deep
learning models are not readily able to be deployed on resource-constrained devices or
work smoothly for applications with stringent Quality of Experience (QoE) requirements.

Compressing a computationally intensive model is a potential solution to facilitate
ubiquitous deep learning models on resource-constrained devices or for applications under
harsh QoE conditions. Currently, the most accepted methods are lightweight module
design [4], pruning [5], quantization [6], and knowledge distillation [7]. From the aforemen-
tioned methods, pruning, requiring much less expertise, can be easily applied to pre-trained
models, and the accuracy loss through retraining can be constrained. The above merits
make pruning a better choice for model compression.

Model pruning can be roughly divided into unstructured and structured pruning.
The main idea of unstructured pruning is to eliminate the least important model weights.

Information 2021, 12, 264. https://doi.org/10.3390/info12070264 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-5643-1884
https://doi.org/10.3390/info12070264
https://doi.org/10.3390/info12070264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12070264
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12070264?type=check_update&version=3

Information 2021, 12, 264 2 of 18

However, without special hardware support, this method will not lead to an acceleration
in inference speed. Structured pruning, on the other hand, is designed to cut down
the structural building blocks of a model, which subsequently reduces the impact of
inference speed.

Although a bunch of structured pruning methods are mentioned in the literature [5,8–10],
they still fall short in the following three aspects: (1) most of the structured pruning meth-
ods evaluate the performance of sub-networks directly without retraining or fine-tuning
on datasets, so the results are questionable. (2) Many works [5,8] set the pruning rate
empirically with no guidance on how to determine a proper pruning rate to make the
pruning process non-trivial. (3) The retraining process used in structured pruning is usually
highly time-consuming.

To solve the above challenges, this work proposes Combine-Net, a holistic solution
to improve the efficiency of structured pruning in terms of evaluation, pruning, and
retraining. To evaluate the precise performance of pruning algorithms, the Adaptive Batch
Normalization (BN) operation [9] was integrated, which modified the BN layer and let
its parameters adapt to the sub-network after pruning. To give guidance on pruning rate
setting, this study borrowed the concept of knee point from the mathematical area and
designed a proper workflow to determine the layer-wise pruning rate during the training
process. To speed up the retraining process, knowledge distillation was leveraged, using
the original network without it being pruned as the teacher network to guide the recovery
accuracy of the sub-network after pruning.

Compared with previous work, Combine-Net adjusted the model’s output through
Adaptive BN, changed the evaluation strategy, and improved the accuracy of the evaluation.
Moreover, with the Kneedle algorithm fixing the pruning rate process, Combine-Net
standardized determined method. In addition, by using the original model guiding the
sub-network, the efficiency of retraining is significantly improved. In general, our algorithm
optimizes the pruning process and the retraining process based on the previous pruning
process, making it more accurate, objective, and efficient.

The experiments of VGG16 on CIFAR10 showed that: (1) after pruning with a 95%
rate, the accuracy of the sub-network corrected by Adaptive BN operation was improved
by about 40% compared with the one without this method, which reflects the performance
of the sub-network better. (2) Combine-Net improved the efficiency of retraining by more
than 30% in comparison with the general fine-tuning method. (3) Overall, the algorithm
compressed 95% of the parameters and 84% of the computation of VGG16 on CIFAR10
with no loss of accuracy.

The rest of the study is organized as follows: “Related Work” (Section 2) introduces
some methods in the field of model compression. “Methods Overview” (Section 3) analyzes
the detailed methods of the algorithm. Specifically, “Pruning Method” (Section 3.1) and
“Retraining Method” (Section 3.2) describe the improved pruning method and retraining
method of the algorithm, respectively. The experiment and its results are demonstrated in
the “Experiment” (Section 4) section. Lastly, the “Discussion” (Section 5) and “Conclusion”
(Section 6) sections discuss the conclusion and future research directions of our work.

2. Related Work

Over-parameterization is a well-known but prominent problem of deep learning
models. Denil M et al. [11] proposed that using only a few parameters of the original model
could provide the same result as the initial one. The over-parameterized model is not only
a waste of storage but causes extra computation overhead, leading to higher inference
speed and energy consumption. In this section, some model compression strategies will be
briefly introduced, including lightweight neural networks, quantization, and pruning.

2.1. Lightweight Neural Network

The key idea of the lightweight neural network is to skillfully design lightweight mod-
els with much less computation and parameters. SqueezeNet [12] theoretically compressed

Information 2021, 12, 264 3 of 18

the network so that it was 9 times smaller than the original by using 1 × 1 convolution
kernels instead of 3 × 3 convolution kernels. MobileNet [13] used a single convolution
kernel to extract features and output multi-channel feature maps, which reduced not only
the number of network parameters but also the computational complexity of the network.
ShuffleNet [14] proposed an idea of point-by-point group convolution and channel shuffle
to solve the problem of the high complexity of 1 × 1 convolution. Moreover, the methods
proposed by ResNeXt [15] and Xception [16] are also worth thinking about.

2.2. Quantization

Quantization is realized by manipulating the bit-width of model parameters. Carrying
out computations or storing the model with lower bit-width parameters can dramatically
reduce the inference latency and save storage. Han et al. [6] proposed a clustering-based
quantization method, which used k-means clustering analysis to share weights and then
Huffman encoding to further improve the compression ratio. Courbariaux M et al. [17]
proposed a more efficient quantization method. They binarized the weights, which is
called binary quantization. It is also known as 1-bit quantization—quantizing a 32-bit
floating-point number into a 1-bit integer, which is very suitable for parallel operation on
FPGA or similar platforms.

2.3. Pruning

The main idea of model pruning is to cut down redundant or unimportant structures
in neural network models. This method can be roughly divided into unstructured pruning
and structured pruning. One of the pioneering works in unstructured pruning is proposed
by Han et al. [6]. As shown in Figure 1a, they pruned the unimportant connections and
neurons in the pre-trained models according to the value of the weights.

Information 2021, 12, x FOR PEER REVIEW 3 of 18

2.1. Lightweight Neural Network
The key idea of the lightweight neural network is to skillfully design lightweight

models with much less computation and parameters. SqueezeNet [12] theoretically com-
pressed the network so that it was 9 times smaller than the original by using 1 × 1 convo-
lution kernels instead of 3 × 3 convolution kernels. MobileNet [13] used a single convolu-
tion kernel to extract features and output multi-channel feature maps, which reduced not
only the number of network parameters but also the computational complexity of the net-
work. ShuffleNet [14] proposed an idea of point-by-point group convolution and channel
shuffle to solve the problem of the high complexity of 1 × 1 convolution. Moreover, the
methods proposed by ResNeXt [15] and Xception [16] are also worth thinking about.

2.2. Quantization
Quantization is realized by manipulating the bit-width of model parameters. Carry-

ing out computations or storing the model with lower bit-width parameters can dramati-
cally reduce the inference latency and save storage. Han et al. [6] proposed a clustering-
based quantization method, which used k-means clustering analysis to share weights and
then Huffman encoding to further improve the compression ratio. Courbariaux M et al.
[17] proposed a more efficient quantization method. They binarized the weights, which is
called binary quantization. It is also known as 1-bit quantization—quantizing a 32-bit
floating-point number into a 1-bit integer, which is very suitable for parallel operation on
FPGA or similar platforms.

2.3. Pruning
The main idea of model pruning is to cut down redundant or unimportant structures

in neural network models. This method can be roughly divided into unstructured pruning
and structured pruning. One of the pioneering works in unstructured pruning is proposed
by Han et al. [6]. As shown in Figure 1a, they pruned the unimportant connections and
neurons in the pre-trained models according to the value of the weights.

(a) (b)

Figure 1. Illustration of unstructured pruning and structured pruning. (a) Unstructured pruning, where synapses—unim-
portant connections, can be pruned in order to sparse the network. Neurons can also be pruned to achieve the same pur-
pose. (b) A typical structured pruning that prunes the filters. Channels of the generated feature maps are reduced accord-
ingly.

However, unstructured pruning requires the support of special hardware to main-
tain the same inference speed as the original model. Therefore, it cannot be widely used.
On the contrary, structured pruning aims to prune weight, filter, kernel, or channel. The
process of pruning a filter is shown in Figure 1b. Structured pruning reduces the size of
the model and causes little impact on the inference procedure. Some noteworthy works
include Thinet [10], NestDNN [18], and Soft Filter Pruning [19], etc.

In the numerous pruning works, the basis of our work is worth introducing in detail.
This pruning method [5] used L1-norm as the metric, i.e., filters with a smaller sum of the
absolute value of weights are less important.

Figure 1. Illustration of unstructured pruning and structured pruning. (a) Unstructured pruning, where synapses—
unimportant connections, can be pruned in order to sparse the network. Neurons can also be pruned to achieve the
same purpose. (b) A typical structured pruning that prunes the filters. Channels of the generated feature maps are
reduced accordingly.

However, unstructured pruning requires the support of special hardware to maintain
the same inference speed as the original model. Therefore, it cannot be widely used. On the
contrary, structured pruning aims to prune weight, filter, kernel, or channel. The process of
pruning a filter is shown in Figure 1b. Structured pruning reduces the size of the model
and causes little impact on the inference procedure. Some noteworthy works include
Thinet [10], NestDNN [18], and Soft Filter Pruning [19], etc.

In the numerous pruning works, the basis of our work is worth introducing in detail.
This pruning method [5] used L1-norm as the metric, i.e., filters with a smaller sum of the
absolute value of weights are less important.

The workflow of L1-norm-based model pruning is shown in Figure 2. When the filters
of the convolution layer in layer i are deleted, the number of output feature maps decreases.
Consequently, the kernel of all filters in layer i + 1 should be adjusted accordingly.

Information 2021, 12, 264 4 of 18

Information 2021, 12, x FOR PEER REVIEW 4 of 18

The workflow of L1-norm-based model pruning is shown in Figure 2. When the fil-
ters of the convolution layer in layer i are deleted, the number of output feature maps
decreases. Consequently, the kernel of all filters in layer i + 1 should be adjusted accord-
ingly.

Figure 2. The workflow of L1-norm-based model pruning, in which the light-colored structure
should be pruned. If one filter in conv i is pruned, its corresponding feature map in layer i will be
removed. Then, the filters in conv i + 1 will be adjusted to fit structural changes.

In terms of the pruning process, the L1-norm based pruning method [5] provides two
ideas:
1. One-shot pruning followed by retraining: this method is fast but cannot ensure that

the accuracy of the pruned model is as stable as the original one.
2. Iterative pruning and retraining: the idea is to prune and retrain layer by layer, which

ensures higher accuracy but needs more time. Combine-Net’s pruning process fol-
lows this idea.

2.4. Knowledge Distillation
Knowledge distillation (Figure 3) is put forward by Hinton et al. [7]. It is a widely

used knowledge transfer technology in the deep learning field. First, a well-trained, ro-
bust, high-precision teacher network is needed. Its output is softened with temperature T
to provide more information entropy, which extracts hidden knowledge behind its output
layer. Then, a relatively small student network is trained to imitate the teacher network’s
probability output distribution, obtaining a better output result.

Figure 3. The main idea of knowledge distillation. The label of the input image is cat; the probabil-
ity is expressed as {0, 1, 0}. After the inference of teacher network and student network, the algo-
rithm outputs classification results q and q’, so that the image is declared as a cat. However, this
image also shows some dog traits, which is not shown obviously in q and q’. After softening the
teacher network, the dark knowledge appears. The classification result is q’’, which provides more
dark knowledge. Training the student network with the teacher network makes the student net-
work more accurate on the basis of the teacher network’s characteristics.

To improve the efficiency of knowledge distillation, Haitong Li [20] used KL diver-
gence to replace cross-entropy loss (CE) to make the final loss function become: 𝐿 = 𝛼𝑇 𝐾𝐷𝐿𝑖𝑣𝐿𝑜𝑠𝑠 𝑄 , 𝑄 + 1 − 𝛼 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑄𝑠, 𝑦 (1)

Figure 2. The workflow of L1-norm-based model pruning, in which the light-colored structure
should be pruned. If one filter in conv i is pruned, its corresponding feature map in layer i will be
removed. Then, the filters in conv i + 1 will be adjusted to fit structural changes.

In terms of the pruning process, the L1-norm based pruning method [5] provides
two ideas:

1. One-shot pruning followed by retraining: this method is fast but cannot ensure that
the accuracy of the pruned model is as stable as the original one.

2. Iterative pruning and retraining: the idea is to prune and retrain layer by layer, which
ensures higher accuracy but needs more time. Combine-Net’s pruning process follows
this idea.

2.4. Knowledge Distillation

Knowledge distillation (Figure 3) is put forward by Hinton et al. [7]. It is a widely
used knowledge transfer technology in the deep learning field. First, a well-trained, robust,
high-precision teacher network is needed. Its output is softened with temperature T to
provide more information entropy, which extracts hidden knowledge behind its output
layer. Then, a relatively small student network is trained to imitate the teacher network’s
probability output distribution, obtaining a better output result.

Information 2021, 12, x FOR PEER REVIEW 4 of 18

The workflow of L1-norm-based model pruning is shown in Figure 2. When the fil-
ters of the convolution layer in layer i are deleted, the number of output feature maps
decreases. Consequently, the kernel of all filters in layer i + 1 should be adjusted accord-
ingly.

Figure 2. The workflow of L1-norm-based model pruning, in which the light-colored structure
should be pruned. If one filter in conv i is pruned, its corresponding feature map in layer i will be
removed. Then, the filters in conv i + 1 will be adjusted to fit structural changes.

In terms of the pruning process, the L1-norm based pruning method [5] provides two
ideas:
1. One-shot pruning followed by retraining: this method is fast but cannot ensure that

the accuracy of the pruned model is as stable as the original one.
2. Iterative pruning and retraining: the idea is to prune and retrain layer by layer, which

ensures higher accuracy but needs more time. Combine-Net’s pruning process fol-
lows this idea.

2.4. Knowledge Distillation
Knowledge distillation (Figure 3) is put forward by Hinton et al. [7]. It is a widely

used knowledge transfer technology in the deep learning field. First, a well-trained, ro-
bust, high-precision teacher network is needed. Its output is softened with temperature T
to provide more information entropy, which extracts hidden knowledge behind its output
layer. Then, a relatively small student network is trained to imitate the teacher network’s
probability output distribution, obtaining a better output result.

Figure 3. The main idea of knowledge distillation. The label of the input image is cat; the probabil-
ity is expressed as {0, 1, 0}. After the inference of teacher network and student network, the algo-
rithm outputs classification results q and q’, so that the image is declared as a cat. However, this
image also shows some dog traits, which is not shown obviously in q and q’. After softening the
teacher network, the dark knowledge appears. The classification result is q’’, which provides more
dark knowledge. Training the student network with the teacher network makes the student net-
work more accurate on the basis of the teacher network’s characteristics.

To improve the efficiency of knowledge distillation, Haitong Li [20] used KL diver-
gence to replace cross-entropy loss (CE) to make the final loss function become: 𝐿 = 𝛼𝑇 𝐾𝐷𝐿𝑖𝑣𝐿𝑜𝑠𝑠 𝑄 , 𝑄 + 1 − 𝛼 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑄𝑠, 𝑦 (1)

Figure 3. The main idea of knowledge distillation. The label of the input image is cat; the probability is expressed as {0, 1, 0}.
After the inference of teacher network and student network, the algorithm outputs classification results q and q’, so that
the image is declared as a cat. However, this image also shows some dog traits, which is not shown obviously in q and q’.
After softening the teacher network, the dark knowledge appears. The classification result is q”, which provides more dark
knowledge. Training the student network with the teacher network makes the student network more accurate on the basis
of the teacher network’s characteristics.

To improve the efficiency of knowledge distillation, Haitong Li [20] used KL diver-
gence to replace cross-entropy loss (CE) to make the final loss function become:

LKD = αT2 × KDLivLoss
(

QT
s , QT

t

)
+ (1 − α) × CrossEntropy(Qs, ytrue) (1)

where QT
s , QT

t are the softmax probability distribution of the student network and teacher
network after softening according to temperature T.

Information 2021, 12, 264 5 of 18

3. Methods Overview

The design principle of the work is to solve some pain points in the previous pruning
algorithms, such as the inability to accurately fix the pruning rate caused by the sub-
network evaluation error and the failure to repeat other pruning works caused by the lack
of determining methods, etc. The authors of this work hope that Combine-Net can evaluate
the performance of the sub-net more accurately, select the pruning rate of each layer more
objectively, and complete faster retraining of the sub-net. Therefore, our algorithms are
optimized for pruning and retraining, respectively. The following is a detailed description
of these algorithms.

This section is divided into three sub-sections. The first section describes the opti-
mization of Combine-Net in the pruning process, which is written in the Pruning Method
(Section 3.1). The second section is Retraining Method (Section 3.2), using knowledge distil-
lation to improve retraining efficiency. Finally, the General Method (Section 3.3) introduces
the entire process framework of Combine-Net algorithm.

3.1. Pruning Method

This section introduces the core pruning methodologies of Combine-Net algorithm.
This study, respectively, optimizes the problems of inaccurate sub-network evaluation
and difficulty of determining the specific pruning rate in previous pruning work. For
the sake of achieving a better effect, the Adaptive BN algorithm (Section 3.1.1) and the
Kneedle algorithm (Section 3.1.2) are used to evaluate sub-networks efficiently and find
the appropriate pruning rate.

3.1.1. Fast and Accurate Evaluation with Adaptive BN

Previous works often selected an indicator to reflect each neural network filter’s im-
portance and pruned those unimportant structures. For instance, Li H et al. [5] used the L1-
norm as the standard for appraising the significance of convolution kernels.
Luo J et al. [21] valued the importance of each convolution kernel based on entropy.
Then, both teams used an evaluation method to evaluate the effect of the sub-network after
pruning to determine the final pruning plan. Specifically, this evaluation method directly
assessed the sub-network quality according to its accuracy after pruning, which is called
vanilla evaluation by Li B et al. [9].

However, ThiNet [10] and NetAdapt [22] used another evaluation method by first
retraining the sub-net for several epochs and then checking its accuracy. Experiments
showed that this method achieved better results. Hence, this work wonders whether
vanilla evaluation can accurately reflect the performance of the sub-net.

To figure this problem out, the causes should be initially analyzed. Li B et al. [9]
argued that the difference between these two evaluation methods is associated with the BN
layer. The purpose of the BN layer’s existence is to make the neural network’s feature maps
satisfy the distribution, where the mean value is 0 and the variance is 1, namely normal
distribution. The BN layer prevents feature maps’ distribution from shifting with the
deepening of the network, which eliminates the gradient generated by the backpropagation
and accelerates the model’s convergence speed.

The top part in Figure 4 represents the BN layer’s correction process: the convolutional
layer’s output value is corrected by Equation (1) to satisfy the normal distribution and
then input to the activation layer to obtain the corresponding feature maps. The original
model is:

y = γ
x − µ√
σ2 + ε

+ β (2)

where β and γ represent the trainable scale and bias terms, and ε is to avoid division
by zero.

Information 2021, 12, 264 6 of 18

Information 2021, 12, x FOR PEER REVIEW 6 of 18

where β and γ represent the trainable scale and bias terms, and ϵ is to avoid division by
zero.

Figure 4. The dark green circle represents the original BN layer, which proceeds with the un-
pruned model. However, after being pruned, the structure of model has changed, and original BN
layer cannot adapt the new model, whose results have poor accuracy. If the BN layer (marked by
the light green circle) is updated by the Adaptive BN [9], the resulting accuracy will be better.

Parameters of the BN layer are not universal, and different convolutional layers lead
to different BN layers. Nevertheless, after pruning, the sub-network structure has
changed, but the BN layer has not been updated to adapt to the current network. There-
fore, the mismatch between the BN layer and the sub-network explains why vanilla eval-
uation cannot evaluate accurately. The error generation process is shown in the middle
part of Figure 4.

Hence, it is only necessary to match the BN layer structure with the pruning sub-
network to eliminate errors caused by vanilla evaluation. This correction strategy is called
Adaptive BN by Li B et al. [9]. The specific method is to freeze all the model parameters
first. The original BN layer statistics are shown in Equation (2).

𝜇 = 𝐸 𝑥 = 1𝑁 𝑥 , 𝜎 = 𝑉𝑎𝑟 𝑥 = 1𝑁 − 1 𝑥 − 𝜇 (3)

The parameters μ and σ2 are continuously updated according to Equation (3). The
evaluation process after correction is shown in the bottom part of Figure 4. The updated
model is: 𝜇 = 𝑚𝜇 + 1 − 𝑚 𝜇 , 𝜎 = 𝜎 + 1 − 𝑚 𝜎 (4)

where m is the momentum coefficient and subscript U refers to the number of updated
iterations. In a typical updating pipeline, if the total number of updated iterations is U,
the corresponding μ and σ2 are 𝜇 and 𝜎 , used in the testing phase. These two items are
called full-size model BN statistics.

Adaptive BN only updates the BN layer parameters, while the retraining method
used by ThiNet [10] and NetAdapt [22] updates all the parameters of the model. Com-
pared with the latter, Adaptive BN is faster. Li B et al. [9] have shown that the 100-epoch
update time is still at the second level. To sum up, Adaptive BN evaluates the sub-network
performance quickly and accurately. Therefore, Combine-Net uses it to replace vanilla
evaluation.

Figure 4. The dark green circle represents the original BN layer, which proceeds with the unpruned
model. However, after being pruned, the structure of model has changed, and original BN layer
cannot adapt the new model, whose results have poor accuracy. If the BN layer (marked by the light
green circle) is updated by the Adaptive BN [9], the resulting accuracy will be better.

Parameters of the BN layer are not universal, and different convolutional layers lead
to different BN layers. Nevertheless, after pruning, the sub-network structure has changed,
but the BN layer has not been updated to adapt to the current network. Therefore, the
mismatch between the BN layer and the sub-network explains why vanilla evaluation
cannot evaluate accurately. The error generation process is shown in the middle part
of Figure 4.

Hence, it is only necessary to match the BN layer structure with the pruning sub-
network to eliminate errors caused by vanilla evaluation. This correction strategy is called
Adaptive BN by Li B et al. [9]. The specific method is to freeze all the model parameters
first. The original BN layer statistics are shown in Equation (2).

µBN = E[xBN] =
1
N

N

∑
n=1

xn, σ2
BN = Var[xBN] =

1
N − 1

N

∑
n=1

(xn − µBN)
2 (3)

The parameters µ and σ2 are continuously updated according to Equation (3). The
evaluation process after correction is shown in the bottom part of Figure 4. The updated
model is:

µU = mµU−1 + (1 − m)µBN , σ2
U = σ2

U−1 + (1 − m)σ2
BN (4)

where m is the momentum coefficient and subscript U refers to the number of updated
iterations. In a typical updating pipeline, if the total number of updated iterations is U,
the corresponding µ and σ2 are µU and σ2

U , used in the testing phase. These two items are
called full-size model BN statistics.

Adaptive BN only updates the BN layer parameters, while the retraining method used
by ThiNet [10] and NetAdapt [22] updates all the parameters of the model. Compared with
the latter, Adaptive BN is faster. Li B et al. [9] have shown that the 100-epoch update time is
still at the second level. To sum up, Adaptive BN evaluates the sub-network performance
quickly and accurately. Therefore, Combine-Net uses it to replace vanilla evaluation.

3.1.2. Determination of the Appropriate Pruning Rate by Kneedle

Pruning rates are the specific content of pruning algorithms. No matter what evalua-
tion criteria are selected, only when the pruning rate of each layer is determined can this

Information 2021, 12, 264 7 of 18

layer be pruned. Generally speaking, the higher the sensitivity of the layer, the lower the
acceptable pruning rate. Based on this, Li H et al. [5] put forward their pruning plan. As
shown in Table 1, taking VGG16 as an example, they chose not to prune the 2–7 convolution
layers with low sensitivity. For the 8–13 convolution layer with relatively high sensitivity,
they adopted 50% pruning rates. Their pruning scheme was accumulated through multiple
experiments, so this method is termed “empirical.”

Table 1. Comparison of pruning results.

Layer Type Original
Maps

Pruning Rate Used in [5] Determine Pruning Rate by Kneedle

Maps
Remained

Pruning
Rate

Mean of
Top-1 Acc.

Std of
Top-1 Acc.

Maps
Remained

Pruning
Rate

Mean of
Top-1 Acc.

Std of
Top-1 Acc.

Conv_1 64 32 50% 85.34% 0.46% 52 20% 85.62% 0.41%
Conv_2 64 64 0% —— —— 16 75% 84.28% 0.38%
Conv_3 128 128 0% —— —— 52 60% 84.71% 0.24%
Conv_4 128 128 0% —— —— 52 60% 85.06% 0.22%
Conv_5 256 256 0% —— —— 77 70% 85.30% 0.45%
Conv_6 256 256 0% —— —— 103 60% 84.46% 0.46%
Conv_7 256 256 0% —— —— 90 65% 84.99% 0.23%
Conv_8 512 256 50% 84.99% 0.57% 154 70% 85.40% 0.24%
Conv_9 512 256 50% 85.42% 0.17% 154 70% 85.10% 0.10%

Conv_10 512 256 50% 85.88% 0.35% 154 70% 85.68% 0.24%
Conv_11 512 256 50% 85.74% 0.18% 154 70% 85.91% 0.20%
Conv_12 512 256 50% 86.08% 0.18% 128 75% 85.82% 0.10%
Conv_13 512 256 50% 85.88% 0.21% 103 80% 85.66% 0.36%

It is unreasonable to confirm the pruning rate empirically. The first reason is that,
to obtain the empirical pruning rate in neural networks with different structures, a large
amount of experimental data is fundamental. This large-scale experiment will consume
many workforces and material resources in analyzing and comparing the data. Second,
even for networks with the same structure, different datasets often lead to different pruning
rates. Combine-Net seeks out a better determining method to solve this problem. Thus,
this work introduces the concept of the knee point [23] in mathematics to determine the
appropriate pruning rate.

Some points like this often exist in the real world: once beyond them, the additional
cost no longer receives the corresponding performance benefits. These points are called
Knee Points. Planners are more willing to choose these points to best balance investment
and return. In determining the pruning rate, the same requirement should be applied:
obtaining a higher pruning rate while ensuring accuracy. Accordingly, a reasonable pruning
rate can be decided by searching for the Knee Point during pruning. The Knee Point’s
position, which means the appropriate pruning rate, is calculated by analyzing the pruning
curve. The calculating method is called the Kneedle algorithm by Satopaa V et al. [23]. This
work tested the Kneedle algorithm on the 13th convolutional layer of VGG16. It can be
seen from Figure 5 that the algorithm determines the position of the knee points very well,
which can be used as the pruning rate of this layer.

Information 2021, 12, 264 8 of 18Information 2021, 12, x FOR PEER REVIEW 8 of 18

(a) (b)

Figure 5. The blue triangles in (a,b) are Knee points, which refer to the curve’s change to a sharp decline from the hori-
zontal. (a) Shows that the Kneedle algorithm can find the pruning rate well in the general convolution layer. (b) Shows
that, for some insensitive fully connection layers, the accuracy decreases little, and Kneedle algorithm cannot give an
appropriate pruning rate; the green triangle is the maximum pruning rate that meets the threshold.

3.1.3. How to Confirm the Knee Point
The Kneedle algorithm is summarized in this section. The core idea of the Kneedle

algorithm is to find the position where the curvature of the pruning rate–accuracy rate
curve changes the most, which can achieve the best balance between the two variables.
The pipeline of the Kneedle algorithm is shown as the algorithm flow in Algorithm 1.

Algorithm 1 Using the Kneedle Algorithm to Determine the Pruning Rate.

1:
Input: The number of neural network’s layers: 𝐿𝑎𝑦_𝑁𝑢𝑚;
Pre pruning rate of each layer: 𝑟%;
The accuracy rate corresponding to the pre pruning rate: 𝑎𝑐𝑐%;

2: Output: True pruning rate of each layer: 𝑅%;
3: for i = 1 to 𝐿𝑎𝑦_𝑁𝑢𝑚 do
4: # Smooth the curve.
5: Smooth(𝑟 , 𝑎𝑐𝑐);
6: # Calculate the position of the knee point.
7: 𝑅 = Calculate_Knee_Point(𝑟 , 𝑎𝑐𝑐);
8: # Verify the rationality of the knee point.
9: 𝑅 = Vertify_Knee_Point (𝑟 , 𝑎𝑐𝑐);
10: end for
11: return 𝑅;

First of all, the algorithm needs to preprocess the original curve. The original pruning
rate–accuracy rate curve is not smooth enough. In this case, a lot of turbulence may lead
to algorithm failure. Combine-Net uses a smoothing spline to preserve the shape of the
original curve as much as possible.

Next, let 𝐷𝑑 represent the set of differences between pruning rate (𝑟%) and accuracy
rate (𝑎𝑐𝑐%), that is, the set of points 𝑟, 𝑎𝑐𝑐 − 100% − 𝑟 , as shown in the difference
curve in Figure 6. The algorithm does not care about the initial values of 𝑟 and 𝑎𝑐𝑐, be-
cause the goal is to find out when the curve changes its trend. Then, find out the point
with the largest value in the difference curve. As shown in Figure 6, the 𝑟 of this point is

Figure 5. The blue triangles in (a,b) are Knee points, which refer to the curve’s change to a sharp decline from the horizontal.
(a) Shows that the Kneedle algorithm can find the pruning rate well in the general convolution layer. (b) Shows that, for
some insensitive fully connection layers, the accuracy decreases little, and Kneedle algorithm cannot give an appropriate
pruning rate; the green triangle is the maximum pruning rate that meets the threshold.

3.1.3. How to Confirm the Knee Point

The Kneedle algorithm is summarized in this section. The core idea of the Kneedle
algorithm is to find the position where the curvature of the pruning rate–accuracy rate
curve changes the most, which can achieve the best balance between the two variables. The
pipeline of the Kneedle algorithm is shown as the algorithm flow in Algorithm 1.

Algorithm 1 Using the Kneedle Algorithm to Determine the Pruning Rate.

1: Input: The number of neural network’s layers: Lay_Num;
Pre pruning rate of each layer r%;
The accuracy rate corresponding to the pre pruning rate: acc%;
2: Output: True pruning rate of each layer: R%;
3: for i = 1 to Lay_Num do
4: # Smooth the curve.
5: Smooth (ri, acci);
6: # Calculate the position of the knee point.
7: Ri = Calculate_Knee_Point (ri, acci);
8: # Verify the rationality of the knee point.
9: Ri = Vertify_Knee_Point (ri, acci);
10: end for
11: return R;

First of all, the algorithm needs to preprocess the original curve. The original pruning
rate–accuracy rate curve is not smooth enough. In this case, a lot of turbulence may lead
to algorithm failure. Combine-Net uses a smoothing spline to preserve the shape of the
original curve as much as possible.

Next, let Dd represent the set of differences between pruning rate (r%) and accuracy
rate (acc%), that is, the set of points (r, acc − (100% − r)), as shown in the difference
curve in Figure 6. The algorithm does not care about the initial values of r and acc, because
the goal is to find out when the curve changes its trend. Then, find out the point with the
largest value in the difference curve. As shown in Figure 6, the r of this point is the r of the
knee point in the original curve. In this way, the knee point can be determined.

Information 2021, 12, 264 9 of 18

Information 2021, 12, x FOR PEER REVIEW 9 of 18

the 𝑟 of the knee point in the original curve. In this way, the knee point can be deter-
mined.

Figure 6. The process of determining the knee point is shown in this figure. First, calculate the
difference curve according to the original curve. Then, the knee point can be found by calculating
the maximum value of the difference curve, because of the same abscissa.

Finally, some methods must be used to verify the rationality of the knee point be-
cause a leak exists in the Kneedle algorithm. Even if a high rate for layers with low sensi-
tivity is used, the sub-network still maintains a high accuracy rate. In this case, the Knee-
dle algorithm often cannot provide the appropriate pruning rate. As a result, this research
offers a solution in that setting a tolerable threshold of the precision dropping rate and
taking the maximum pruning rate satisfying the threshold. As shown in Figure 5b, the
second full connection layer of VGG16 was pruned with a series of rates, and its sub-
networks’ accuracy remained in a reasonable range. However, the rate given by the Knee-
dle algorithm is indeed 15%. For this case, a tolerable precision dropping threshold of
0.5% was set. When the pruning rate reached the maximum (95%), it still satisfied the
threshold. As a result, the pruning rate here was indeed deemed as 95%.

The advantages of using the Kneedle algorithm to determine the pruning rate are
significant:
• The algorithm is relatively more objective and does not require subjective experience

as a basis for judgment.
• The algorithm determines the pruning rate faster and does not require experimenta-

tion to accumulate expertise.
• The algorithm is highly applicable and suitable for determining the pruning rate of

any model.
• This algorithm meets the needs of different precisions. The pruning rate is more ac-

curate when the data are denser.

3.2. Retraining Method
Since the widely used pruning process was proposed by Han et al. [6], retraining

after pruning has been deeply rooted in the hearts of the researchers. However, how to
carry out effective retraining is a problem worthy of discussion. Only one retraining after
all the pruning works will lead to a significant reduction in models’ accuracy. Pruning
and retraining layer by layer will lead to excessive time consumption. Therefore, Com-
bine-Net hopes to find a better way to improve the efficiency of retraining.

Luo JH et al. [10] have already proposed their solution: after pruning a layer, a few
iterations are used to restore partial performance. When all the layers are pruned, more
iterations will be used to restore the overall accuracy. Combine-Net’s retraining method

Figure 6. The process of determining the knee point is shown in this figure. First, calculate the
difference curve according to the original curve. Then, the knee point can be found by calculating the
maximum value of the difference curve, because of the same abscissa.

Finally, some methods must be used to verify the rationality of the knee point because
a leak exists in the Kneedle algorithm. Even if a high rate for layers with low sensitivity
is used, the sub-network still maintains a high accuracy rate. In this case, the Kneedle
algorithm often cannot provide the appropriate pruning rate. As a result, this research
offers a solution in that setting a tolerable threshold of the precision dropping rate and
taking the maximum pruning rate satisfying the threshold. As shown in Figure 5b, the
second full connection layer of VGG16 was pruned with a series of rates, and its sub-
networks’ accuracy remained in a reasonable range. However, the rate given by the
Kneedle algorithm is indeed 15%. For this case, a tolerable precision dropping threshold
of 0.5% was set. When the pruning rate reached the maximum (95%), it still satisfied the
threshold. As a result, the pruning rate here was indeed deemed as 95%.

The advantages of using the Kneedle algorithm to determine the pruning rate
are significant:

• The algorithm is relatively more objective and does not require subjective experience
as a basis for judgment.

• The algorithm determines the pruning rate faster and does not require experimentation
to accumulate expertise.

• The algorithm is highly applicable and suitable for determining the pruning rate of
any model.

• This algorithm meets the needs of different precisions. The pruning rate is more
accurate when the data are denser.

3.2. Retraining Method

Since the widely used pruning process was proposed by Han et al. [6], retraining after
pruning has been deeply rooted in the hearts of the researchers. However, how to carry
out effective retraining is a problem worthy of discussion. Only one retraining after all
the pruning works will lead to a significant reduction in models’ accuracy. Pruning and
retraining layer by layer will lead to excessive time consumption. Therefore, Combine-Net
hopes to find a better way to improve the efficiency of retraining.

Luo JH et al. [10] have already proposed their solution: after pruning a layer, a few
iterations are used to restore partial performance. When all the layers are pruned, more

Information 2021, 12, 264 10 of 18

iterations will be used to restore the overall accuracy. Combine-Net’s retraining method
continues this idea. However, the efficiency of ordinary fine-tuning is still low. Considering
that knowledge distillation can transfer the information in the original network very well,
so it is introduced to obtain a highly efficient retraining method.

In the retraining of using knowledge distillation, the original unpruned network
works as the teacher network, which has the advantages of robustness and high accuracy.
The pruned sub-network is viewed as the student network to learn from the teacher. After
pruning, some hidden dark knowledge in the original model, which is not well utilized,
disappears with the pruned filters. Combine-Net extracts this part of knowledge from
the original model through knowledge distillation as another learning source of the sub-
networks’ retraining. Knowledge distillation makes full use of the information hidden in
the original model, provides more learning objects for the sub-network, thus improving
the efficiency of retraining.

Chen L et al. [24] also put forward the idea of using knowledge distillation. Compared
with theirs, the Combine-Net algorithm is based on the sub-net after structural pruning,
which has more strong universality and does not need exceptional hardware support. As a
result, the research has more reference significance.

3.3. General Method

This part summarizes the three improved algorithms described above and proposes
a new proved pruning algorithm (Figure 7). The algorithm’s process is similar to that
offered by Han et al. [6], which is repeating pruning and fine-tuning to satisfy the accuracy
requirements of sub-networks. The concrete process is as follows:

1. A pre-trained and over-parameterized network needs to be obtained first, as not only a
pruning object but also a teacher network, to guide the retraining of the sub-network.

2. Start pruning layer by layer: the convolution layers or full connection layers that
need to be pruned should be pre-cut according to different proportions. After that,
evaluate these sub-nets fine or not by Adaptive BN. Finally, the best pruning rate is
determined by the Kneedle algorithm. Then, the formal pruning is carried out.

3. After each layer of pruning, the precision is slightly restored through a few rounds of
retraining. The concrete method of retraining is to use knowledge distillation to distill
dark knowledge from the pre-training network to guide the sub-network learning.
Being layer-by-layer pruned and retrained, the parameterized model is compressed
into a compact sub-network. Finally, restore the global accuracy of the model by
multiple rounds of retraining.

Information 2021, 12, x FOR PEER REVIEW 11 of 18

Figure 7. The workflow of Combine-Net.

4. Experiment
All the algorithms of this work were conducted by the standard PyTorch 1.7.1 library.

The CUDA version was 10.1 with NVIDIA GeForce RTX 2080Ti GPU and Intel Core i3-
9100F CPU @ 3.60GHz. This experiment mainly verified some modules of the algorithm
on the VGG16. To test the effect of the whole algorithm, this work also experimented on
the residual network ResNet32 and ResNet50, mainly using CIFAR10 and CIFAR100.

The datasets we used were standard CIFAR10 and CIFAR100. There are 60,000 color
images in CIFAR10, which are divided into ten categories. Each category contains 6000
images, of which 5000 images were used for training, and another 1000 for testing. Simi-
larly, the CIFAR100 dataset has 100 classes, each containing 600 images, with 500 training
images and 100 test images.

Furthermore, our experiment did not use any particular parameter tuning method,
and all the models were obtained through fixed epochs of iteration under a fixed learning
rate. On the retraining process, the optimizer was Adam, whose learning rate was initial-
ized as 1 × 10−4. Some hyperparameters used in knowledge distillation were 𝑇 initialized
as 5.0 and 𝛼 initialized as 0.7.

In evaluating the model compression effect, M was the unit we used to measure the
parameter amount. GMacs means Giga multiply add calculation per second, which was
the standard to measure the amount of calculation. Top-N accuracy refers to the probabil-
ity that one of the first n answers given by the neural network is correct. We used Top-1
Acc. and Top-5 Acc. to estimate networks’ accuracy.

The experimental code has been open source, and readers can find it in the Supple-
mentary Materials.

4.1. Proper Pruning Rate Improves Algorithm Efficiency
4.1.1. Significant Effect of Adaptive BN in Pruning Evaluation

Figure 7. The workflow of Combine-Net.

Information 2021, 12, 264 11 of 18

4. Experiment

All the algorithms of this work were conducted by the standard PyTorch 1.7.1 library.
The CUDA version was 10.1 with NVIDIA GeForce RTX 2080Ti GPU and Intel Core i3-
9100F CPU @ 3.60GHz. This experiment mainly verified some modules of the algorithm on
the VGG16. To test the effect of the whole algorithm, this work also experimented on the
residual network ResNet32 and ResNet50, mainly using CIFAR10 and CIFAR100.

The datasets we used were standard CIFAR10 and CIFAR100. There are
60,000 color images in CIFAR10, which are divided into ten categories. Each category
contains 6000 images, of which 5000 images were used for training, and another 1000 for
testing. Similarly, the CIFAR100 dataset has 100 classes, each containing 600 images, with
500 training images and 100 test images.

Furthermore, our experiment did not use any particular parameter tuning method, and
all the models were obtained through fixed epochs of iteration under a fixed learning rate.
On the retraining process, the optimizer was Adam, whose learning rate was initialized as
1 × 10−4. Some hyperparameters used in knowledge distillation were T initialized as 5.0
and α initialized as 0.7.

In evaluating the model compression effect, M was the unit we used to measure the
parameter amount. GMacs means Giga multiply add calculation per second, which was
the standard to measure the amount of calculation. Top-N accuracy refers to the probability
that one of the first n answers given by the neural network is correct. We used Top-1 Acc.
and Top-5 Acc. to estimate networks’ accuracy.

The experimental code has been open source, and readers can find it in the Supple-
mentary Materials.

4.1. Proper Pruning Rate Improves Algorithm Efficiency
4.1.1. Significant Effect of Adaptive BN in Pruning Evaluation

To verify Adaptive BN’s reliability, this work repeated the sensitivity experiment by
Li H et al. [5]. The experiment pruned five representative convolution layers of VGG16
on CIFAR10 with different pruning rates and assessed the performance of the sub-nets by
two evaluation methods: one is the vanilla evaluation, which is widely used in past works
to evaluate the networks’ accuracy directly. The other is to assess after Adaptive BN. The
result is shown in Figure 8.

Information 2021, 12, x FOR PEER REVIEW 12 of 18

To verify Adaptive BN’s reliability, this work repeated the sensitivity experiment by
Li H et al. [5]. The experiment pruned five representative convolution layers of VGG16 on
CIFAR10 with different pruning rates and assessed the performance of the sub-nets by
two evaluation methods: one is the vanilla evaluation, which is widely used in past works
to evaluate the networks’ accuracy directly. The other is to assess after Adaptive BN. The
result is shown in Figure 8.

(a) (b)

Figure 8. Comparison of two evaluation methods. (a) Demonstrates the effect of vanilla evaluation. (b) Shows the evalua-
tion effect after incorporating Adaptive BN.

Figure 8a is the effect of vanilla evaluation. Compared with it, the accuracy adjusted
by Adaptive BN in Figure 8b better reflects the network’s actual performance. The effect
of promotion is reflected in the less volatile curve and the smooth accuracy decline in
Figure 8b, indicating the gradual network performance deterioration during pruning.
Moreover, when the pruning rate is 95%, most convolution layers’ accuracy increases
from 10% (Figure 8a) to about 50% (Figure 8b); the accuracy is significantly improved.
Therefore, the Adaptive BN can effectively obtain the sub-networks’ factual efficiency.

4.1.2. Choose the Best Pruning Rate by Kneedle
This work verified whether the Kneedle algorithm can give a reasonable pruning rate

by using VGG16 on the CIFAR10. The experiment independently pruned the 13 convolu-
tion layers of VGG16 by using the pruning rate determined empirically [5] and the rate
given by the Kneedle algorithm separately. It then compared the variation in the accuracy
of the sub-networks after slight retraining. VGG16 used in [5] contains only two full con-
nection layers, lacking one layer compared with the general VGG16, which makes the
comparison of the pruning of the fully connected layer in our experiment meaningless.
The experiment was repeated five times, recording each layer’s pruning rate provided by
the Kneedle algorithm and the mean value, and the standard deviation of Top-1 accuracy
after pruning (see Table 1).

From the comparison of the results in Table 1, the Kneedle algorithm is capable of
providing a proper pruning rate. The Kneedle algorithm can design suitable pruning rates
for different convolution layers compared with empirical methods. For convolution layers
with high sensitivity, such as Conv_1, the Kneedle algorithm gave relatively small prun-
ing rates (20%); as for layers with low sensitivity such as Conv_13, a large pruning rate
(80%) was provided. Moreover, after slight retraining, the accuracy of the sub-network
was restored to a relatively good position, and even the maximum Top-1 accuracy reduc-
tion was no more than 3%.

In addition, compared with the pruning rate determined empirically based on Li H
et al. [5], the pruning rate determined by the Kneedle algorithm is not fixed: different
convolution layers have different pruning rates. However, for layers with the same num-
ber of convolution kernels, a similar pruning rate also occurs. For example, for Conv_3
and Conv_4 with 128 convolution kernels, the algorithm gave the same pruning rate

Figure 8. Comparison of two evaluation methods. (a) Demonstrates the effect of vanilla evaluation. (b) Shows the evaluation
effect after incorporating Adaptive BN.

Figure 8a is the effect of vanilla evaluation. Compared with it, the accuracy adjusted
by Adaptive BN in Figure 8b better reflects the network’s actual performance. The effect
of promotion is reflected in the less volatile curve and the smooth accuracy decline in
Figure 8b, indicating the gradual network performance deterioration during pruning.
Moreover, when the pruning rate is 95%, most convolution layers’ accuracy increases from

Information 2021, 12, 264 12 of 18

10% (Figure 8a) to about 50% (Figure 8b); the accuracy is significantly improved. Therefore,
the Adaptive BN can effectively obtain the sub-networks’ factual efficiency.

4.1.2. Choose the Best Pruning Rate by Kneedle

This work verified whether the Kneedle algorithm can give a reasonable pruning
rate by using VGG16 on the CIFAR10. The experiment independently pruned the 13
convolution layers of VGG16 by using the pruning rate determined empirically [5] and
the rate given by the Kneedle algorithm separately. It then compared the variation in the
accuracy of the sub-networks after slight retraining. VGG16 used in [5] contains only two
full connection layers, lacking one layer compared with the general VGG16, which makes
the comparison of the pruning of the fully connected layer in our experiment meaningless.
The experiment was repeated five times, recording each layer’s pruning rate provided by
the Kneedle algorithm and the mean value, and the standard deviation of Top-1 accuracy
after pruning (see Table 1).

From the comparison of the results in Table 1, the Kneedle algorithm is capable of
providing a proper pruning rate. The Kneedle algorithm can design suitable pruning rates
for different convolution layers compared with empirical methods. For convolution layers
with high sensitivity, such as Conv_1, the Kneedle algorithm gave relatively small pruning
rates (20%); as for layers with low sensitivity such as Conv_13, a large pruning rate (80%)
was provided. Moreover, after slight retraining, the accuracy of the sub-network was
restored to a relatively good position, and even the maximum Top-1 accuracy reduction
was no more than 3%.

In addition, compared with the pruning rate determined empirically based on
Li H et al. [5], the pruning rate determined by the Kneedle algorithm is not fixed: different
convolution layers have different pruning rates. However, for layers with the same number
of convolution kernels, a similar pruning rate also occurs. For example, for Conv_3 and
Conv_4 with 128 convolution kernels, the algorithm gave the same pruning rate (60%),
for Conv_5, Conv_6, and Conv_7 with 256 convolution kernels; the algorithm provided
similar pruning rates close to 65% and for the layers with 512 convolution kernels, the
pruning rate was about 75%.

Consequently, Kneedle algorithm can be applied to obtain a proper pruning rate.

4.2. Efficient Retraining with Knowledge Distillation

The experiment assessed its short-term and long-term effects independently to verify
the significance of knowledge distillation.

4.2.1. Short-Term Effects

Short-term retraining between layers is used to recover the general accuracy of the
sub-networks roughly. This part of the experiment used two methods—retraining with
knowledge distillation and without knowledge distillation—to prune Conv_2, Conv_4,
Conv_6, and Conv_12 of the VGG16 model. Each method iterated ten epochs, respectively,
investigating the effects of knowledge distillation (see Figure 9). In the different sizes of
VGG16′s layers, the accuracy curve of using knowledge distillation was 1–2 percentage
points above the status quo approach. Consequently, knowledge distillation restored more
accuracy through fewer iterations.

Information 2021, 12, 264 13 of 18

Information 2021, 12, x FOR PEER REVIEW 13 of 18

(60%), for Conv_5, Conv_6, and Conv_7 with 256 convolution kernels; the algorithm pro-
vided similar pruning rates close to 65% and for the layers with 512 convolution kernels,
the pruning rate was about 75%.

Consequently, Kneedle algorithm can be applied to obtain a proper pruning rate.

4.2. Efficient Retraining with Knowledge Distillation
The experiment assessed its short-term and long-term effects independently to verify

the significance of knowledge distillation.

4.2.1. Short-Term Effects
Short-term retraining between layers is used to recover the general accuracy of the

sub-networks roughly. This part of the experiment used two methods—retraining with
knowledge distillation and without knowledge distillation—to prune Conv_2, Conv_4,
Conv_6, and Conv_12 of the VGG16 model. Each method iterated ten epochs, respec-
tively, investigating the effects of knowledge distillation (see Figure 9). In the different
sizes of VGG16′s layers, the accuracy curve of using knowledge distillation was 1–2 per-
centage points above the status quo approach. Consequently, knowledge distillation re-
stored more accuracy through fewer iterations.

(a) (b)

(c) (d)

Figure 9. Short-term training results. This figure shows the differences in the accuracy recovery
speed of VGG16 on CIFAR10’s various convolution layers in short-term retraining. The convolu-
tional layers pruned in subfigures (a–d) are all from the same VGG16 but with different filter
numbers.

4.2.2. Long-term Effects
Moreover, it is necessary to consider the effect of knowledge distillation in restoring

the condition’s overall performance with long-term iteration. After pruning the model,
this work iterated 120 epochs with these two retraining methods above—training results
are shown in Figure 10. The training method of knowledge distillation was still better than

Figure 9. Short-term training results. This figure shows the differences in the accuracy recovery speed of VGG16 on
CIFAR10’s various convolution layers in short-term retraining. The convolutional layers pruned in subfigures (a–d) are all
from the same VGG16 but with different filter numbers.

4.2.2. Long-Term Effects

Moreover, it is necessary to consider the effect of knowledge distillation in restoring
the condition’s overall performance with long-term iteration. After pruning the model, this
work iterated 120 epochs with these two retraining methods above—training results are
shown in Figure 10. The training method of knowledge distillation was still better than the
regular training in more iterations. It recovered accuracy faster under the same iteration
round and achieved higher accuracy at last, which was 0.5 percentage more elevated than
the result of regular retraining.

In addition, it can be seen from Figure 10 that, whether knowledge distillation is
applied or not, the accuracy of the two retraining methods is still rising when the iteration
epoch is 120. In other words, the accuracy does not decrease with the training, which is
contrary to the phenomenon of overlearning. This work sets all the epochs of retraining
as 120, which is relatively less, and did not pursue high accuracy deliberately. Therefore,
there is no significant overlearning problem in this work.

Information 2021, 12, 264 14 of 18

Information 2021, 12, x FOR PEER REVIEW 14 of 18

the regular training in more iterations. It recovered accuracy faster under the same itera-
tion round and achieved higher accuracy at last, which was 0.5 percentage more elevated
than the result of regular retraining.

Figure 10. Long-term training results.

In addition, it can be seen from Figure 10 that, whether knowledge distillation is ap-
plied or not, the accuracy of the two retraining methods is still rising when the iteration
epoch is 120. In other words, the accuracy does not decrease with the training, which is
contrary to the phenomenon of overlearning. This work sets all the epochs of retraining
as 120, which is relatively less, and did not pursue high accuracy deliberately. Therefore,
there is no significant overlearning problem in this work.

4.3. Evaluate the Effect of Combine-Net’s Improvements
4.3.1. VGG16 on CIFAR 10

The VGG16 on the CIFAR10 is an over-parameterized network containing 13 convo-
lution layers and three full connection layers. This initially trained model had a Top-1
accuracy of 87.82% and a Top-5 accuracy of 99.55%, as shown in Table 2. The experiment
tested the complete pruning algorithm on VGG16. The final pruning result is shown in
Table 3, and performance of the model after retraining is shown in Table 2.

Comparing Table 3 with Table 1, the pruning rates of convolutional layers in Table 3
are relatively lower. However, the algorithm still provided an appropriate pruning rate
for each layer of the neural network to ensure that its accuracy will not decrease signifi-
cantly after retraining. The data in Table 2 show that the accuracy of the pruned sub-net-
work was recovered to a great degree after the overall retraining, even better than the
original over-parameterized network, and its parameter amount was compressed by more
than 90%. The calculation amount was compressed by more than 80%. The experiment
also pruned the convolution layer of VGG16 according to the pruning rate given by Li h
et al.’s work [5], and the results are shown in Table 2. Compared with their work [5]—
parameter amount was 34%, the calculation amount was 26%, and the effect of the algo-
rithm in this study was obviously better.

Table 2. parallel the pruning results of different models.

Model Top-1 Acc. Top-5 Acc. Parameters(M) Pruned GMacs Pruned Size (MB)
VGG16 ON CIFAR10 87.82% 99.55% 33.639 0.304 128.4

VGG16-Pruned 89.17% 99.62% 1.376 95.91% 0.049 83.88% 5.9
VGG16-Pruned In [5] 88.98% 96.63% 22.137 34.19% 0.225 25.99% 88.3

ResNet34 ON CIFAR10 88.16% 99.5% 21.29 0.075 81.4

Figure 10. Long-term training results.

4.3. Evaluate the Effect of Combine-Net’s Improvements
4.3.1. VGG16 on CIFAR 10

The VGG16 on the CIFAR10 is an over-parameterized network containing 13 convo-
lution layers and three full connection layers. This initially trained model had a Top-1
accuracy of 87.82% and a Top-5 accuracy of 99.55%, as shown in Table 2. The experiment
tested the complete pruning algorithm on VGG16. The final pruning result is shown in
Table 3, and performance of the model after retraining is shown in Table 2.

Comparing Table 3 with Table 1, the pruning rates of convolutional layers in Table 3
are relatively lower. However, the algorithm still provided an appropriate pruning rate for
each layer of the neural network to ensure that its accuracy will not decrease significantly
after retraining. The data in Table 2 show that the accuracy of the pruned sub-network
was recovered to a great degree after the overall retraining, even better than the original
over-parameterized network, and its parameter amount was compressed by more than
90%. The calculation amount was compressed by more than 80%. The experiment also
pruned the convolution layer of VGG16 according to the pruning rate given by Li h et al.’s
work [5], and the results are shown in Table 2. Compared with their work [5]—parameter
amount was 34%, the calculation amount was 26%, and the effect of the algorithm in this
study was obviously better.

Table 2. Parallel the pruning results of different models.

Model Top-1 Acc. Top-5 Acc. Parameters
(M) Pruned GMacs Pruned Size (MB)

VGG16 ON CIFAR10 87.82% 99.55% 33.639 0.304 128.4
VGG16-Pruned 89.17% 99.62% 1.376 95.91% 0.049 83.88% 5.9

VGG16-Pruned In [5] 88.98% 96.63% 22.137 34.19% 0.225 25.99% 88.3

ResNet34 ON CIFAR10 88.16% 99.5% 21.29 0.075 81.4
ResNet34-Pruned 87.72% 94.97% 1.462 93% 0.035 53.33% 5.7

ResNet50 ON CIFAR100 65.48% 87.49% 23.713 0.084 90.8
ResNet50-Pruned 66.08% 87.84% 6.843 71.14% 0.049 41.67% 26.4

Information 2021, 12, 264 15 of 18

Table 3. VGG16 On CIFAR10 and the Pruned Model.

Layer
Type

Pre-Trained Model Pruned Model

Maps Params
(M) GMacs Maps

Remained
Pruning

Rate
Top-1
Acc.

Top-5
Acc.

Params
(M) GMacs

Conv_1 64 0.002 0.002 52 20% 86.38% 99.54% 0.001 0.001
Conv_2 64 0.037 0.038 32 50% 87% 99.34% 0.015 0.015
Conv_3 128 0.074 0.019 58 55% 86.32% 99.22% 0.017 0.004
Conv_4 128 0.148 0.038 45 65% 86.39% 99.43% 0.024 0.006
Conv_5 256 0.295 0.019 103 60% 85.84% 99.34% 0.042 0.003
Conv_6 256 0.59 0.038 77 70% 85.98% 99.31% 0.071 0.005
Conv_7 256 0.59 0.038 90 65% 86.31% 99.42% 0.062 0.004
Conv_8 512 1.18 0.019 154 70% 86.31% 99.43% 0.125 0.002
Conv_9 512 2.36 0.038 128 75% 86.43% 99.36% 0.178 0.003
Conv_10 512 2.36 0.009 154 70% 86.73% 99.32% 0.178 0.003
Conv_11 512 2.36 0.009 128 75% 86.89% 99.39% 0.178 0.001
Conv_12 512 2.36 0.009 180 65% 87.17% 99.44% 0.208 0.001
Conv_13 512 2.36 0.009 128 75% 86.98% 99.48% 0.207 0.001
Linear_1 512 2.101 0.002 128 75% 86.78% 99.26% 0.026 <0.001
Linear_2 4096 16.781 0.017 205 95% 87.08% 99.01% 0.042 <0.001
Linear_3 10 0.041 <0.001 10 0% —— —— 0.002 <0.001

Total 33.639 0.304 1.376 0.049

4.3.2. ResNet34 on CIFAR10

To verify Combine-Net’s performance on residual networks, experiments on ResNet34
were also conducted. ResNet34, an intense residual network, has higher accuracy but also
extends the neutral network depth too deep. For the layer-by-layer pruning algorithm, it
means longer pruning time. Therefore, when dealing with this kind of network, only the
more redundant blocks are tended to be pruned. In our experiment, we only pruned basic
blocks where the numbers of filters were 256 and 512—the last nine basic blocks. The final
pruning effect is shown in Table 2.

As Table 2 shows, the algorithm also had a good effect on ResNet34. The decrease in
Top1 accuracy was less than 0.5%, the number of parameters was compressed by more than
90%, the amount of calculation was compressed by more than 50%, and the model size
was reduced by nearly 75 MB. However, how to overcome the time cost of layer-by-layer
pruning still needs further research.

4.3.3. ResNet50 on CIFAR100

ResNet50 on CIFAR100 were trained and pruned to prove the algorithm’s effect on
more complex datasets. The concrete pruning method was consistent with that of ResNet34,
which means, only the last nine blocks were pruned. In addition, the sensitivity of three
convolutional layers in the first and forth bottleneck of ResNet50 is shown in Figure 11. As
the third layer in ResNet50’s bottleneck was too sensitive to be pruned and the accuracy
could not recover well after retraining, so the third layer was left unpruned.

Information 2021, 12, 264 16 of 18Information 2021, 12, x FOR PEER REVIEW 16 of 18

(a) (b)

Figure 11. The accuracy of different pruning percentages. The third convolution layer in the Bottleneck of ResNet50 is too
sensitive to prune. Subfigures (a,b) show different Bottlenecks in ResNet50, and both third convolutional layers are sensi-
tive.

The performance of the sub-network after pruning is shown in Table 2. The compres-
sion of the amount of parameters and calculations of the model had a specific decrease
compared with VGG16 and ResNet34. This is because, for some complex data sets such as
CIFAR100, the neural network model needs to learn more knowledge, which leads to the
increase in the effective utilization rate of the model, and the decrease in redundancy and
pruning rate. However, the algorithm still compressed the model effectively, and the pa-
rameter and calculation amount had been significantly reduced.

5. Discussion
This work attempts to create a pruning algorithm with higher accuracy and more

objectivity. Experiments on different neural networks verified the reliability of Combine-
Net, which confirmed the outstanding role of Adaptive BN operation, Kneedle, and re-
training combined with knowledge distillation. Compared with some essential work, the
pruning method used by Li B et al. [9] is to find the optimal sub-network through a large
amount of random pruning, which consumes too much pruning time. In contrast, this
work prunes by L1-norm, making it faster to find a suitable sub-network. Furthermore,
based on the work of Li H et al. [5], this work improves the method of determining the
pruning rate, increasing the objectivity and accuracy of the algorithm, and combines
knowledge distillation with retraining, shortening the retraining time and improving the
accuracy of the sub-network at the same time.

Although this work has revealed some critical discoveries, many places can be fur-
ther improved. First, the knowledge distillation method used in retraining is not immuta-
ble and frozen. With the continuous development of this technology, better knowledge
distillation methods will emerge in an endless stream. Moreover, Chen L et al. [24] noted
that different knowledge distillation methods suited other neural network structures.
Therefore, further research is needed to promote a deeper integration of retraining and
knowledge distillation.

Second, for deep convolutional neural networks, especially intense residual net-
works such as ResNet101 and ResNet152, layer-by-layer pruning means extremely long
pruning time, which has been a problem since the method was proposed by Li H et al. [5].
To overcome this challenge, the retraining method of Combine-Net can recover more ac-
curacy in fewer epochs, thus shortening the time of retraining. However, the time con-
sumed in determining the pruning rate cannot be ignored. In this experiment, each neural
network layer was pruned in the range from 0% to 95% to find the best pruning rate. As
a result, reducing the search range of pruning rate is proposed to shorten the time con-
sumption. Zhuang L et al. [25] emphasized the importance of model structure. Therefore,

Figure 11. The accuracy of different pruning percentages. The third convolution layer in the Bottleneck of ResNet50
is too sensitive to prune. Subfigures (a,b) show different Bottlenecks in ResNet50, and both third convolutional layers
are sensitive.

The performance of the sub-network after pruning is shown in Table 2. The compres-
sion of the amount of parameters and calculations of the model had a specific decrease
compared with VGG16 and ResNet34. This is because, for some complex data sets such
as CIFAR100, the neural network model needs to learn more knowledge, which leads to
the increase in the effective utilization rate of the model, and the decrease in redundancy
and pruning rate. However, the algorithm still compressed the model effectively, and the
parameter and calculation amount had been significantly reduced.

5. Discussion

This work attempts to create a pruning algorithm with higher accuracy and more
objectivity. Experiments on different neural networks verified the reliability of Combine-
Net, which confirmed the outstanding role of Adaptive BN operation, Kneedle, and
retraining combined with knowledge distillation. Compared with some essential work, the
pruning method used by Li B et al. [9] is to find the optimal sub-network through a large
amount of random pruning, which consumes too much pruning time. In contrast, this work
prunes by L1-norm, making it faster to find a suitable sub-network. Furthermore, based
on the work of Li H et al. [5], this work improves the method of determining the pruning
rate, increasing the objectivity and accuracy of the algorithm, and combines knowledge
distillation with retraining, shortening the retraining time and improving the accuracy of
the sub-network at the same time.

Although this work has revealed some critical discoveries, many places can be further
improved. First, the knowledge distillation method used in retraining is not immutable and
frozen. With the continuous development of this technology, better knowledge distillation
methods will emerge in an endless stream. Moreover, Chen L et al. [24] noted that different
knowledge distillation methods suited other neural network structures. Therefore, further
research is needed to promote a deeper integration of retraining and knowledge distillation.

Second, for deep convolutional neural networks, especially intense residual networks
such as ResNet101 and ResNet152, layer-by-layer pruning means extremely long pruning
time, which has been a problem since the method was proposed by Li H et al. [5]. To
overcome this challenge, the retraining method of Combine-Net can recover more accuracy
in fewer epochs, thus shortening the time of retraining. However, the time consumed in
determining the pruning rate cannot be ignored. In this experiment, each neural network
layer was pruned in the range from 0% to 95% to find the best pruning rate. As a result,
reducing the search range of pruning rate is proposed to shorten the time consumption.
Zhuang L et al. [25] emphasized the importance of model structure. Therefore, it can be
conjectured that models with the same design may have a similar pruning rate. Of course,
the impact of data sets on pruning rate cannot be denied, but a recommended pruning rate

Information 2021, 12, 264 17 of 18

for each model structure can still be chosen through a large number of experiments. In
this way, during the subsequent pruning process, the search range of pruning rate can be
reduced to near the recommended rate, which reduces the time cost.

Finally, the method of selecting the optimal pruning rate layer by layer is essentially a
greedy algorithm. Therefore, it is impossible to evaluate whether the rates it determined
are of globally optimal accuracy. This work also tried other pruning rate determination
methods, such as dynamic programming algorithms and heuristic algorithms. However,
because these algorithms need to compute more states to obtain relatively accurate results,
their running time is unacceptable. This is the reason why Combine-Net chose to combine
the greedy algorithm with the Kneedle algorithm. In future research, this work will conduct
further experiments to verify whether the algorithm can give the optimal global solution
and find some updated neural network methods to obtain more effective model pruning.

6. Conclusions

In this work, we were committed to obtaining an accurate, objective, and efficient
neural network pruning algorithm to compress redundant neural networks. Our work
introduced the Adaptive BN to correct the BN layer of the sub-network after pruning,
which increased the accuracy of the evaluation. Furthermore, the work used the Kneedle
algorithm to give an objective and appropriate pruning rate. Finally, we applied the knowl-
edge distillation method to restore the model’s accuracy, improving retraining efficiency.
We proposed Combine-Net based on the above and carried out experimental verification
on different neural network models and datasets. The results showed that the algorithm
achieved significant compression of neural network parameters and calculations in various
situations without accuracy loss.

Future work to solve the tricky problem of excessively long pruning time includes:

• Analyzing the relationship between model structure and pruning rate.
• Providing recommended pruning rates for different model structures.
• Looking for a method to replace the greedy algorithm of layer-by-layer pruning.
• Extending the algorithm to unstructured pruning and verifying Combine-Net’s uni-

versality and robustness.

Supplementary Materials: The following are available online at https://github.com/Chicory-ggg/
Combine-Net, accessed on 23 June 2020. Source code and the pruned models are accessible to
open-source community.

Author Contributions: Methodology, G.L. and J.W.; software, G.L.; formal analysis, G.L. and J.W.;
resources, W.Z.; data curation, G.L.; writing—original draft preparation, G.L. and J.W.; writing—
review and editing, W.Z. and G.L.; visualization, J.W.; project administration, W.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amato, G.; Carrara, F.; Falchi, F.; Gennaro, C.; Meghini, C.; Vairo, C. Deep learning for decentralized parking lot occupancy

detection. Expert Syst. Appl. 2017, 72, 327–334. [CrossRef]
2. Li, Y.; Chen, F.; Sun, Z.; Ji, J.; Jia, W.; Wang, Z. A Smart Binaural Hearing Aid Architecture Leveraging a Smartphone APP with

Deep-Learning Speech Enhancement. IEEE Access 2020, 8, 56798–56810. [CrossRef]
3. Xu, C.; Mao, Y. An Improved Traffic Congestion Monitoring System Based on Federated Learning. Information 2020, 11, 365.

[CrossRef]
4. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
4510–4520.

https://github.com/Chicory-ggg/Combine-Net
https://github.com/Chicory-ggg/Combine-Net
http://doi.org/10.1016/j.eswa.2016.10.055
http://doi.org/10.1109/ACCESS.2020.2982212
http://doi.org/10.3390/info11070365

Information 2021, 12, 264 18 of 18

5. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
6. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.
7. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
8. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep

architectures. arXiv 2016, arXiv:1607.03250.
9. Li, B.; Wu, B.; Su, J.; Wang, G. Eagleeye: Fast sub-net evaluation for efficient neural network pruning. In Proceedings of the

16th European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham,
Switzerland, 2020; pp. 639–654.

10. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5058–5066.

11. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.A.; De Freitas, N. Predicting parameters in deep learning. arXiv 2013, arXiv:1306.0543.
12. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
13. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Adam, H. Mobilenets: Efficient convolutional neural

networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
14. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
6848–6856.

15. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

16. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

17. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations.
arXiv 2015, arXiv:1511.00363.

18. Fang, B.; Zeng, X.; Zhang, M. Nestdnn: Resource-aware multi-tenant on-device deep learning for continuous mobile vision. In
Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 29 October–2
November 2018; pp. 115–127.

19. He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft filter pruning for accelerating deep convolutional neural networks. arXiv 2018,
arXiv:1808.06866.

20. Li, H. Exploring Knowledge Distillation of Deep Neural Nets for Efficient Hardware Solutions. CS230 Report. 2018. Available
online: https://github.com/peterliht/knowledge-distillation-pytorch (accessed on 23 June 2020).

21. Luo, J.H.; Wu, J. An entropy-based pruning method for cnn compression. arXiv 2017, arXiv:1706.05791.
22. Yang, T.J.; Howard, A.; Chen, B.; Zhang, X.; Go, A.; Sandler, M.; Adam, H. Netadapt: Platform-aware neural network adaptation

for mobile applications. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 285–300.

23. Satopaa, V.; Albrecht, J.; Irwin, D.; Raghavan, B. Finding a “kneedle” in a haystack: Detecting knee points in system behavior. In
Proceedings of the 2011 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, USA,
20–24 June 2011; pp. 166–171.

24. Chen, L.; Chen, Y.; Xi, J.; Le, X. Knowledge from the original network: Restore a better pruned network with knowledge
distillation. Complex Intell. Syst. 2021, 1–10.

25. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the value of network pruning. arXiv 2018, arXiv:1810.05270.

https://github.com/peterliht/knowledge-distillation-pytorch

	Introduction
	Related Work
	Lightweight Neural Network
	Quantization
	Pruning
	Knowledge Distillation

	Methods Overview
	Pruning Method
	Fast and Accurate Evaluation with Adaptive BN
	Determination of the Appropriate Pruning Rate by Kneedle
	How to Confirm the Knee Point

	Retraining Method
	General Method

	Experiment
	Proper Pruning Rate Improves Algorithm Efficiency
	Significant Effect of Adaptive BN in Pruning Evaluation
	Choose the Best Pruning Rate by Kneedle

	Efficient Retraining with Knowledge Distillation
	Short-Term Effects
	Long-Term Effects

	Evaluate the Effect of Combine-Net’s Improvements
	VGG16 on CIFAR 10
	ResNet34 on CIFAR10
	ResNet50 on CIFAR100

	Discussion
	Conclusions
	References

