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Abstract: Recently, deep learning to hash has extensively been applied to image retrieval, due to its
low storage cost and fast query speed. However, there is a defect of insufficiency and imbalance when
existing hashing methods utilize the convolutional neural network (CNN) to extract image semantic
features and the extracted features do not include contextual information and lack relevance among
features. Furthermore, the process of the relaxation hash code can lead to an inevitable quantization
error. In order to solve these problems, this paper proposes deep hash with improved dual attention
for image retrieval (DHIDA), which chiefly has the following contents: (1) this paper introduces the
improved dual attention mechanism (IDA) based on the ResNet18 pre-trained module to extract the
feature information of the image, which consists of the position attention module and the channel
attention module; (2) when calculating the spatial attention matrix and channel attention matrix,
the average value and maximum value of the column of the feature map matrix are integrated in
order to promote the feature representation ability and fully leverage the features of each position;
and (3) to reduce quantization error, this study designs a new piecewise function to directly guide
the discrete binary code. Experiments on CIFAR-10, NUS-WIDE and ImageNet-100 show that the
DHIDA algorithm achieves better performance.

Keywords: attention; deep hash; image retrieval; deep learning

1. Introduction

A great number of high-dimensional images and video data have been broadly used in
various search engines and applications in recent years. This shows that quickly detecting
the same image as a given query image from a large data set is an urgent problem to be
solved [1,2]. It is common for deep hashing to be applied in data retrieval for its advantages
of a solid learning ability and good portability [3]. Meanwhile, deep learning to hash
methods [4–11] try to convert high-dimensional media data into compact binary code
via a hash function, and the data structure information is stored in the Hamming space.
Therefore, deep hashing methods garner attention in image retrieval.

Regarding early image retrieval methods, text-based image retrieval (TBIR) [12] uses
the method of text annotation to describe the image content, and thus, the retrieval key-
words of each image are formed. However, TBIR needs a lot of manual annotation, so it has
gradually been replaced by content-based image retrieval (CBIR) [13,14]. In CBIR methods,
the description between the image features is established by using a computer to analyze
the image. However, there is an irreparable semantic gap between the feature description
and high-level semantics. Deep hashing methods [4,5] can solve the limitation of CBIR,
so the research on deep hashing is becoming more and more popular. Existing hashing
methods are divided into two categories: data-independent hashing and data-dependent
hashing. In the data-independent hashing methods [15], the binary code is generated by
using the random projection matrix. Through theoretical analysis, it can be concluded
that when the length of the binary codes increases, the hamming distance between the
binary codes of two images gradually approaches the distance of feature space. However,
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long code is often required to achieve good performance, which wastes a lot of memory.
By using the training data, data-dependent hashing methods [16–24] can generate more
accurate binary code than data-independent hashing methods. Thus, data-dependent
hashing has become more and more popular in real applications. This study explores
data-dependent hashing methods to learn hash code with high quality.

Most deep hashing methods learn binary codes by exploring shallow CNN. The
learned hash function is used to map the high-dimensional image features to the binary
Hamming space. Such methods cause the following issues: (1) The goal of them is to
optimize loss functions or reduce quantization error. However, they do not consider the
correlation between the extracted deep features in the spatial dimension and channel
dimension. (2) When using a shallow AlexNet network to extract features, the important
feature information may be ignored. (3) Finally, the sign function is usually applied in the
discrete optimization process of hash code, but the back-propagation algorithm cannot be
implemented when the gradient of sign function is zero.

To optimize the above issues, this work is enlightened by the dual attention network
for scene segmentation (DANet) [25], scene segmentation with dual relation-aware at-
tention network [26], and GL-attention [27]; this study designs the IDA module on the
basis of the position attention mechanism and channel attention mechanism, which can
extract richer image features and obtain hash codes with strong discriminative ability.
Specifically, as shown in Figure 1, this study uses ResNet18 as the network framework to
extract features and then input them into the IDA module. Different from the DANet, as
shown in Figure 2, to obtain the saliency and global information of the feature matrix and
fully utilize the feature of each position, before calculating the spatial attention map P and
the channel attention map X, this study calculates the average value and maximum value
of each column of the feature map matrix and combines the results of the two parts. In
addition, the original feature map is subtracted to avoid feature redundancy. Finally, a new
piecewise function is designed to process the network output into discrete binary code,
which reduces quantization error. In the loss function part, a balance controlling loss is
designed to balance the number of hash codes in the distribution of −1 and +1.

In short, our contributions are as follows:

1. Firstly, this study designs an IDA module and embeds it in the ResNet18 network
model, which learns feature representation and hash code learning at the same time.
The position attention module is designed to capture the spatial interdependencies
between features. The channel attention module is designed to model channel inter-
dependencies.

2. Secondly, to reduce quantization error, this study designs a new piecewise function to
process the network output into discrete binary code.

3. Thirdly, this study applies DHIDA on different loss functions, and measures its
performance with extensive experiments on three standard image retrieval data sets.
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Figure 1. The overall architecture of the deep hash with the improved dual attention module, which is comprised of three
key components: (1) pairs of images are fed into the ResNet18 network to obtain deep feature representations; (2) deep
features are fed into the IDA module to obtain fusion features; (3) a hash code layer (fch) is used for transforming the fusion
feature into K-dimensional binary code.
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Figure 2. The detail of the IDA module. The upper part highlights the position attention module, and the lower part
highlights the channel attention module.

The structure of the rest of the content is as follows. Section 2 discusses the related
works. Section 3 mainly describes the network structure and the loss function. Section 4
precisely introduces the experiment and the results of the analysis. Section 5 draws
the conclusion.

2. Related Work

Deep hashing for image retrieval is widely used in people’s daily lives [11,17,19]. For
example, users can utilize an image to search for an image that meets their needs in many
applications. Presently, generating more accurate hash code for each image has become
a hot and difficult topic. Therefore, many existing methods explore the accuracy of hash
codes from the perspective of the similarity matrix, feature representation and loss function.
This section briefly discusses existing hash methods.

Data-dependent hashing methods include unsupervised hashing and supervised
hashing. Unsupervised hashing methods train unlabeled data to learn hash functions that
map raw data to binary code. Meanwhile, the similarity matrix is constructed by using
the deep feature information. In unsupervised hashing methods, Weiss et al. [28] propose
to save the manifold structure of the data set in Hamming space. However, this method
is time consuming for calculating the affinity matrix. Hence, Liu et al. [29] utilize anchor
graphs to obtain the processable low-rank adjacency matrices. Gong et al. [9] propose a
method for reducing information loss by adding rotation zero-centered data. Owing to the
absence of semantic label information, these unsupervised hash methods do not perform
well. Supervised hashing methods directly explore the supervision information from data
labels to construct the similarity matrix. In supervised hashing methods, Xia et al. [30] learn
feature representation and hash code learning separately; there is no feedback between
the two parts. On this basis, Lai et al. [31] propose to learn deep semantic features and
hash code in the process of joint learning. Li et al. [5] utilize the end-to-end network to
consider the common application scenario of pairwise labels. Inspired by Li et al., Wang
et al. [32] propose to maximize the likelihood of the triple label to evaluate the quality of
hash codes. To further mine data labels and narrow the gap between the Hamming distance
and its substitution, Zhu et al. [33] propose the bi-modal Laplacian prior to learning the
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continuous representation and high-quality hash code. Meanwhile, Cao et al. [34] develop
a CNN network with a non-smooth binary activation function to solve the problem of
gradient disappearance. In addition, weighted data labels are used to solve the problem
of data imbalance. Based on their prior efforts [34] to address the data labels imbalance,
Cao et al. [35] propose a probability function based on the Cauchy distribution to tackle
the misspecification problem of the sigmoid function. Zhang et al. [36] propose to rank the
similarity of pairwise images with multiple labels. To further reduce quantization error,
Zheng et al. [18] propose that CNN directly outputs the binary code, and the straight-
through estimator is designed to optimize the network in the process of discrete gradient
propagation. This pairwise or triplet based on hash learning leads to low efficiency of the
similarity analysis. Hence, in the method proposed by Yuan et al. [7], the similarity center
of each class is constructed by using the Hadamard matrix and the Bernoulli distributions.
The binary cross entropy loss is employed to minimize the distance within the class and
maximize the distance between the classes. To reduce the retrieval time and improve the
retrieval speed, Zhang et al. [37] use tree structures to generate the deep hash code and
prune the irrelevant branches to reduce the retrieval time.

In summary, most of the existing hash methods only consider the part of optimizing
the loss function, while ignoring the shortcomings of using CNN to extract image feature
information. Encouraged by the dual attention model [25–27], this study designs the IDA
module, which includes the position attention module and channel attention module. The
position attention module promotes the feature representation ability, and the channel
attention module establishes the interdependence between the channels. Combining the
output of the two modules can fully extract the crucial semantic information of the image.
In addition, this study designs a piecewise function to quantify the network output.

3. Deep Hash with Improved Dual Attention

In this section, this paper describes the research method, the structure of the network
model, the details of the IDA module and the process of optimizing the network.

3.1. Problem Formulation

In the similarity retrieval, given n image samples, X = {xi}n
i=1 and its corresponding

data labels are expressed as Y = {yi}c
i=1, where xi represents the ith image, yi represents

the data labels of the ith image, and c is the number of categories in the data set. The
similarity matrix S =

{
sij
}

is constructed from data labels y. where sij = 1 if xi and xj are
similar, and sij = 0 otherwise.

The deep hash aims to learn a nonlinear hash function F : x → h ∈ {−1,+1}K , which
transforms the deep feature representation of each image xi into K-dimensional represen-
tation ui. To reduce quantification error, this study defines a new piecewise function for
processing ui. Specifically, a threshold value of the binary code is set to [−1, 1], and then it
deals with the output that exceeds the threshold value. This study considers the output
beyond the threshold as 1, and the output below the threshold as −1. This piecewise
function is described as follows:

f (ui) =


1, ui > 1
ui, −1 < ui < 1
−1, ui < −1

(1)

where hi = sign( f (ui)) is used to quantize ui into K-bit binary code hi ∈ {−1, 1}K, where
K is the length of hash code and sign() is the sign function, which is defined as follows:

sign(x) =
{

1, i f x ≥ 0
−1, otherwise

(2)
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3.2. Network Framework

The network framework is illustrated in Figure 1. In order to obtain sufficient features
with contextual information, this study applies ResNet18 as the basic backbone network and
embeds the IDA modules in it, meanwhile, replacing the classification layer of ResNet18
with a hash layer. After the network becomes deeper, this study employs the Rectified
Linear Unit (ReLU) activation function to solve the disappearance of the gradient.

The details for the IDA module are shown in Figure 2, which is comprised of a position
attention module and channel attention module.

In the position attention module, the self-attention mechanism is introduced to estab-
lish the spatial dependence between any two locations in the feature matrix. The feature
of a specific location is updated by weighted summation of the aggregate features of all
locations, and its weight is determined by the similarity between features. If the features
of any two locations (regardless of their distance in spatial dimensions) have a similar
relationship, then the two locations can promote each other. Therefore, the role of the
position attention mechanism is to capture salient information from contextual features and
encode them into local features, on which a wider range of context relations are established,
thus improving the feature representation ability.

In the channel attention module, the self-attention mechanism is also introduced to
capture the channel dependency between any two channel maps, and the weighted sum of
maps of all channels is used to update the maps of each channel. By using the dependency
relationship between different channels, the channel attention module can enhance the
interdependence of the feature channels and improve the feature representation of the
feature semantics. The role of the channel attention module is to selectively integrate the
highly dependent channels and improve the semantic feature expression. Meanwhile, the
long-distance semantic dependency between the different channels is modelled.

Finally, the outputs of the two attention modules are fused to gain better pixel-level
prediction feature representations.

3.3. IDA Module

This section mainly introduces the content of the IDA module and the improvement
of the two attention modules.

3.3.1. Position Attention Module

The function of the position attention module is to establish the spatial correlation for
any two positions of the feature map by introducing the self-attention mechanism.

As shown in Figure 2, firstly, the high-dimensional features are fed into a convolution
layer to obtain a feature map A ∈ RC×H×W. A is fed into three convolution layers to obtain
the three feature maps B, C and D, where {B, C, D} ∈ RC×H×W. Then, they are reshaped
into RC×N , where N = H×W is the total number of pixels. Secondly, this paper multiplies
the transpose of B by C to generate Mij ∈ RN×N . Finally, encouraged by [27], to compute
the salient and global features of the feature map, and to take full advantage of the features
of each position, Mij is processed as follows:

M̃ij =
max

(
Mij

)
+ mean

(
Mij

)
2

−Mij (3)

Using the maximum or mean function alone may cause fine-grained features to
be ignored, so this study employs two functions in parallel. The spatial attention map
P ∈ RN×N is generated by entering M̃ij into the SoftMax layer. Each element of the
calculated P matrix is as follows:

Pji =
exp
(

M̃ij

)
∑N

i=1 exp
(

M̃ij

) (4)



Information 2021, 12, 285 6 of 18

where Pij represents the effect of the ith position on the jth position. The larger the Pij,
the higher the correlation between the two positions. Meanwhile, this study multiplies
the transpose of P with D and reshapes the product to the original shape. Finally, the
output E ∈ RC×H×W is obtained as follows:

Ei = α
N

∑
i=1

(
PjiDi

)
+ Aj (5)

where α is a scale parameter [38] initialized to 0 and gradually assigns weight by learning.
Di is the ith feature of D, Aj is the jth feature of A, and Ei is the ith feature of E. Every
position feature of Ei is related to the global feature of E and the original features. Therefore,
E has global contextual features information, so it establishes the spatial relationship
between any two positions.

3.3.2. Channel Attention Module

The channel attention module captures the interdependence between any two channels
maps by exploring the self-attention mechanism.

As shown in Figure 2, according to feature map A ∈ RC×H×W, A is reshaped to
A1 ∈ RC×N and express the transpose of A1 as AT

1 ∈ RN×C. Then, this study directly
performs a matrix multiplication between A1 and AT

1 to obtain matrix Nij. Meanwhile, Nij
is also processed similar to Equation (3), as shown below:

Ñij =
max

(
Nij
)
+ mean

(
Nij
)

2
− Nij (6)

Then, put Ñij into the SoftMax layer to obtain the channel attention map X ∈ RC×C.
Each element of the X matrix is calculated as follows:

Xji =
exp
(

Ñij

)
∑C

i=1 exp
(

Ñij

) (7)

where Xji indicates the influence of the ith channel on the jth channel. Therefore, X repre-
sents the connection between a certain channel and other channels. Next, this approach
can improve the expression of semantic features by performing the X multiplied by A
operation. Then, the output E ∈ RC×H×W is obtained as follows:

Ej = β
N

∑
i=1

(
Xji Ai

)
+ Aj (8)

where β is a scale parameter initialized to 0 and gradually assigns weight by learning. Ej is
the jth feature of E. Aj is the jth channel of A. The resultant E of each channel is related
to the features of all channels and original features. Hence, E establishes the connection
between the channels and improves the discrimination ability of features.

Finally, the outputs of the two modules are sum fused, which strengthens the depen-
dency relationship between pixels and enhances the dependency relationship between
channels. Therefore, the output of the IDA module can obtain better pixel-level prediction
feature representation.

3.4. Model Formulation

For pairwise binary hash code hi and hj, the Hamming distance can be calculated
as D

(
hi, hj

)
= 1

2
(
K− hi, hj

)
, where hi, hj =

1
2 hT

i hj means the inner product, and K is the
length of the hash code. This shows that the change of inner product and Hamming
distance are opposite. When the inner product increases, the Hamming distance decreases.
Therefore, it is more intuitive to judge the similarity of two images by the inner product.
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The similarity matrix S =
{

sij
}

composed of image labels is given, and the logarithm
maximum posteriori estimation of hash code H = [h1, . . . , hn] is described as follows:

logP(H|S ) ∝ logp(S|H)p(H) = ∑
sij∈S

logp
(
sij
∣∣hi, hj

)
p(hi)p

(
hj
)

(9)

where p(S|H) is the likelihood function, p(H) is the prior distribution and p(sij
∣∣hi, hj)

is the conditional probability of the similarity label sij under the given premise of hi, hj,
which is defined as the following pairwise logistic function:

p
(
sij
∣∣hi, hj

)
=
{ σ

(
〈ui, uj〉

)
, sij = 1

1− σ
(
〈ui, uj〉

)
, sij = 0

= σ
(
ui, uj

)sij
(
1− σ

(
〈ui, uj

)
〉
)1−sij

(10)

where σ(ϕ) = 1
1+e−ϕ is the sigmoid function and hi = sign(ui). Equation (10) shows that

the inner product becomes larger, and the conditional probability p
(
1
∣∣hi, hj

)
also increases,

which indicates that hash code hi and hj are similar. The larger p
(
0
∣∣hi, hj

)
is, the more

dissimilar the hash code hi, hj is.
In order to calculate the pairwise similarity loss, the negative maximum likelihood

function of Equation (10) is computed, and we take its logarithmic as follows:

L1 = ∑
SijεS

(
log
(
1 + exp

(
〈ui, uj〉

))
− sij

(
〈ui, uj〉

))
(11)

Finally, inspired by [10,16], this study adopts a balance controlling loss to address
the problem of the imbalanced hash code distribution. This means that the binary code is
evenly distributed in the number of -1 and +1. Therefore, all of the bits of the binary code
are equally used. The definition of the balance controlling is as follows:

L2 =
K

∑
n=1

∣∣∣mean
(

u(n)
i

)∣∣∣2 (12)

where u(n)
i is the nth element of the hash code ui.

Finally, the total loss function can be summarized as follows:

minL = L1 + γL2 = ∑
SijεS

(
log
(
1 + exp

(
〈ui, uj

)
〉
)
− sij

(
〈ui, uj〉

))
+ γ

K

∑
n=1

∣∣∣mean
(

u(n)
i

)∣∣∣2. (13)

where γ is the weight balance hyperparameter. According to the model method proposed
in this paper, extensive experiments show that the result of the experiment is the best when
the value of γ is 0.1. It is only for the experimental data of this study.

3.5. Learning

The whole training process of the DHIDA model is shown in Algorithm 1. In the
DHIDA method, the loss function can be effectively optimized via the backpropagation
(BP) algorithm. Learning a hash function through an end-to-end network to map the
training images into the binary codes, it is set as follows:

ui = WTψ(xi; θ) + b (14)

where θ is the parameters of the feature layers, ψ(xi; θ) is the output of the full layers
related to image xi, and WT ∈ R4096×K presents the transpose of the weight matrix. b ∈ RK

denotes the bias vector, where K is the length of the binary code and ui is the network
output. In the DHIDA model, the parameters to be optimized include W, b, θ and H. This
study adopts the control variable method to optimize the parameters.
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Then, hi is optimized as follows:

hi = sign(ui) (15)

For the other parameters W, b, and θ, by calculating the derivative of the total loss L
to ui in Equation (13), we can obtain the following:

∂L
∂ui

=
1
2 ∑

SijεS
aij − Sijuj +

1
2 ∑

SijεS
aji − Sjiuj + 2γ

(
mean

(
u(n)

i

))
(16)

where aij = σ
(

1
2 uT

i uj

)
.

For the update of parameters W, b, and θ, this study chooses to fix two of them to
update the other. Therefore, their derivatives are calculated as follows:

∂L
∂W

= ψ(xi; θ)

(
∂L
∂ui

)T
, (17)

∂L
∂v

=
∂L
∂ui

, (18)

∂L
ψ(xi; θ)

= W
∂L
∂ui

(19)

The learning process of the DHIDA model is shown in Algorithm 1.

Algorithm 1. DHIDA.

Input:
Given X = {xi}n

i=1 and S =
{

sij

}
.

Output:
Updated parameters W, b, θ and H.
Initialization:
Initialize the ResNet18 model;
Initialize parameters θ from the pre-trained ResNet18 model;
Randomly sampled W and b from Gaussian distribution.
Repeat:
Randomly select a mini batch of images from X. Execute the following actions for each image xi,:
Calculate ψ(xi; θ) by forward backpropagation;
Calculate ui = WTψ(xi; θ) + b;
Calculate hash code of xi with hi = sgn(ui) and derivatives for W, b and θ according to (17), (18)
and (19);
Update the parameters W, b, θ;
Until iterations completed

Finally, the trained ResNet18 model is obtained for the final deep hashing model, and
the binary code corresponding to images can be generated by Equation (14).

4. Experiments

This section mainly describes the introduction of the experimental data sets, evaluation
metrics, parameters setting, the result of the analysis and the empirical analysis.

4.1. Data Sets

This study conducts experimental evaluations on three public data sets: CIFAR-10,
NUS-WIDE and ImageNet-100.

1. CIFAR-10 contains 60,000 RGB color images belonging to 10 categories. It is a
single-label data set with 6000 images in each category. In this experiment, the training
set is formed by randomly sampling 500 images in each category (5000 images in all), and
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100 images (1000 images in all) are randomly selected in each category to form the test set.
The rest of the images serve as the database for retrieval.

2. NUS-WIDE is a multi-label data set containing 269,648 images. This study adopts
195,834 images that are associated with the 21 categories. Among them, 100 images are
randomly selected from each class (2100 images in all) as the test set and the remaining
images as the database. Furthermore, in the database, the experiments select 500 images
from each category (10,500 images in all) as the training set.

3. ImageNet-100 contains 128,503 single-label images, and each image belongs to one
of 100 categories. In this experiment, 5000 images are randomly selected to serve as the test
set, and the rest of the images serve as the database. Meanwhile, the experiments choose
130 images from each category (13,000 in all) of the database as the training set to train
the model.

4.2. Evaluation Metrics and Settings

In the experiment, this study compares DHIDA with eight classic hashing methods,
which include DBDH [18], HashNet [34], IDHN [36], DFH [39], DSH [17], DSDH [20],
DHN [33] and LCDSH [40].

This study evaluates the image retrieval quality of DHIDA with four metrics: mean
average precision (mAP), precision–recall curves (PR), precision curves within Hamming
distance 2 (P@H = 2) and precision curves of the first 1000 retrieval results (P@N). In
order to compare all the methods fairly, this experiment adopts mAP@ALL for CIFAR-10,
mAP@5000 for NUS-WIDE and mAP@1000 for ImageNet-100.

For fair comparison, the experiments replace the backbone network of all compari-
son methods with the pre-trained ResNet18 network and use the Pytorch framework to
reproduce the codes. The parameter information of each layer is illustrated in Table 1. The
network contains 18 layers (conv1 + Layer1~Layer4 + fch) in total, and each layer contains
four convolution layers. Among them, the small letters are as follows: p denotes the size
of the convolution kernel, s and k represent the stride and padding, respectively, and fch
represents the hash code layer. The features extracted from the ResNet18 network would
be fed into the IDA module.

Table 1. Configuration of each layer in DHIDA method.

Layers Configuration

Conv1 {64 × 112 × 112, k = 7 × 7, s = 2 × 2, p = 3 × 3, ReLU}
Maxpool {64 × 54 × 54, k = 3 × 3, s = 2 × 2, p = 1 × 1, ReLU}
Layer1 {64 × 56 × 56, k = 3 × 3, s = 1 × 1, p = 1 × 1, ReLU} × 4
Layer2 {128 × 28 × 28, k = 3 × 3, s = 2 × 2, p = 1 × 1, ReLU} × 4
Layer3 {256 × 14 × 14, k = 3 × 3, s = 2 × 2, p = 1 × 1, ReLU} × 4
Layer4 {512 × 7 × 7, k = 3 × 3, s = 2 × 2, p = 1 × 1, ReLU} × 4

Avgpool 512 × 1 × 1
fch K, the length of hash code

This study updates the parameters of convolutional layers and fully connected layer
copy from ResNet18 pre-trained model by BP. All methods utilize the same training set
and test set. Furthermore, the network model is optimized by the root mean square prop
(RMSProp), the learning rate is set as 5× 10−5, the mini batch size of images is set as 128
and the weight decay parameter is set as 1× 10−5.

The experimental environment configuration information is illustrated in Table 2.

Table 2. Configuration information.

Item Configuration

OS Ubuntu 16.04 (×64)
GPU Tesla V100
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4.3. Results Analysis

As shown in Table 3, the experiments calculate the mAP value of DHIDA and other
comparison methods on CIFAR-10, NUS-WIDE and ImageNet-100. The length of the hash
code is 16, 32, 48 and 64 bits, respectively. From the results in Table 3, the mAP of DHIDA
is obviously higher than the other comparison algorithms.

Table 3. mAP for different number of bits on three data sets.

Method
CIFAR-10 (mAP@ALL) NUS-WIDE (mAP@5000) Imagenet-100 (mAP@1000)

16 bit 32 bit 48 bit 64 bit 16 bit 32 bit 48 bit 64 bit 16 bit 32 bit 48 bit 64 bit

DHIDA 0.8213 0.8359 0.8420 0.8428 0.8278 0.8414 0.8519 0.8552 0.6346 0.6296 0.6573 0.6870
DBDH 0.8021 0.8113 0.8129 0.8209 0.8150 0.8360 0.8442 0.8484 0.3358 0.3215 0.5626 0.6321
DSDH 0.7761 0.7881 0.8086 0.8183 0.8085 0.8373 0.8441 0.8441 0.1612 0.3011 0.3638 0.4268
DHN 0.7695 0.7871 0.7869 0.7966 0.8108 0.8069 0.7854 0.7910 0.4900 0.4808 0.4747 0.5664

LCDSH 0.7383 0.7661 0.8083 0.8202 0.8071 0.8304 0.8425 0.8436 0.2269 0.3177 0.4517 0.4671
HashNet 0.6975 0.7892 0.7878 0.7949 0.7453 0.8180 0.8361 0.8297 0.3017 0.4690 0.5400 0.5719

IDHN 0.6641 0.7296 0.7762 0.7682 0.7820 0.7795 0.7601 0.7366 0.2721 0.3255 0.4477 0.5539
DFH 0.5947 0.6347 0.7298 0.7662 0.7893 0.8185 0.8350 0.8372 0.1727 0.3435 0.3445 0.3430
DSH 0.5095 0.4663 0.4702 0.4714 0.6680 0.7383 0.7563 0.7940 0.3109 0.3848 0.4294 0.4403

Specifically, on the CIFAR-10 data set, the mAP of DHIDA in different length hash
codes achieves 82.13%, 83.59%, 84.20% and 84.28% in Table 3. Compared with DBDH,
DHIDA can achieve absolute boosts of 1.9%, 2.5%, 2.9% and 2.2%. On the NUS-WIDE data
set, compared with DBDH, the mAP of DHIDA improves by 1.3%, 0.5%, 0.8% and 0.7%
at 16, 32, 48 and 64 bits. On ImageNet-100, compared with DBDH, the mAP of DHIDA
improves by 29.9%, 30.8%, 9.5% and 5.5% on different bits. Therefore, compared with the
highest mAP results, this study achieves increases of 2.4%, 0.8% and 18.9% in average mAP
for different bits on the three data sets, respectively. Compared with the classic algorithm
HashNet, there is an average increase of 6.8%, 3.6%, and 18.1% on CIFAR-10, NUS-WIDE,
and ImageNet-100. Hence, the experimental results show that the algorithm can fully mine
the contextual semantic information of the features and generate high-quality codes.

The curve of PR is a significant indicator to access the effect of the model. P represents
the precision rate, R the represents recall rate, and PR represents the relationship between
the precision rate and recall rate. Generally, recall is set to abscissa and precision is set
to ordinate in the PR curves. Figure 3 respectively shows the PR curves of 16, 32, 48 and
64 bits on the CIFAR-10 data set. As can be seen from Figure 3a, the curves of our method
are obviously higher than those of the other algorithms. Hence, the area under the PR
curve of our method is the largest, which shows that our method has better results than
the other methods. Similarly, in Figure 3b,c, our algorithm is higher than DBDH, which
has the best performance among all the comparative methods. In Figure 3d of the hash
code with length 64, the performance of DHIDA is not as obvious as the other three bits,
but the best results are still obtained, compared with other algorithms.

Figure 4 respectively shows the PR curves of 16, 32, 48 and 64 bits on the NUS-WIDE
data set. As shown in Figure 4a,d, among all the comparison algorithms, DBDH has the
best effect; the PR curve of our method is significantly higher than that of the DBDH
method. Therefore, the performance of our model is better than that of the other models.
In Figure 4b,c, the PR curves of all the methods are relatively concentrated, but our method
still achieves the best performance.

Figure 5 shows the PR curves of 16, 32, 48 and 64 bits on the Imagenet-100 data set. As
shown in Figure 5a,b, the area enclosed by our PR curve is the largest, compared to DHN
and HashNet. Therefore, the performance of our method is the best when the length of
the hash code is 16 bits and 32 bits. In Figure 5c,d, although the PR curve of our method
intersects with the PR curve of HashNet and IDHN, it is not difficult to see that the area
above the intersection is larger than the area below the intersection, so the performance of
our method is still the best among all the compared methods.
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Figure 5. (a–d) represent the PR curves on Imagenet-100 of all algorithms when the length of the hash code is 16, 32, 48 and
64 bits, respectively.

In order to achieve the goal that the Hamming ranking only needs O(1) time searches,
the performance of the P@H = 2 is very significant for the retrieval of the binary space.
As shown in Figure 6a–c, comparing the P@H = 2 results of all methods, our method
achieves the highest precision on the three data sets, which verifies that our model can
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be concentrated with more relevant points than all the compared methods. Particularly,
P@H = 2 of our method on 64 bits achieves optimal performance on the three data sets.
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Another important evaluation indicator is the curves of P@N. The experiments choose
to return the accuracy of the first 1000 images. Figure 7 shows the P@N results on the
CIFAR-10 data set, which shows that our method has achieved better precision than the
other methods. For example, in Figure 7a–c, our method returns higher accuracy than the
other algorithms. In Figure 7d, the growth of accuracy is slightly lower than the other three
bits, but it is still the best compared with other methods. Hence, our method is obtained at
a lower recall rate and with a good result, which is very beneficial for an accurate image
retrieval system.

Figure 8 shows the P@N curves on the NUS-WIDE data set. As can be seen from
Figure 8a–d, with the increase in the length of the hash code, the accuracy also increases.
The accuracy of all methods returning the first 1000 images is relatively stable, and our
method has the highest accuracy.
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Figure 9 shows the P@N curves on the Imagenet-100 data set. As can be seen from
Figure 9a,b, when the length of the hash code is 16 and 32 bits, the accuracy of this method
is obviously better than the other methods. Meanwhile, in Figure 9c,d, with the increase in
the number of returned images, the corresponding precision of our method decreases in a
small range, but the accuracy of our method is still the highest.
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Figure 8. (a–d) represent the P@N curves on NUS-WIDE of all algorithms when the length of the hash code is 16, 32, 48 and
64 bits, respectively.
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4.4. Empirical Analysis

The results of the ablation experiment are shown in Table 4. This study chooses the
hash code of length 16 bits to conduct an empirical experiment on the CIFAR-10 data set.
The DHIDA-A model represents the algorithm without the attention mechanism on the
Alexnet network, and the mAP of the experimental results is 72.40%. The DHIDA-I model
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indicates that the piecewise function is added to the Alexnet network. At this time, the
result of mAP is increased by 4.0%, which proves the validity of the piecewise function.
The DHIDA-R model uses the ResNet18 as the backbone network based on DHIDA-I. The
experimental result is 80.21%, and the mAP is improved by 3.7%. The DHIDA-D model
indicates that the dual attention mechanism is added based on the DHIDA-R architecture,
and its mAP is increased by 0.6%. Finally, DHIDA represents the IDA module, is added to
the DHIDA-R, and its mAP result is increased by 2.0%, which shows improvement in the
IDA module of the optimizing effect on the entire image retrieval system. In addition,

√

represents adding the module to the baseline model.

Table 4. Ablation experiments.

DHIDA-A DHIDA-I DHIDA-R DHIDA-D DHIDA

Alexnet
√ √

ResNet18
√ √ √

f (u)
√ √ √ √

DANet
√

IDA
√

mAP 0.7240 0.7641 0.8021 0.8076 0.8213

5. Conclusions

Deep hashing for image retrieval is widely used in real applications. However, the
existing hashing methods utilizing CNN cannot fully extract image semantic feature
information, and there is a lack of correlation between the features. This paper combines
the IDA module with the ResNet18 backbone network and proposes a DHIDA model,
which effectively overcomes the defect of insufficient and imbalanced feature extraction
in shallow networks. In addition, in the process of generating the hash code, this paper
designs a new piecewise function to reduce quantization error.

The theoretical analysis and experimental results show that the DHIDA model can
improve the accuracy of the hash code. In particular, the value of the mAP increases
significantly by 2% when the IDA module is embedded in the network. At the same
time, the use of the piecewise function can obviously improve the retrieval accuracy. The
effectiveness of the IDA module and piecewise function is further proved by ablation
experiments. Furthermore, in the application of the image retrieval system, extensive
experiments proved that the performance of the DHIDA model obviously outperforms
other hashing methods on the CIFAR-10, NUS-WIDE and ImageNet-100 data sets.
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