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Abstract: Commitment schemes are important tools in cryptography and used as building blocks in
many cryptographic protocols. We propose two commitment schemes by using Rubik’s groups. Our
proposals do not lay the security on the taken-for-granted hardness of the word problem over Rubik’s
groups. Instead, our first proposal is based on a symmetric encryption algorithm that is secure based
on the hardness of the conjugacy search problem over Rubik’s groups, while our second proposal
is based on the hardness of a newly derived problem—the functional towering conjugacy search
problem over Rubik’s groups. The former is proved secure in the sense of both computational hiding
and binding, while the latter is proved even secure in the sense of perfect hiding and computational
binding. Furthermore, the proposed schemes have a remarkable performance advantage: a linear
commitment/opening speed. We also evaluate the efficiency of the commitment schemes and show
that they are considerably fast.

Keywords: Rubik’s group; conjugator search problems; commitment

1. Introduction

The commitment scheme is one of the most important cryptographic primitives and
has been widely used as an essential building block in many cryptographic protocols, such
as the verifiable secret sharing scheme [1] and zero-knowledge protocols [2]. Meanwhile,
the commitment scheme itself can be used in many privacy-preserving scenarios such
as e-voting [3], e-auction [4], GIS-supported location services [5], etc. Over the last two
decades, many commitment schemes have been developed. To the best of our knowledge,
the security of almost all explicit constructions for commitment schemes is based on
number-theoretic hardness assumptions, such as the IFP-based scheme due to Goldreich [6]
and the DLP-based scheme due to Pedersen [1], which imposes heavy computational
burdens. Recently, the Rubik’s cube, as a mechanical puzzle game tool, has been used by
researchers to construct many cryptographic schemes, such as Cayley hash functions [7],
key agreement protocols [8], and encryption schemes [9]. However, some of them establish
their security on a taken-for-granted hardness assumption: the recovery of a Rubik’s
cube with a random configuration. Today, computer programs can solve Rubik’s cubes
instantaneously, and even human champions can solve them within 20 steps under a
3× 3× 3 configuration. Therefore, designing new Rubik’s cryptographic protocols by
using falsifiable intractability assumptions is of interest.

This paper proposes two new fast commitment schemes that use Rubik’s cube rotation
operations. To the best of our knowledge, one of them is the first commitment scheme
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based on a symmetric encryption algorithm from a non-Abelian group. The other scheme
can be regarded as a non-Abelian variant of the Pedersen commitment scheme, the security
of which depends on the intractability assumption of the FT-CSP problem over the Rubik’s
group. Furthermore, we evaluate the efficiency of the schemes and show that they are
more efficient than the Pedersen commitment scheme in terms of the computational cost.

The rest of the paper is organized as follows: in Section 2, we introduce necessary
notations and preliminaries, including the relevant concepts of commitment scheme, Ru-
bik’s group, and intractability assumptions. In Section 3, we briefly review two building
blocks: the encoding/decoding methods and the encryption/decryption algorithms. Two
commitment schemes are presented in Section 4. Performance evaluations are provided in
Section 5, and concluding remarks are given in Section 6.

2. Background
2.1. Notations

We adopt the following notations from [10]. The notation y = A(x; r) indicates an
algorithm A on input x, and randomness r outputs y. We use y← A(x) to represent the
process of picking randomness r at random and setting y = A(x; r) and write y ← S for
sampling y uniformly at random from the set S. Without loss of generality, all algorithms
in this paper take as input a security parameter λ (that is usually written in unary as
1λ), and sometimes we do not explicitly write λ, but we always need to assume that it
is implicitly available, and the larger the λ, the more secure the cryptographic protocols.
Finally, given two functions f , g : N→[0, 1], the notation f (λ) ≈ g(λ) indicates that
| f (λ)− g(λ)| = O(λ−c) holds for every constant c > 0, and we say f is negligible (resp.
overwhelming) if f (λ) ≈ 0 (resp. f (λ) ≈ 1).

2.2. Commitment Scheme

A commitment scheme is a two-party scheme between a committer and a receiver
and runs in two phases: In the commitment phase, the committer computes a confidential
commitment value c← Com(s; r) and sends c to the receiver, where s is the corresponding
plaintext commitment, and r is a random salt used for ensuring the freshness of the com-
mitment; In the opening phase, the committer reveals (s; r), and the receiver verifies and
accepts the commitment only if c = Com(s; r) holds. The commitment scheme is said to
be consistent if for each run of the above two-phase commitment protocol, the committed
value s is accepted (with overwhelming probability), assuming that both the commit-
ter and the receiver are honest. The commitment protocol requires the following two
security properties:

• Hiding (against an adversarial receiver). The receiver cannot learn any non-trivial infor-
mation of s from c before the opening phrase.

• Binding (against an adversarial committer). The committer cannot open another com-
mitment value s1 6= s without being detected by the receiver, or equivalently, s is
uniquely bound to c.

Furthermore, a commitment protocol is said to be perfect hiding (resp. perfect binding) if
no adversarial receiver (resp. committer) can break the hiding (resp. binding) property,
while it is said to be computational hiding (resp. computational binding) if no probabilistic
polynomial-time (PPT for short) adversarial receiver (resp. committer) can break the hiding
(resp. binding) property with non-negligible probability.

2.3. Rubik’s Group and the Intractability Assumptions

Let us take a 3 × 3 × 3 Rubik’s cube as an example. The Rubik’s cube surface is
divided into 54 small facets, numbered from 1 to 54, located on its six faces. The six
sides of the cube are called U, L, F, R, D, and B, representing the upper face, left face,
front face, right face, down face, and back face, respectively. Each side of a Rubik’s
cube can be rotated as a whole. A 90◦ rotation is called a basic operation, denoted in
as {U, L, F, R, D, B}. A 90◦ counterclockwise rotation is basically an inverse operation,
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denoted in as{U′, L′, F′, R′, D′, B′}. The composition of a series of base operations and base
inverse operations constitutes a configuration. (See Figure 1).

19 20 21

22 23 24

25 26 27

48 47 46

51 50 49

54 53 52

U

D

F

L R

B

Figure 1. Facet numbers on original configuration [9].

All the possible configurations of a Rubik’s cube comprise a group, denoted by R,
with identity 1 that indicates an empty rotation or, equivalently, doing nothing. That is,
one finite-generated representation of R is given by

R =

〈
U, L, F, R, D, B

∣∣∣∣ U4 = L4 = F4 =

R4 = D4 = B4 = 1

〉
.

According to [9], we know that the cardinality of this group is approximated by 227 ·
314 · 53 · 72 · 11 ≈ 4.3× 1019. Apparently, R is a non-Abelian group, and thus, the following
problems over R are non-trivial.

Definition 1 (Conjugacy Decision Problem, CDP). Given a group G and two elements x, y ∈ G,
decide whether x and y are conjugate to each other, denoted by x ∼ y, i.e., ∃z ∈ G such that
x = yz , z−1yz.

Definition 2 (Conjugator Search Problem, CSP). Given a group G and two elements x, y ∈ G
with x ∼ y, find z ∈ G such that x = yz.

Now, in this paper, we would like to propose the following problem:

Definition 3 (Functional Towering Conjugacy Search Problem, FT-CSP). Given a group
G, a function v : G → G, and three elements x, y, z ∈ G with y ∼ z, find u ∈ G such that
z = (yv(u))xu

, assuming such u ∈ G exists.

Remark 1 (Hardness of CDP and CSP). Note that for any Abelian group G, all the above
problems are trivial: we can answer all CDP instances with YES since every pair (x, y) ∈ G2

is conjugated and answers all CSP instances with arbitrary z ∈ G, while any FT-CSP instance
(x, y, z) ∈ G3 with z = xy admits solutions for arbitrary u ∈ G. However, for non-Abelian
groups, the above problems are non-trivial. In fact, in the generic group model, the CDP problem is
unsolvable [11]. On the one hand, we know that for the permutation group, the CDP problem has
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no corresponding polynomial time method [12]. On the other hand, over the last few years, several
cryptographic schemes based on the intractability assumption of the CSP problem and CDP problem
over braid groups have been proposed [13,14]. Considering that the Rubik’s group is a subgroup
of the permutation group S48, which is in turn a subgroup of the braid group B48, this progress
gives us the confidence to establish the security of our new encryption scheme on the intractability
assumptions of the conjugacy problems, including the CDP problem and CSP problem, over the
Rubik’s groups.

Remark 2 (Hardness of FT-CSP). As for the FT-CSP problem, we have the following consideration:

• Suppose the conjugator, denoted by c, of the pair (z, y) ∈ G2 is unique. Then, we have
cv(u) = xu. Now, one possible way that we can conceive is to pick u ∈ G at random and
check whether v(u) = c−1xu holds.

• Suppose the conjugators of the pair (z, y) ∈ G2 are not unique. Then, for each conjugator cj,
we face a similar group equation cjv(u) = xu.

That is, in both the above cases, solving an FT-CSP instance would be observably harder
than solving a CSP instance.

Moreover, the hardness of FT-CSP might be tightly related to the choices of function v. Say,
the simplest case is to set v(u) = 1 for ∀u ∈ G, then the FT-CSP problem is nothing but the so-
called double conjugator search problem (DCSP) that aims to find u ∈ G so that z = u−1xuyu−1xu
for given (x, y, z) ∈ G3. On the contrary, a much more complex case might be to set v : G → G as
an unpredictable function, say a random oracle that in practice could be instantiated by a collision-
resistant hash (CRH for short) function or a pseudo-random function (PRF for short). Then, for
solving the FT-CSP problem, we face two obstacles simultaneously: solving the CSP problem,
and guessing the output of v(u) in advance. Thus, in this case, the unpredictability of the function
v suggests that the success probability for solving the given FT-CSP instance is negligible.

Now, let us consider another trick, called after sampling, for defeating an FT-CSP solver S :
if the function v : G → G is undetermined, say v is sampled from a CHF or PRF family but kept
unrevealed to S in advance. Then, after S outputs their answer u ∈ G for a partially given FT-CSP
instance (G, ∗, x, y, z), let us sample v at random and then check whether u is a correct solution
towards the fully given FT-CSP instance (G, v, x, y, z). Clearly, before specifying v, it is totally
undetermined whether S ’s answer is correct. Therefore, we conclude as follows:

Claim 1. The FT-CSP problem, with the after-sampling trick on v, is intractable even for a solver
with unbounded computational power.

This enhanced hardness would play the underlying security basis of our second proposal given
later in this paper.

Remark 3 (Rubik’s group vs. Braid group). As aforementioned, the Rubik’s group R can be
viewed as a special subgroup of the braid group B48. However, in this work, we use the term of
rotating Rubik’s cubes, instead of weaving braids, in describing our proposals, considering the
following advantages of doing so:

• Even secure encoding method. For cryptographic applications, the involved group elements
should be represented in an unambiguous way, i.e., the so-called canonical form that can be
viewed as an encoding method on group elements. For braid-based cryptographic applications,
typical canonical forms reveal partial information of the word length of the involved braids,
suffering from to the so-called length-based attacks [15]. As for the Rubik’s cube given in
Figure 1, no matter how many rotations are done, its canonical form is always a permutation
in S48. Thus, each element in a Rubik’s group admits a fixed-length canonical form, and this
property makes the length-based attacks useless.

• Even fast implementation. The typical implementation of Rubik-based cryptosystems can
be finished approximately in microseconds [9], while the reported braid-based cryptosystems
require milliseconds [16].
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3. Reviewing of Building Blocks: Encoding and Encryption Using Rubik’s Cubes

To proceed, let us review the encoding/decoding methods and encryption/decryption
algorithms given in [9] (See Figure 2). They are the building blocks of our proposal given
in the next section.

19 20 21

22 23 24

25 26 27

48 47 46

51 50 49

54 53 52
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D

F

L R

B

(a) Original configuration
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47 50 53
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B

(b) Configuration after rotating face B

Figure 1: Facet numbers and face rotations
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011110
010010
110100111001

100011
000011

010111
110000
001001

011010
111000
000111

011010
001111
101100

001001
111001
011000

face U
︷ ︸︸ ︷
11︸︷︷︸
←

10︸︷︷︸
↓

01︸︷︷︸
→

10︸︷︷︸
↓

00︸︷︷︸
↑

11︸︷︷︸
←

00︸︷︷︸
↑

00︸︷︷︸
↑

11︸︷︷︸
←

face D
︷ ︸︸ ︷
01︸︷︷︸
→

10︸︷︷︸
↓

10︸︷︷︸
↓

00︸︷︷︸
↑

11︸︷︷︸
←

11︸︷︷︸
←

10︸︷︷︸
↓

11︸︷︷︸
←

00︸︷︷︸
↑

face F
︷ ︸︸ ︷
00︸︷︷︸
↑

10︸︷︷︸
↓

01︸︷︷︸
→

11︸︷︷︸
←

10︸︷︷︸
↓

01︸︷︷︸
→

01︸︷︷︸
→

10︸︷︷︸
↓

00︸︷︷︸
↑

face B
︷ ︸︸ ︷
01︸︷︷︸
→

11︸︷︷︸
←

10︸︷︷︸
↓

01︸︷︷︸
→

00︸︷︷︸
↑

10︸︷︷︸
↓

11︸︷︷︸
←

01︸︷︷︸
→

00︸︷︷︸
↑

face L
︷ ︸︸ ︷
01︸︷︷︸
→

01︸︷︷︸
→

11︸︷︷︸
←

11︸︷︷︸
←

00︸︷︷︸
↑

00︸︷︷︸
↑

00︸︷︷︸
↑

10︸︷︷︸
↓

01︸︷︷︸
→

face R
︷ ︸︸ ︷
01︸︷︷︸
→

10︸︷︷︸
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↓
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←
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↓

00︸︷︷︸
↑

00︸︷︷︸
↑

01︸︷︷︸
→

11︸︷︷︸
←

(a) Arrow filling over original configuration
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↑
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↑
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↑
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←

face D
︷ ︸︸ ︷
01︸︷︷︸
→

10︸︷︷︸
↓

10︸︷︷︸
↓

00︸︷︷︸
↑
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←
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←

11︸︷︷︸
←
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↓
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↑

face F
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↑
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↓
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→
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←

10︸︷︷︸
↓

01︸︷︷︸
→

01︸︷︷︸
→

10︸︷︷︸
↓

00︸︷︷︸
↑

face B
︷ ︸︸ ︷
00︸︷︷︸
↑

10︸︷︷︸
↓

10︸︷︷︸
↓

10︸︷︷︸
↓

01︸︷︷︸
→

00︸︷︷︸
↑

01︸︷︷︸
→

11︸︷︷︸
←

11︸︷︷︸
←

face L
︷ ︸︸ ︷
00︸︷︷︸
↑

01︸︷︷︸
→

11︸︷︷︸
←

11︸︷︷︸
←

00︸︷︷︸
↑

00︸︷︷︸
↑

10︸︷︷︸
↓

10︸︷︷︸
↓

01︸︷︷︸
→

face R
︷ ︸︸ ︷
01︸︷︷︸
→

10︸︷︷︸
↓

11︸︷︷︸
←

11︸︷︷︸
←

10︸︷︷︸
↓

10︸︷︷︸
↓

00︸︷︷︸
↑

01︸︷︷︸
→

01︸︷︷︸
→

(b) Arrow updating after rotating face B

Figure 2: Encoding/decoding with arrows

2

Figure 2. Left: Arrows on original configuration; Right: Arrows updating with rotating face B.

3.1. Encoding/Decoding over Rubik’s Cubes

To commit messages by using the Rubik’s cube, we need to introduce a method for
encoding/decoding messages on a Rubik’s cube, which is different from the traditional
method of describing message letters directly on the Rubik’s cube facets. The key idea of
the encoding/decoding methods is to map two bits to four arrows with different directions
as follows [9]:

• Encode. Assume that each message is a 108-bit string and can be divided into 54 pairs.
Then, each pair of bits can be translated to one of four arrows. For example, let 00, 01,
10, and 11 be translated to ↑,→, ↓ and←, respectively. Next, the translated 54 arrows
are assigned to the 54 facets one by one. Finally, the 54 facets are assigned to the six
faces of Rubik’s cube as if they were the original configuration.

• Decode. The reverse process of encoding: given a configuration with 54 faces as-
signed with arrows, at first, each arrow is translated back to a 2-bit pair accordingly.
Furthermore, then, output a 108-bit string by piecing together all these 2-bit pairs in
the 54 facets one by one.

More formal descriptions on the encoding/decoding methods can be found in [9].

3.2. Encryption/Decryption over Rubik’s Cubes

The first encryption scheme in [9] is used as a building block in our first construction
of the commitment protocol. The scheme consists of the following four algorithms:

• Setup. Over a 3× 3× 3 Rubik’s cube, letM = {0, 1}108 and C =M×R be the space
of messages and ciphertext, respectively.

• KeyGen. Randomly generate a secret key k ∈ R as a random rotating sequence with
the proper word length.

• Encrypt. Input a secret key k and message m, then perform the following:

– Choose a random rotation sequence r;
– Encode the message m to the 54 facets of the Rubik’s cube;
– Perform rotation k′ (i.e., the reverse rotation of k);
– Perform rotation r;
– Perform rotation k;
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– Decode the arrows on the 54 facets of the Rubik’s cube to a 108-bit string m∗;
– Output a ciphertext c = (m∗, r).

• Decrypt. Input the secret key k and the ciphertext c = (m∗, r), and then perform
the following:

– Check whether m∗ is a 108-bit string: if not, return ⊥, which indicates that c is an
invalid ciphertext; otherwise, continue;

– Check whether r is a valid rotating sequence: if not, return⊥; otherwise, continue;
– Encode m∗ to the 54 facets of the Rubik’s cube;
– Perform rotation k′;
– Perform rotation r′;
– Perform rotation k;
– Decode the arrows on the 54 facets of the Rubik’s cube to a 108-bit message m;
– Output a message m.

In [9], the above encryption scheme is proved to be indistinguishable against chosen
plaintext attack (IND-CPA for short), assuming that the CDP problem is intractable over
the Rubik’s group R.

4. Our Proposals: The Commitment Schemes Using Rubik’s Cubes

Now, let us propose two commitment schemes, one of which is based on an enhanced
version of the above symmetric encryption algorithm, and the other of which can be viewed
as a non-Abelian analog of the Pedersen commitment scheme [1].

4.1. Commitment Scheme Based on the CDP Problem

Over a 3× 3× 3 Rubik’s cube R, letM = {0, 1}108 be the space of messages to commit
to and a cryptographic hash function H : M×R → M. Then, the first commitment
scheme, denoted by C1, involves the following two phases:

• Commitment phase. The committer commits to a message s ∈ M as follows:

– Choose a random rotation sequence r;
– Compute h = H(s, r);
– Randomly choose a secret key k, i.e., a random rotating sequence with the proper

word length;
– (s∗, r)← Encryptk(s; r), i.e., encrypt s with secret key k and random rotation r;
– (h∗, r)← Encryptk(h; r), i.e., encrypt h with k and r;
– Send the commitment value c = (s∗, h∗) to the receiver.

• Opening phase. To open a commitment c = (s∗, h∗) to the receiver, the committer
sends (k, r) to the receiver directly. Furthermore, upon receiving (k, r) sent by the
committer, the receiver performs the following steps:

– s← Decryptk(s
∗, r);

– h← Decryptk(h
∗, r);

– Check whether h = H(s, r) holds: if not, reject the commitment and return ⊥;
otherwise, accept the commitment and return s.

CONSISTENCY. Note that the commitment process consists of two encryption algo-
rithms; thus, the commitment value c = (s∗, h∗) is encoded in the two configurations
(k′ · r · k)s and (k′ · r · k)h. The opening process consists of two decryption algorithms.
Therefore, we obtain the confirmation as, respectively,

(k′ · r · k)s · (k′ · r′ · k)s = 1

(k′ · r · k)h · (k′ · r′ · k)h = 1

which are just the original configurations for encoding message s and hash value h during
the commitment process.
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SECURITY. Our proposal is based on an enhanced version of the aforementioned
probabilistic encryption algorithm. Note that the commitment process is nothing but two
encryption processes, the security of which are based on the intractable assumption of
the CDP problem over the Rubik’s group, and that the commitment value c = (s∗, h∗)
is two ciphertext components in (s∗, r) and (h∗, r) where another ciphertext component
r is a public random. The receiver would like to learn any non-trivial information of s
from c before the opening phrase; then, the receiver has to operate a decryption process.
Therefore, to break the hiding property of the commitment is nothing but solving the CDP
problem that is kept unrevealed to the receiver. Thus, no receiver can learn information from
the commitment about the message s. This suggests that the above commitment scheme C1
is computational hiding.

Now, let us consider the binding property. Suppose that an adversarial committer A
wants to open a commitment Com(s; r) with another value, say Com(s1; r1), without being
detected. That is,

Com(s, r) = c = Com(s1, r1) and (s, r) 6= (s1, r1).

Or equivalently,
(cs, r)← Encryptk(s; r),

(ch, r)← Encryptk(h; r),

where c = (cs, ch).
Additionally,

(cs, r1)← Encryptk(s1; r1),

(ch, r1)← Encryptk(h1; r1),

where c = (cs, ch).
According to Theorem 3 in [9], if the committer A extracts a valid message s from the

ciphertext c or the commitment c, then the committer can solve the CDP problem over the
Rubik’s group that is kept unrevealed to the committer. Therefore, the commitment scheme
C1 is computational binding.

4.2. Commitment Scheme Based on the FT-CSP Problem

Since the rotation sequence is composed of 12 basic operations {U, L, F, R, D, B,
U′, L′, F′, R′, D′, B′} and is well-known to be suitable for the transformation between binary
and 12-adic numbers, a bit string message can be converted into a rotation sequence ac-
cordingly. Now, for a 3× 3× 3 Rubik’s cube R, let g, h ∈ R be two random public rotation
sequences. LetM = {0, 1}108 be the space of messages to be committed. Then, our second
commitment scheme, denoted by C2, involves the following two phases:

• Commitment phase.The committer commits to a message s ∈ M as follows:

(1) Encode the message s to the 54 facets of the Rubik’s cube;
(2) Convert s into a rotation sequence t;
(3) Choose a random rotation sequence r;
(4) Perform the rotation t′g′tr′hrt′gt;
(5) Decode the arrows on the 54 facets of the Rubik’s cube to a 108-bit string c;
(6) Send commitment value c to the receiver.

• Opening phase. To open a commitment c ∈ M to the receiver, the committer sends
(s, r) to the receiver directly. Furthermore, upon receiving (s, r) sent by the committer,
the receiver performs the following steps:

(1)∼(4) Same as (1)∼(4) in the commitment phase;
(5) Decode the arrows on the 54 facets of the Rubik’s cube to a 108-bit string c∗;
(6) Check whether c = c∗ holds: if not, reject the commitment and return ⊥;
otherwise, accept the commitment and return s.
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CONSISTENCY. The consistency of the commitment protocol is straightforward, since
the main body of the opening phase is nothing but a repeat of the corresponding steps of
the commitment phase.

SECURITY. The key point is that the rotation sequence specified in step (4) is nothing
but a functional towering conjugate action z = (hr)gt

. For mapping this action to an FT-CSP
instance, we need to regard g, h, t as x, y, u, respectively, where r, picked at random, could
be looked at as r = v(u), i.e., a one-time output of a PRF function v that is independent of
u. Therefore, breaking the hiding property of the commitment is nothing but solving the
FT-CSP instance (R, v, g, h, z) where v : R→ R is a PRF function that is kept unrevealed to
the receiver. This suggests that the above commitment scheme C2 is perfect hiding according
to Claim 1.

Now, let us consider the binding property. Suppose an adversarial committer A
wants to open a commitment Com(s; r) with another value, say Com(s1; r1), without being
detected. That is,

Com(s, r) = c = Com(s1, r1) and (s, r) 6= (s1, r1).

Or equivalently,
(hr)gt

= z = (hr1)gt1 and (t, r) 6= (t1, r1)

where t1 should be a valid encoding of s1. Unlike the adversarial receiver who faces an
FT-CSP instance with the after-sampling trick on v, the committer A has the freedom to
choose t, t1, r, r1. To proceed, let us consider the following four cases:

(1) Given t, r, t1, finding r1 is to solve the CSP instance (R, x, y) with the setting x =

((hr)gt
)gt1 and y = h.

(2) Given t, r, r1, finding t1 is to solve the FT-CSP instance (R, v, x, y, z) with the setting
x = g, y = h, z = (hr)gt

and v(u) = r for ∀u ∈ R.
(3) Given t1, r1, t, finding r is similar to case (1).
(4) Given t1, r1, r, finding t is similar to case (2).

At this point, we can safely conclude that the commitment protocol C2 is computational
binding, assuming that the FT-CSP problem over the Rubik’s group R is intractable.

5. Performance Evaluation

Let us proceed to evaluate the performance of our proposal based on the asymptotic
complexity and the running time.

The asymptotic performance with respect to the system security parameter λ is sum-
marized in Table 1. Our commitment scheme C1 is based on the symmetric encryption
algorithms from the Rubik’s group, which have linear encryption/decryption speeds. Re-
garding the commitment scheme C2, we note that the commitment value is the result of
performing a series of rotations t′g′tr′hrt′gt. Therefore, our proposals have a remarkable
performance advantage: a linear commitment/opening speed.

According to [9], we find that the average running time for each basic rotation is
approximately 0.015 microseconds (or equivalently, 15 nanoseconds). Thus, with the
suggested parameter settings, i.e., ` = 28 to ensure 100-bit entropy in the involved random
rotations, the main workload of commitment/opening of our commitment scheme C1
(resp.C2) can be completed within 2.52 (resp. 3.78) microseconds.

Recalling the Pedersen commitment scheme based on the discrete logarithm problem
over the finite field Fq, we find that the best computational complexities of the com-
mitment/opening phases are O(log2 q log log q), where q is the length of the modulus.
Therefore, our two commitment schemes are considerably fast.
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Table 1. Asymptotic performance.

Algorithms Schemes Core Operations Complexity

Encode C1, C2 108 bits⇒ 54 arrows O(1)
Decode C1, C2 54 arrows⇒ 108 bits O(1)

Conversion C1,C2 pick ` random basic rotations O(λ)

Setup
C1,C2 defineM 0

C1,C2 defineM, g, h 0

Commitment
C1 6` rotations O(λ)
C2 9` rotations O(λ)

Verification
C1 6` rotations O(λ)
C2 9` rotations O(λ)

6. Conclusions

We propose new commitment schemes that achieve secure computational/perfect
hiding and computational binding assuming the difficulty of the CDP problem or the
FT-CSP problem over Rubik’s group, respectively. To the best of our knowledge, one of
them is the first commitment scheme based on the symmetric encryption algorithm over a
Rubik’s group. The other is regarded as a non-Abelian variant of the Pedersen commitment
scheme. Furthermore, we evaluate the efficiency of the schemes. Our proposals are highly
efficient in terms of the computational cost and have a linear commitment/opening speed.
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