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Abstract: For effective vulnerability management, vulnerability and attack information must be
collected quickly and efficiently. A security knowledge repository can collect such information. The
Common Vulnerabilities and Exposures (CVE) provides known vulnerabilities of products, while
the Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which
are descriptions of common attributes and approaches employed by adversaries to exploit known
weaknesses. Due to the fact that the information in these two repositories are not linked, identifying
related CAPEC attack information from CVE vulnerability information is challenging. Currently, the
related CAPEC-ID can be traced from the CVE-ID using Common Weakness Enumeration (CWE) in
some but not all cases. Here, we propose a method to automatically trace the related CAPEC-IDs from
CVE-ID using three similarity measures: TF–IDF, Universal Sentence Encoder (USE), and Sentence-
BERT (SBERT). We prepared and used 58 CVE-IDs as test input data. Then, we tested whether we
could trace CAPEC-IDs related to each of the 58 CVE-IDs. Additionally, we experimentally confirm
that TF–IDF is the best similarity measure, as it traced 48 of the 58 CVE-IDs to the related CAPEC-ID.

Keywords: security knowledge repository; CVE; CAPEC; natural language processing; sentence
embeddings; TF–IDF; Universal Sentence Encoder; Sentence-BERT

1. Introduction

Due to the sheer volume, system administrators spend a lot of time dealing with
vulnerabilities. In order to effectively respond and mitigate vulnerabilities, vulnerability
information must be collected efficiently and quickly. Additionally, the vulnerability and
the attack techniques must be understood. For example, when assessing the severity and
priority of vulnerabilities, it is essential to refer to information about known vulnerabilities
and attacks.

To collect such information, knowledge repositories on cybersecurity issues may be
used. Public repositories include Common Vulnerabilities and Exposures (CVE) [1] and
Common Attack Pattern Enumeration and Classification (CAPEC) [2]. CVE lists com-
mon identifiers for known vulnerability information. CAPEC is a dictionary of common
identifiers for attack patterns employed by adversaries to exploit weaknesses.

A vulnerability scanner such as Vuls (https://vuls.biz/, accessed on 16 June 2021)
can automatically detect CVE-IDs, but CVEs do not contain rich information about an
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attack. Therefore, CAPEC attack patterns are used to add attack information. Due to the
fact that CVE and CAPEC are not directly linked, it is difficult to identify related CAPEC
attack information from CVE vulnerability information, especially for people without
security knowledge.

Currently, Common Weakness Enumeration (CWE) [3], which is a list of common iden-
tifiers of types of security weaknesses, is employed to identify the relationships between
CVE and CAPEC. “Weakness Enumeration” contains information about the relationship
between the CVE vulnerability information and CWE. “Related Attack Patterns” includes
the CAPEC attack pattern information related to the CWE information. Via CWE, it is
possible to trace the related CAPEC-ID from the CVE-ID. In this paper, we refer to this
method as the “conventional method”. There are two issues with the conventional method,
which previous studies [4–8] have yet to solve:

• When using CWE, some patterns cannot trace from the CVE-ID to the related CAPEC-
ID. Sections 3 and 5.2 provide specific cases and conditions;

• The linking between CVE–CWE and CWE–CAPEC is carried out manually. Manual
linking cannot handle the growing amount of vulnerability information. In addition,
more link failures may occur.

Currently, CVE and CAPEC are not explicitly linked. The creator of CVE-ID should
link it directly to CAPEC. However, accurate linking is costly and difficult. In this paper,
we aim to trace related CAPEC-IDs directly from CVE-IDs. Our method recommends
which CAPEC-IDs should be linked to a given CVE-ID (this paper is an extension of a
paper presented at the Hawaii International Conference on System Sciences (HICSS 54) [9].
Here, we expanded the natural language processing technique and revised the analysis
results as well as the corresponding discussions), but it does not provide a definitive
optimal CAPEC-ID. We measure the similarity between the CAPEC documents and the
CVE description.

We propose three approaches to calculate similarity: TF–IDF [10], Universal Sentence
Encoder (USE) [11], and Sentence-BERT (SBERT) [12]. We chose three representative simi-
larity measures. These measures can be categorized into two groups: word count-based
and inference-based methods. The former includes TF–IDF and are simple methods that
calculate similarity based on the frequency of occurrence of words in a document. The
latter includes USE and SBERT. They create models that can gain distributed represen-
tations of words and sentences and then calculate the similarity. Previous studies have
employed similarity measures [4], [5], but they have not been accurately evaluated or
directly compared. By tracing 58 CVE-IDs to related CAPEC-IDs, we compare these three
approaches to the conventional method. Our approach is described in detail in Section 4.

This paper aims to answer the following three research questions (RQs):

RQ1. When tracing relationships between security repositories, how accurately can it be
traced from CVE-ID to CAPEC-ID? This question researches the tracing accuracy of
CVE-ID to CAPEC-ID;

RQ2 When using a similarity measurement based on natural language processing tech-
niques, how accurately can CVE-IDs be traced to CAPEC-IDs? This question confirms
the usefulness of our proposed approach;

RQ3 Which of the three evaluated methods provides the best results? This question
identifies the most useful method among the three methods proposed in RQ2.

The contributions of this paper are threefold:

1. We elucidate the linking accuracy between CVE–CWE and CWE–CAPEC;
2. Our method can easily identify CAPEC-IDs that are link candidates and assist in the

linking process;
3. The person reporting the vulnerability information can determine whether the report

contains sufficient security information.

This paper is organized as follows. Section 2 introduces related works. Section 3
presents a motivating example. Section 4 explains our approach. Section 5 presents the
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results of the experiment and discusses the RQs. Section 6 provides the conclusions and
future work.

2. Related Work

Previous studies have investigated the relationship between repositories [4–8].
One study [4] employs TF–IDF to associate CVE with CAPEC, but only assesses Software
Defined Networking and Network Functions Virtualization vulnerability. Additionally, [5]
had a similar objective to our study. They employed Doc2vec, but did not explicitly
assess accuracy.

Another study automatically mapped CVE to CAPEC and ATT&CK in order to find
appropriate mitigation [6]. They created a neural network model with automatic classifica-
tion in an attempt to realize a deep learning model that groups CWE into CAPEC. However,
they only suggested a method. On the other hand, this study conducts experiments with
58 CVE-IDs and prepares the correct CAPEC-ID.

Some study papers [13–15] use topic modeling and natural language processing in
order to extract hidden topics from the textual description of each attack pattern and
learn topic models. Although we performed a simple natural language process, the topic
analysis performed in these other papers is a useful reference for future applications of
topic analysis.

The literature on the application of similarity measures is available in [16,17]. In
particular, the paper [16] proposes a hybrid method that combines TF–IDF-weighted
Doc2Vec and TF–IDF-weighted VSM.

Other researches have studied vulnerability ontology models [18–20]. They have
investigated vulnerability models based on famous security knowledge repositories, such
as CVE, CWE, and CAPEC. These studies use security knowledge repositories to analyze
and assess risk and security [21–26]. However, they do not describe the process to obtain
information from this security knowledge repository. The studies [27–31] focus on mining
methods and information retrieval for security knowledge repositories. In these papers,
relationships were used to mine information from each repository. However, they do not
regard the accuracy of the repository relationships as a problem. We explicitly evaluate the
accuracy of the relationships between repositories.

In the Vulnerability Assessment and Penetration Test process [32–34], our method can
suggest attack patterns to penetration testers. The authors of [34] used CVE and CAPEC
to perform penetration testing. Their method uses the relationships among knowledge
repositories. The study does not regard the accuracy of the relationships in the repository
as a problem.

3. Motivating Example

Via CWE, it is possible to trace some of the related CAPEC-IDs from the CVE-ID, but
not all patterns can be traced. An example is CVE-2018-18442. This CVE-ID is vulnera-
bility information about network packet flooding. The description of CVE-2018-18442 is
as follows:

D-Link DCS-825L devices with firmware 1.08 do not employ a suitable mechanism to
prevent denial-of-service (DoS) attacks. An attacker can harm the device availability (i.e.,
live-online video/audio streaming) by using the hping3 tool to perform an IPv4 flood
attack. Verified attacks includes SYN flooding, UDP flooding, ICMP flooding, and SYN-
ACK flooding. (https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-18442,
accessed on 16 June 2021)

CAPEC-125 is an identifier that summarizes attack information about flooding. CVE-
2018-18442 is linked to CWE-20. CWE-20 and CAPEC-125 are not linked. Therefore, it is
not possible to trace CAPEC-125 from CVE-2018-18442. Tracing the CVE–CWE–CAPEC
relationship, we found that the correct CAPEC-ID could not be identified. The issue arises
with the use of CWE. Therefore, it is preferable to trace directly from CVE to CAPEC. This
is our motivation.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-18442
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4. Tracing Method from CVE-ID to CAPEC-ID

We propose a method that enables direct tracing from CVE to CAPEC (Figure 1).
Our method has four steps. First, we collect a CVE-ID description and 527 CAPEC-ID
documents in a corpus. For example, CVE-2018-18442 is used as the input data in Figure 1.
Second, we use natural language processing techniques to create document embeddings.
Third, the cosine similarity shown in Equation (1) is calculated for the CVE-ID vector and
the vector of all CAPEC-IDs. Finally, the CAPEC documents are sorted by the calculated
similarity scores; N CAPEC-IDs are selected. As a result, the related CAPEC-IDs are traced
from a CVE-ID.

cos
(→

p ·→q
)
=

p1q1 + p2q2 + · · ·+ pnqn√
p1

2 + p22 + · · ·+ pn2
√

q1
2 + q22 + · · ·+ qn2

=

→
p ·→q∣∣∣→p ∣∣∣∣∣∣→q ∣∣∣ (1)

Figure 1. Overview of our method.

We investigated three methods to create document embeddings: TF–IDF, USE, and
SBERT. We describe each approach in detail below. All the approaches are represented by a
flow using CVE-2018-18442 as the input data to find the related CAPEC-ID.

4.1. Tracing Method Based on TF–IDF

TF–IDF evaluates the importance of words in a document and is mainly used in
the fields of information retrieval and topic analysis. TF–IDF is calculated based on two
indices: TF (term frequency) and IDF (inverse document frequency). The TF–IDF score is
the product of TF and IDF.

TF is the frequency that a word appears in a document. It is given in Equation (2).
t f (t, d) is the TF value of some word t in document d. nt,d is the number of occurrences
of a word t in document d. ∑s∈d ns,d means the sum of the number of occurrences of all
words in document d.

t f (t, d) =
nt,d

∑s∈d ns,d
(2)

IDF is the reciprocal of the document frequency in which a word occurs. Words that
appear in many documents are unlikely to be characteristic words in one document, which
is expressed as Equation (3). The logarithm is used to ensure that the value remains stable
as the number of documents increases. id f (t) is the IDF value of a word t, N is the number
of all documents, and d f (t) is the number of documents in which a word t appears.

idf(t) = log
N

d f (t)
(3)
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The words are extracted from each document. Then a vector of TF is created and IDF
is multiplied by all the words. This vector is used to calculate the cosine similarity between
two documents.

We use scikit-learn [35]. Herein the “TfidfVectorizer” method is employed. “TfidfVec-
torizer” converts each document into a vector based on the TF–IDF score. Figure 2 shows
the flow of the TF–IDF approach using CVE-2018-18442 as an example.

Figure 2. Overview of the tracing method based on TF–IDF.

The algorithm of the TF–IDF approach is as follows:
STEP 1: Input data. Input all CAPEC descriptions and the description of one CVE-ID

as a corpus.
STEP 2: Preprocess data. Preprocess the corpus with the most common words, remov-

ing punctuation, tokenization, and lemmatization.
STEP 3: Create a document–term matrix using “TfidfVectorizer” and “fit_transform”.

“TfidfVectorizer” converts a collection of corpora into a matrix with 5602 TF–IDF features,
while “fit_transform” learns the matrix of the TF–IDF features and returns the TF–IDF-
weighted document–term matrix.

STEP 4: Calculate the cosine similarity. We calculate the cosine similarity between a
CVE-ID and all CAPEC-IDs using the TF–IDF-weighted document–term matrix.

STEP 5: Sort the similarity. STEP 4 produces the similarity between the inputted
CVE-ID (CVE-2018-18442) and all CAPEC-IDs. The scores are sorted in descending order,
and the ID with the higher rank is the related CAPEC-ID.

4.2. Tracing Method Based on USE

USE is an encoder model that converts a sentence with an arbitrary length into a
512-dimensional vector. It was developed by researchers at Google and published on the
“Tensorflow Hub” in 2018. The pre-trained model is available here [36]. Thus, we can easily
gain a document-distributed representation by downloading the model. They proposed a
model architecture for two encoder models. One is based on a deep averaging network
(DAN), and the other is based on a transformer architecture. Both models take a word,
sentence, or paragraph as an input and provide a 512-dimensional vector as an output. The
transformer model is more accurate than the DAN model. However, the transformer model
is more complex and uses more resources compared to the DAN model. We use DAN
because the transformer is also used in SBERT. Since CVE and CAPEC are written in English,
we used a model that can handle English. Figure 3 shows the flow of the USE approach
using CVE-2018-18442 as an example. We use a pretraining model called “universal-
sentence-encoder-v4” (https://tfhub.dev/google/universal-sentence-encoder/4, accessed
on 16 June 2021).

https://tfhub.dev/google/universal-sentence-encoder/4
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Figure 3. Overview of the tracing method based on Universal Sentence Encoder.

4.3. Tracing Method Based on Sentence-BERT

SBERT generates higher-quality sentence vectors by fine-tuning BERT. SBERT is built
on top of BERT. Adding a pooling layer to the pre-trained BERT model produces a high
accuracy of sentence embedding. When inputting a sentence into BERT, a context-sensitive
vector is outputted for each token of the input sentence. The role of pooling is to combine
these vectors into a fixed-length sentence vector.

SBERT fine-tunes using a Siamese network. The Siamese network is a method that
uses two neural networks to compute an embedding representation, and then compares
the two embedding representations. The loss function plays an important role when
fine-tuning. There are 13 types of loss functions (https://www.sbert.net/docs/training/
overview.html#loss-functions, accessed on 16 June 2021). The appropriate loss function
depends on the training data and the task. Here, we employ the “CosineSimilarityLoss”,
which consists of two texts and a float label.

We use the link information from CVE and CWE for the training data. The CWE has a
field called Observed Examples. In this field, there are CVE-IDs and a text that summarizes
the CVE description. Therefore, two texts, the CVE description and the CWE summary
text, are prepared and trained as a pair.

Figure 4 shows the flow of the SBERT approach using CVE-2018-18442 as an example. We
used a pretraining model called “paraphrase-mpnet-base-v2” (https://public.ukp.informatik.
tu-darmstadt.de/reimers/sentence-transformers/v0.2/, accessed on 16 June 2021).

Figure 4. Overview of the tracing method based on Sentence-BERT.

5. Experiments and Results

We prepared 58 CVE-IDs and used them as input data. Then, we verified that the
related CAPEC-IDs could be traced from each of the 58 CVE-IDs.

https://www.sbert.net/docs/training/overview.html#loss-functions
https://www.sbert.net/docs/training/overview.html#loss-functions
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/
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5.1. Fifty-Eight CVE-IDs

CAPEC contains the Example Instance field. In this field, the CVE-ID may be used to
describe an example attack or exploit. Figure 5 shows an example, where CVE-2006-6276
and CVE-2005-2088 are listed in the Example Instance of CAPEC-33.

Figure 5. CAPEC-33 web page (https://capec.mitre.org/data/definitions/33.html, accessed on
16 June 2021).

There are a total of 58 CVE-IDs in the Example Instance field (Appendix A). The three
CVE-IDs are duplicated, but the input data are recognized as different. Therefore, we
assume that the link from CVE to CAPEC is many-to-one. The average word count for
the 58 CVE-IDs is 38. The median is 34. We used these 58 CVE-IDs because we need the
correct data to evaluate our method’s experimental results correctly. If a CVE-ID listed in
the Example Instance is input, we verify that it can trace to the corresponding CAPEC-ID.

5.2. RQ 1. When Tracing Relationships between Security Repositories, How Accurately Can It Be
Traced from CVE-ID to CAPEC-ID?

When tracing the relationship between CVE–CWE and CWE–CAPEC, we successfully
traced 3 out of 58 CVE-IDs. The relationship between CVE and CWE is the reason for the
low accuracy. We analyzed the accuracy of the link between CVE and CWE.

CVE has a URL of National Vulnerability Database. The NVD has a section called
“Weakness Enumeration”. This section may contain the corresponding CWE-ID for a
CVE-ID. However, it may be written as “NVD-CWE-Other” or “NVD-CWE-noinfo”. In
these cases, CVE is not linked to CWE and cannot be traced to CAPEC. Figure 6 shows the
percentage of CVE-IDs that are not linked to the CWE. A total of 28% of CVE-IDs are not
linked to CWE-IDs.

Figure 6. Percentage of CVE-IDs not linked to CWE.

https://capec.mitre.org/data/definitions/33.html
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When aggregated by year, the percentage of CVE-IDs linked to CWE-IDs has increased
dramatically since 2008 (Figure 7). Since the percentage of CVE-IDs linked to CWE-IDs
is increasing, it is important to link CVE-IDs to CWE-IDs accurately. However, bias is an
issue. Only 210 of the 918 CWE-IDs are linked to CVE-IDs. We studied the distribution of
the top 15 CWE-IDs among the linked CWE-IDs (Figure 8).

Figure 7. Changes in the percentage of CVE-ID that is linked to CWE-ID.

Figure 8. Vulnerability distribution by CWE-ID.

We focused on CWE-20 among the 15 CWE-IDs. CWE-20 is an identifier that indicates
weaknesses related to “Improper Input Validation”. CWE-20 is the parent node of the
path traversal, buffer error, XSS, and injection. It covers a lot of weaknesses. The reason is
described on the CWE-20 webpage:

The “input validation” term is extremely common, but it is used in many different
ways. In some cases its usage can obscure the real underlying weakness or otherwise hide
chaining and composite relationships.

Some people use “input validation” as a general term that covers many different neutraliza-
tion techniques for ensuring that input is appropriate, such as filtering, canonicalization,
and escaping. Others use the term in a more narrow context to simply mean “checking if
an input conforms to expectations without changing it.” (https://cwe.mitre.org/data/
definitions/20.html, accessed on 16 June 2021)

From the above, we found that the CWE-20 covered a lot of weaknesses. The ability to
cover many weaknesses can be linked to many vulnerabilities. Therefore, it is often linked
to the CVE-ID. In addition to CWE-20, there are other such CWE-IDs. CVE-ID, which is
linked to CWE for this reason, cannot provide useful vulnerability information.

As described in Section 3, we introduced a CVE-ID that cannot be traced to CAPEC-ID.
CVE-2014-0160 is another example. The description of CVE-2014-0160 is as follows:

https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
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The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not
properly handle Heartbeat Extension packets, which allows remote attackers to obtain
sensitive information from process memory via crafted packets that trigger a buffer over-
read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the
Heartbleed bug. (https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0
160, accessed on 16 June 2021)

CAPEC-540 is an identifier that summarizes buffer overread attack information. CWE-
126 is an identifier for buffer overread weaknesses. However, CVE-2014-0160 is linked
to CWE-119 (buffer errors). Hence, CWE-119 cannot be traced to CAPEC-540. Why is it
linked to CWE-119? CVE-2014-0160 is related to multiple weaknesses in CWE-125, 126,
and 130. These three CWE-IDs were recorded as identifiers related to the Heartbleed
bug. Despite this fact, we believe that the CWE-119 linking is because it allows for a
single identifier to indicate the presence of multiple weaknesses. Hence, we found that the
CWE-ID described in Weakness Enumeration does not characterize an attacker’s use of a
vulnerability to attack.

Box 1. RQ 1. Answer.

RQ 1. When tracing relationships between security repositories, how accurately can it be traced
from CVE-ID to CAPEC-ID? Only 3 out of the 58 CVE-IDs were traced to the related CAPEC-
ID. The accuracy of the link between CVE and CWE is not good. Therefore, the CAPEC attack
information that can be traced from CVE may not be useful information.

5.3. When Using a Similarity Measurement Based on Natural Language Processing Techniques,
How Accurately Can CVE-IDs Be Traced to CAPEC-IDs?

Figures 9–11 show the experimental results for each of the three similarity measures.
In this experiment, we assume that the link between CVE and CAPEC is many-to-one. The
condition that there is only one ground truth is the cause of the low precision. For future
work, we can improve precision by handling the somewhat less related CAPEC-ID as a
ground truth.

In predicting potential attacks from vulnerabilities, we should not miss highly related
attacks. Therefore, it is important to trace to the most related CAPEC-IDs, even if several
unrelated CAPEC-IDs are traced. Thus, we focus on Recall@n. Recall@n indicates the
proportion of relevant items found in the top n recommendations. We calculated Recall@1
to Recall@10. We traced the related CAPEC-IDs from the 58 CVE-IDs using the method
described in Section 4. All three methods realized a trace. With TF–IDF, more than 80% of
the CVE-IDs were successful. The CVE description word count does not affect the NLP
approach. One characteristic of the CVE-IDs that the NLP approach could not trace is an
insufficient description of the CVE. This is attributed to a lack of security-specific words or
insufficient information to hide the underlying weaknesses.

Figure 9. Recall for each approach.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
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Figure 10. Precision for each approach.

Figure 11. F-measure for each approach.

Box 2. RQ 2. Answer.

RQ 2. When using a similarity measurement based on natural language processing techniques,
how accurately can CVE-IDs be traced to CAPEC-IDs? All three methods realized a trace. TF–IDF
traced 48 of the 58 CVE-IDs to the related CAPEC-ID. USE traced 43 of the 58 CVE-IDs to the
related CAPEC-ID. SBERT traced 31 of the 58 CVE-IDs to the related CAPEC-ID.

5.4. RQ 3. Which of the Three Evaluated Methods Provides the Best Results?

TF–IDF gave the best results (Figure 9). It traced 48 out of 58 CVE-IDs. In short,
the word count-based method could trace the related CAPEC-IDs from the CVE-ID. We
believe that TF–IDF had the highest recall because the corpus of TF–IDF was suitable for
this task. The descriptions of CVE and CAPEC contain many system terminologies, as
well as security. Therefore, many terms cannot be handled by generic pre-training models
learned from wikis and other sources. On the other hand, since TF–IDF uses CAPEC as its
corpus, TF–IDF can handle these terminologies well. Consequently, the accuracy of TF–IDF
improved in this study. We also compared the similarity measures to each other.

5.4.1. Word Count-Based Method vs. Inference-Based Method

The word count-based method (TF–IDF) was superior. However, 10 CVE-IDs could
not be traced. Two of these 10 CVE-IDs were traced by the inference-based methods, USE,
and SBERT. One of them is CVE-2020-0601. CVE-2020-0601 is related to CAPEC-475. The
description of CVE-2020-0601 is as follows:

A spoofing vulnerability exists in the way Windows CryptoAPI (Crypt32.dll) validates El-
liptic Curve Cryptography (ECC) certificates. An attacker could exploit the vulnerability
by using a spoofed code-signing certificate to sign a malicious executable, making it appear
the file was from a trusted, legitimate source, aka ‘Windows CryptoAPI Spoofing Vul-



Information 2021, 12, 298 11 of 15

nerability’. (https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601,
accessed on 16 June 2021)

In the CVE description, there is “Cryptography” and “CryptoAPI”. In CAPEC-475
documents, “cryptographic”, “cryptographically”, and “cryptanalysis” frequently occurred.
TF–IDF considers these words to be mismatched. Thus, they had a low similarity. When
creating the pre-training models for USE and SBERT, these words were likely learned
as words with similar meanings. Thus, the tracing was successful via the inference-
based method.

5.4.2. USE vs. SBERT

There are two differences between USE and SBERT. The first is the encoder. The model
in USE is trained with a DAN encoder. This encoder takes the average of the variance
representations of words and bigrams and feeds them into a forward propagation network
to create a variance representation. Thus, word order is ignored. By contrast, the SBERT
model is trained with a transformer encoder. The word order and the surrounding context
are considered when generating the distributed representation. CVE is a short sentence.
However, CAPEC is a document, and consequently a very long sentence. The distributed
representation created by the transformer encoder contains a lot of information, which
may have complicated the dependencies and syntactic structure. Therefore, DAN, which
ignores word order and other factors, was more accurate.

The second is a pre-training model. For USE, we employed the model provided by
“Tensorflow Hub” [36]. For SBERT, we employed the model provided by “UKPLab” [37].
It is believed that the training data were suitable for this task when the pre-trained model
was created for USE. We fine-tuned the BERT pre-trained model. However, the quality of
training data was poor. Hence, the accuracy could be improved using data collected by the
organization or created by security experts.

Box 3. RQ 3. Answer.

RQ 3. Which of the three evaluated methods provides the best results? TF–IDF has the high-
est accuracy. In other words, the word count-based method is suitable for tracing the related
CAPEC-ID from the CVE-ID. To evaluate the similarity of security-specific documents, TF–IDF,
which can identify security terminologies and measure their importance, gave the best results.

5.5. Threats to Validity

Ground truth relationships between CVE-IDs and CAPEC-IDs were based on the
link set by MITRE. Hence, correctness is ensured. However, there may be some links that
MITRE overlooked. This is a threat to internal validity. In the future, we would like to
verify not only MITRE’s link but also other links.

A threat to external validity is that we experimented with only 58 CVE-IDs, but new
vulnerabilities are reported daily in CVE. However, our proposed approaches are not
specific to test case patterns. In the future, we plan to verify that our proposed approaches
are valid for the entire CVE and to confirm their effectiveness.

6. Conclusions and Future Work

Herein we propose an approach to trace the related CAPEC-ID directly from the
CVE-ID. The conventional tracing method uses the relationships between each repository.
However, not only is manual tracing required, but accuracy may also be an issue. Our
proposed tracing method uses similarities. The similarity between CVE-ID and CAPEC-ID
is calculated using three measurements: TF–IDF, USE, and SBERT. TF–IDF has the highest
accuracy, but there is still room for improvement. One possible solution for improvement is
ensemble learning [38]. Ensemble learning is a technique that combines multiple learners
in order to obtain better predictions. In most cases, it tends to yield better results than using
a single model alone. Specifically, we can combine the predictions of the word count-based

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601


Information 2021, 12, 298 12 of 15

method and the inference-based method in a process such as “taking the average” or
“taking the majority” of the predictions.

Our method cannot take the seriousness of each vulnerability into account yet. Ad-
ditionally, we have not verified its adaptability to other security knowledge repositories,
such as CWE. These themes are future work. In this paper, we referred to attack pattern
information in CAPEC. However, there is other attack pattern information. An example is
the pattern language [39]. We will evaluate that attack pattern information as candidates
for tracing in the future. Moreover, we would like to improve the accuracy and increase
the amount of information in order to provide helpful information for cybersecurity. By
collecting, identifying, and analyzing data directly from security knowledge repositories,
we hope to develop the proposed method into comprehensive and proactive cyber threat
intelligence (CTI) research [40,41] or to extend the tracking by organizing the relationships
between security concepts with a metamodel [42].
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Appendix A

Table A1. List of 58 CVE-IDs and their corresponding CAPEC-IDs.

Number CAPEC-ID CVE-ID CVE Word Count

1 CAPEC-7 CVE-2006-4705 26
2 CAPEC-10 CVE-1999-0046 9
3 CAPEC-10 CVE-1999-0906 16
4 CAPEC-13 CVE-1999-0073 24
5 CAPEC-16 CVE-2003-1096 33
6 CAPEC-26 CVE-2007-1057 64
7 CAPEC-27 CVE-2000-0972 27
8 CAPEC-27 CVE-2005-0894 30
9 CAPEC-27 CVE-2006-6939 24
10 CAPEC-29 CVE-2007-1057 64
11 CAPEC-31 CVE-2010-5148 45
12 CAPEC-31 CVE-2016-0353 47
13 CAPEC-33 CVE-2005-2088 80
14 CAPEC-33 CVE-2006-6276 49
15 CAPEC-34 CVE-2006-0207 34
16 CAPEC-39 CVE-2006-0944 16
17 CAPEC-42 CVE-1999-0047 10
18 CAPEC-46 CVE-1999-0946 13
19 CAPEC-46 CVE-1999-0971 20
20 CAPEC-47 CVE-2001-0249 32
21 CAPEC-47 CVE-2006-6652 51
22 CAPEC-49 CVE-2004-1143 28
23 CAPEC-50 CVE-2006-3013 81
24 CAPEC-52 CVE-2004-0629 42
25 CAPEC-54 CVE-2006-4705 26
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Table A1. Cont.

Number CAPEC-ID CVE-ID CVE Word Count

26 CAPEC-55 CVE-2006-1058 31
27 CAPEC-59 CVE-2001-1534 41
28 CAPEC-59 CVE-2006-6969 45
29 CAPEC-60 CVE-1999-0428 14
30 CAPEC-60 CVE-2002-0258 48
31 CAPEC-61 CVE-2004-2182 26
32 CAPEC-64 CVE-2001-1335 32
33 CAPEC-66 CVE-2006-5525 55
34 CAPEC-67 CVE-2002-0412 50
35 CAPEC-70 CVE-2006-5288 29
36 CAPEC-71 CVE-2000-0884 35
37 CAPEC-72 CVE-2001-0784 26
38 CAPEC-77 CVE-2000-0860 32
39 CAPEC-80 CVE-2000-0884 35
40 CAPEC-92 CVE-2007-1544 37
41 CAPEC-93 CVE-2006-0201 34
42 CAPEC-108 CVE-2006-6799 55
43 CAPEC-135 CVE-2007-2027 41
44 CAPEC-136 CVE-2005-2301 37
45 CAPEC-267 CVE-2010-0488 42
46 CAPEC-459 CVE-2004-2761 36
47 CAPEC-459 CVE-2005-4900 54
48 CAPEC-475 CVE-2020-0601 48
49 CAPEC-632 CVE-2005-0233 50
50 CAPEC-632 CVE-2005-0234 44
51 CAPEC-632 CVE-2005-0235 44
52 CAPEC-632 CVE-2005-0236 44
53 CAPEC-632 CVE-2005-0237 47
54 CAPEC-632 CVE-2005-0238 43
55 CAPEC-632 CVE-2009-0652 81
56 CAPEC-632 CVE-2012-0584 33
57 CAPEC-657 CVE-2006-3976 16
58 CAPEC-657 CVE-2006-3977 23
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