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Abstract: Capture the flag (CTF) challenges are broadly used for engaging trainees in the technical
aspects of cybersecurity, maintaining hands-on lab exercises, and integrating gamification elements.
However, deploying the appropriate digital environment for conducting cybersecurity exercises
can be challenging and typically requires a lot of effort and system resources by educators. In this
paper, we present PocketCTF, an extensible and fully independent CTF platform, open to educators
to run realistic virtual labs to host cybersecurity exercises in their classrooms. PocketCTF is based on
containerization technologies to minimize the deployment effort and to utilize less system resources.
A proof-of-concept implementation demonstrates the feasibility of deploying CTF challenges that
allows the trainees to engage not only in offensive security but also in defensive tasks that have to be
conducted during cybersecurity incidents. When using PocketCTF, educators can deploy hands-on
labs, spending less time on the deployment and without necessarily having the advanced technical
background to deploy complex labs and scenarios.

Keywords: CTF challenges; cyber ranges; virtual labs; security labs; blue team; virtualization

1. Introduction

Capture the flag (CTF) challenges and virtual labs for organizing hands-on cybersecu-
rity exercises have recently become very popular worldwide [1,2]. Presented mostly during
hacking conferences such as DEF CON [1] or Black Hat, CTF challenges are frequently
being used by professors and other educators as well [3–8]. A significant benefit of CTF and
virtual labs is the capability to replicate realistic cybersecurity scenarios that can engage
students and practitioners in offensive tactics [6]. Moreover, CTF challenges can be used
inside and outside of the classroom by assigning exercises to the students since self-learning
attributes can be integrated [9]. However, in hosting a CTF, there seems to be a tradeoff
between realistic, real-world exercises and infrastructure resources [2]. In particular, for the
purpose of deploying realistic virtual labs and CTF challenges, a complex infrastructure
has to be set up that must include all of the important services, from vulnerable services to
defensive tools and CTF platforms to host the flags.

In the past, creating authentic computer security scenarios has been identified as a very
demanding and challenging task that requires a great deal of effort from educators and lab
personnel [10]. In addition, the learning outcomes from using hands-on practices need to
follow curriculum guidelines or frameworks that address the required collaborative activi-
ties in cybersecurity within the industry, government, and academic institutions [2,10,11].
What is more, educators are usually in need of a way to provide customized challenges
according to the courses and to privately maintain the overall learning process. In this
direction, open virtual labs can better support the educator requisites, such as Vulnhub [12],
which is an open repository that provides hands-on lab cybersecurity exercises as virtual im-
ages [3,11,13]. Similarly, the SEED labs [14,15] maintain virtual labs, and ENISA CSIRT [16]
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publishes training labs in the form of virtual images to support hands-on training sessions
along with instructive materials [6]. Another important approach is Cyberdefenders [17],
which is an online platform that hosts CTF challenges that mostly focus on defensive tasks
and blue teaming. Finally, a deployment approach with the name DetectionLabELK [18]
has been proposed by the previous developer, which is based on DetectionLab [19] for
automating the creation of the virtual labs.

The aforementioned approaches can be used by educators to maintain a large variety
of challenges in their classrooms. However, the methodology for how to integrate such
approaches into the classroom is not always clear, and a significant set of skills is required
from the educators. Consequently, the deployment complexity for educators is high, and
the overall process is time-consuming and requires significant system resources [3,20–22].
Moreover, tools and services for actively detecting attacks and responding to them are
usually challenging to install and configure [4]. As a result, the tools required to conduct
defensive actions are usually not included in the deployment. Based on the above obser-
vations, this paper presents PocketCTF, a flexible, easy to deploy and portable platform
for cybersecurity educators to create and manage virtual labs, both for training offensive
and defensive security. The underpinning idea of PocketCTF is the use of LXC containers
running Dockers (instead of virtual machines), in order to consume fewer system resources.
By using the proposed approach, educators can easily run portable and lightweight vir-
tual labs that can host both attack and defense scenarios. PocketCTF can manage a large
variety of security tools, reducing the total effort for the educators to deploy the exercises
by providing a ready-to-deploy implementation [3,23,24]. Important software packages
that relate to defensive tasks are included while the vulnerable services are deployed by
using containerization technologies [25]. More specifically, first a performance evaluation
of various virtualization technologies is conducted including Dockers, Linux Containers
(LXC) [26,27], and the Kernel-based Virtual Machine (KVM) [28–30]. The main goal is
to identify the most suitable virtualization technology that would allow instructors to
deploy complex scenarios without introducing significant performance overheads [1,31,32].
Next, we present the software architecture of PocketCTF and elaborate on its main com-
ponents and its advantageous features. Based on this architecture, a proof-of-concept
implementation was deployed in order to run a CTF scenario that relates to blue teams and
defensive tactics. Overall, we argue that PocketCTF is a realistic approach that can host
cybersecurity exercises and can be deployed inside a classroom or for hosting a frictionless
CTF competition.

The rest of this paper is structured as follows: Section 2 presents the related work.
Section 3 investigates and compares various virtualization and containerization technolo-
gies to identify their advantages and drawbacks. Section 4 analyzes the software archi-
tecture of PocketCTF and presents a proof-of-concept implementation of a CTF scenario.
Section 5 evaluates the proposed approach, and Section 6 contains the conclusions and the
future work.

2. Related Work

The related work in the area of CTF platforms is vast and includes many interesting
works that propose various approaches to design, implement, and evaluate its role in
cybersecurity education. Here, we present a subset of previous works that are the most rel-
evant to the PocketCTF approach. The idea of using LXC containers or Dockers instead of
virtual machines for CTF labs has been under research over the last few years [11,30]. More
specifically, Irvine et al. introduced a framework for parameterizing cybersecurity labs by
using Docker containers instead of virtualization technologies [24]. In another research
study [33], a cyber range for hosting web attacks was deployed on a Raspberry Pi. The
researchers demonstrated that virtual labs can be deployed by using only containerization
technologies. The key benefits of using containers instead of virtual machines include the
usage of fewer resources, allowing the educators to deploy a higher number of systems
and services that are easier compared to virtual machines. Similarly, AlSalamah et al. [34]
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analyzed how containerization techniques open new possibilities for cybersecurity educa-
tional labs, highlighting the difference between virtual machines and containers. Likewise,
research has been conducted in terms of the overall architecture and the toolsets that can
be used for providing educational cyberspaces and for creating hands-on lab exercises for
cybersecurity [14].

Other approaches include various reinforced learning perspectives utilizing simulation
and emulation processes derived from complex CTF deployments and versatile cyber
ranges [35–39]. Complex CTF deployments could include workstations, firewalls, switches,
web services, and tools that are frequently used by red or blue teams to create high-fidelity
training environments [40–42]. Such approaches typically appear in cyber range platforms
and not in CTF deployments [43,44]. What is more, network emulation has been studied
along with virtualization and attack emulation for replicating realistic scenarios and for
security evaluation purposes [45]. Moreover, the benefits of virtualization and Dockers
have also been considered by analyzing their capabilities for network virtualization [46,47].
The networking functionalities of containerization technology in the content of lightweight
virtualization instances have been under research [30,48]. Finally, the capabilities of cyber
ranges to use virtualization technologies to easily recover or to reproduce laboratory
scenarios have been also studied [49].

Regarding performance evaluation, research endeavors have tried to characterize the
CPU and disk I/O overhead introduced by Docker [50]. Furthermore, extensive perfor-
mance evaluation of the Docker containers has been also conducted, and the benefits of
containerization in comparison to virtual machines have been highlighted [51,52]. Another
work conducted a performance comparison between LXC and Docker containers [53].
Moreover, in our previous work [54], we performed an initial performance comparison
between several virtualization and containerization technologies. Based on the results
of [54], here, we select the most appropriate technology to design and implement the Pock-
etCTF platform. In particular, in this paper, we propose the deployment of CTF scenarios
using LXC containers that can run isolated instances of Linux environments, providing an
individual cyberspace for each participant/trainee. What is more, our focal point relies on
blue teaming and defensive actions (e.g., attack detection) in contrast to all of the previous
works, which only deploy vulnerable services for offensive actions without mentioning
defensive tasks.

3. Virtualization and Containerization Technologies

The main goal of PocketCTF is to deploy cybersecurity scenarios and multiple services
that are required for offensive and defensive tasks without significantly increasing the
total performance overhead. In this section, we discover the benefits of containerization
technology and how it can serve our purposes.

3.1. Overview

Virtualization and containerization are the two most frequently used mechanisms to
host applications in a computer system. Virtualization uses the notion of a virtual machine
to simulate hardware devices for running a separate operating system (i.e., guest OS).
There are various virtualization technologies, including the Kernel-based Virtual Machine
(KVM), to run Virtual Machines.

Contrary to virtual machines, containers can be used to host the OS to run applications
and services. Containers use the resource isolation features of the Linux kernel (such as
cgroups and kernel namespaces), which allows them to run within a single Linux instance,
avoiding the overhead of starting and maintaining virtual machines. It is also possible
to use containers as a lightweight virtualization option and even initiate graphical user
interfaces by installing the related software packages. A significant benefit of containers
compared to virtual machines is that the former is easier to manage than the latter and
requires fewer system resources as well. Therefore, using containers, we can create complex
network topologies requiring less deployment and integration effort. On the other hand,
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the main downside of containers is related to the fact that they share access to the kernel
of the host, introducing security issues. Consequently, malware can gain access to the
main host if it manages to escape from the container. The two basic containerization
technologies are Dockers and LXC. Dockers (i.e., the most popular container technology)
are lightweight, standalone, executable packages that include everything required to
run applications. Docker is a single-purpose virtualization application, while LXC is
multi-purpose operating system virtualization. On the contrary, LXC focuses on OS
containerization being capable of deploying systems that are closer to an operating system
and maintaining separate Linux kernels. In both technologies, a base host image is used
to deploy the containers by including the components and software packages in the base
host image. Therefore, each container is considered to be a running instance of the base
host image. The main differences between Dockers and LXC are elaborated on in [55].
A summary of the differences between virtual machines and containers is presented in
Table 1.

Table 1. Summary matrix for benefits and drawbacks for virtual machines and containers.

Parameter Virtual Machines Containers

Guest OS
Each virtual system runs on virtual hardware,

and the kernel is loaded into its virtual
memory.

All the guests share the same kernel loaded
in the physical memory.

Isolation Libraries and files are completely isolated.
Directories can be mounted and can be
shared between the containers and the

physical machine.

Performance
All instructions need to be translated between

virtual systems and the physical machine,
which incurs a performance decrease.

Near-native host performance and is
especially better in terms of I/O

interruptions.

Communication Full virtualization of network devices. A special driver is assigned for connecting
the containers to network interfaces.

Storage
Need a large amount of disk space as each

virtual system needs to store the whole OS and
associated applications.

Containers require less amount of storage as
the base host image is shared among the

containers.

Memory requirements Virtual machines create a unique kernel that
requires a significant amount of memory

Containers do not have significant memory
requirements

There is also the ability to run a virtual machine inside another virtual machine. This
is called nested virtualization and offers great flexibility and cost savings. Nested virtual-
ization is important for cloud computing, as deploying VMs on top of Infrastructure-as-a-
Service cloud providers is becoming more commonplace and requires nested virtualization
support [56,57]. However, poor nested virtualization performance remains a key issue.
In this paper, we define the notion of nested containerization, which is the execution of a
container inside another container. Combinations can be also considered, such as running
a container inside a virtual machine. As we mention below, nested containerization is
a key technological component in PocketCTF architecture. In Table 2, the capability of
supporting nested KVM, Dockers, and LXC is presented. We observe that a KVM virtual
machine can initiate all technologies. Thus, it is possible to initiate a KVM-based virtual
machine inside another KVM virtual machine (nested virtualization). We also observe
that it is also possible to initiate a Docker container inside another Docker instance. More
importantly, we can deploy Docker containers inside an LXC. On the contrary, it is not
possible to deploy an LXC container inside a Docker.
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Table 2. Nested virtualization and containerization options.

Host Machine Nested KVM Nested Docker Nested LXC

KVM 4 4 4

Docker — 4 —
LXC — 4 —

Even if the deployment of Docker containers inside a Docker is possible, it requires
specific privileges from the main Docker daemon (namely privileged mode). On the
contrary, LXC can bypass the requirement for the privileged mode and uses nesting features
to enable the deployment of Docker containers internally without acquiring privileges from
the main host. To this end, the design principles of LXC are more focused on the creation
of environments that are as close as possible to a standard Linux installation. Therefore, as
a technology, LXC is much closer to a complete OS environment with attached networking
and storage interfaces, while the filesystem is just an abstraction for Docker.

As mentioned above, LXC containers are not executed in a privileged mode, a feature
that is required to deploy a Docker inside a Docker. This is an important concept from a
security point of view, as a CTF platform is a multitenant environment, and security should
be taken into consideration to avoid any malicious actions that may threaten the integrity
of the whole platform. On the other hand, running LXC containers in non-privileged
mode thwarts privilege escalation attacks that are possible in nested Dockers running in
Dockers since the latter runs in privileged mode. Furthermore, LXC uses AppArmor [58]
to ship with a default security profile intended to protect the host from misuses inside
the container.

3.2. Performance Evaluation of Virtualization and Containerization Technologies

It is important to conduct a performance evaluation and to deploy test cases for
investigating the benefits and drawbacks of each virtualization technology. In particular,
the purpose of the experiment was to discover the performance capabilities and to measure
the total overhead of each virtualization and containerization technology (with or without
nested virtualization or containerization). To this end, we have considered the following
scenarios: (i) a host system running Linux without virtualization; (ii) initiating a Docker
container with XRDP and GUI; (iii) initiating an LXC container that hosts an operating
system (also supporting XRDP and GUI); (iv) initiating a KVM based virtual machine;
(v) initiating a Docker container inside an LXC container; (vi) initiating Docker services
that are executed on a KVM based virtual machine; and (vii) initiating a Docker container
inside another Docker.

To perform the evaluation tests, a native Linux system was used, and the specifications
included an Intel Core i7-9750H CPU, 12GB DDR4 RAM and 1TB NVME-SSD. In all of
our tests, we ensured that all of the other applications were turned off. In the conducted
experiments, Passmark [59] was used to retrieve the CPU and memory scores, and Flexible
I/O Tester (FIO) [60] was used for the disk performance tests. We have considered the
following metrics in detail:

1. CPU Score: This is an aggregate mark that provides the overall CPU performance. The
performance metrics are based on multiple tests including mathematical calculations,
sorting, and compression algorithms, among others.

2. Memory Score: Memory performance is calculated similarly to the CPU by initiating
SQL database operations, memory read of the cached and uncached RAM, calculating
the memory latency, among others.

3. Disk Read and Write (MB/sec), Read and Write I/O (MB/sec): Disk performance is
provided by the calculations of reading and writing speeds. Another metric is pro-
vided as well, called IOPS (Input/Output Operations Per Second), which is retrieved
by the following formula: IOPS = (MBps / Block Size) * 1024. The performance test
calculates the time required to iteratively read and write a big file of 800 MB for 60 s.
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In Table 3, the results from the performance evaluation and benchmarks are presented.
Considering the first results, the benefits of containerization included the low-performance
overhead in terms of the I/O–disk cache writing and reading speeds (see Table 3). As
a result, the containers can execute applications and services faster than virtualization
technologies such as KVM. Moreover, executing a Docker using KVM reduces the total
performance (CPU Score of 7933, 3000 lower than the other approaches). Therefore, us-
ing KVM to run containers is considered resource-intensive and eventually significantly
reduces performance. Running Docker containers in LXC maintains a very good perfor-
mance and is very close to the performance of the host machine. Finally, on each of the
containerization deployments, the disk performance outweighs virtual machines due to
the fact that the containers isolate and use a smaller amount of disk space, which is stored
as a partition to the base host.

Table 3. Benchmark summary of the most popular virtualization/containerization technologies.

Performance Test CPU
Score

Memory
Score

Disk Read
(MB/Sec)

Disk Write
(MB/Sec)

Read IOPS
(MB/Sec)

Write IOPS
(MB/Sec)

Native Linux 11,163 2636 114 28.5 6507 1629
Docker 11,262 2523 214 53.5 12,500 3208

LXC 11,068 2550 208 51.9 12,200 3114
KVM 7664 2530 111 27.8 6659 1667

Docker in LXC 11,318 2667 213 53.5 12,532 3136
Docker in KVM 7933 2636 100 25.2 5906 1478

Docker in Docker 11,220 2577 205 51.2 11,000 3070

Based on the above analysis, we considered the option of using LXC and Dockers
running inside LXC as the most appropriate technologies for deploying the trainees’ virtual
hosts in PocketCTF. The deployment of LXC containers requires less deployment effort and
nearly zero configuration. Moreover, LXC containers can run Dockers to install and run
applications and services. In this way, the disk space requirements are reduced, resulting
in better availability, extensibility, and scalability overall [48].

4. PocketCTF: A Portable Capture the Flag

The outcomes of our evaluation were important for discovering the benefits and
challenges of each virtualization technology and to decide which technology would fit
our needs. In this section, we present our approach based on the findings of the previous
section.

4.1. Software Architecture

The architectural software components of PocketCTF are presented in Figure 1. The
management service is the interface used by the educator to manage the cybersecurity
exercise scenarios. Educators deploy and initiate LXC instances separately for each trainee.
Note that the educator must manually inform (e.g., send an email) each trainee of their
assigned IP address of their LXC instance to perform an RDP connection and to gain access
to their cyberspace environment to play the CTF scenario.

According to the proposed architecture (Figure 1), the LXC instances (i.e., the Virtual
Network 01, 02, etc.) hosts an Ubuntu Linux as the main environment for each trainee,
featuring a GUI (gnome-desktop) including important security tools such as Suricata,
Wireshark, and Nmap, among others. Each LXC container maintains the virtual Ubuntu
system in a different namespace, and the vulnerable services along with the attack hosts
are deployed internally to the LXC by using Docker containers. In other words, each LXC
container includes several Docker containers that have a unique IP address to the virtual
network. The running Dockers inside the LXC either perform attacks that the trainee
should detect or include the vulnerable hosts/services. Note that these LXC containers
can be converted to an LXC image to easily replicate the infrastructure. As presented in
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Figure 1, for the management of the various LXC instances, an LXD server is required. The
LXD server enables the easy and quick deployment of different LXC containers, each one
with its own virtual network. The LXD server is deployed using Proxmox [61], which is an
open-source server virtualization platform for KVM virtual machines and LXC containers
with a web-based interface.
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Moreover, the educator can access the frontend interface of PocketCTF to manage
the exercises. This interface is based on CTFd [62] (an open-source platform that can
hosts CTF challenges), which is installed on a dedicated LXC container. The PocketCTF
reserves a separate LXC container that is only for running a SIEM, which is of a significantly
heavyweight to be installed in separate LXC containers for each trainee. The downside of
this approach is that the same instance of the running SIEM is accessed by every trainee. In
PocketCTF, we have opted for the deployment of an open-source SIEM named Wazuh [63].
The proposed approach can be extended by using internal or external virtual machines that
could host additional services that might require more resources or that can run Microsoft
Windows virtual machines.

4.2. Implementation of a Proof-of-Concept Scenario

To implement a proof-of-concept scenario, we have deployed a CTF scenario using
PocketCTF. The main learning goal of the scenario was to engage students to learn how
to configure a SIEM and to detect attacks such as DoS and port scanning. This scenario
requires one LXC container running the Ubuntu OS and three Docker containers. In
particular, the first Docker container (Docker 01) represents the victim host, while the two
other Docker containers (Docker 02–03) initiate a DoS attack and port scanning (using
hping [64] and Nmap [65]). The attacks are automatically repeated every 2 min using the
created shell scripts, and the detection relies on the network behavior and on the events that
are extracted by Suricata. The events are parsed and sent to the SIEM, where the trainees
can access and analyze the events overall. In Figure 2, the proof-of-concept deployment of
the scenario is presented.
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Using RDP, the trainees are connected to the IP address of the LXC container that
hosts the different Docker services and the required software packages. As mentioned
before, the internal virtual network is handled by the LXC container, and therefore, each
deployment is isolated. An example of a successful RDP connection to an LXC container
that initiates a virtualized operating system is presented in Figure 3.
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The trainees must execute the following steps to complete the scenario:

1. Trainees need to access the LXC dedicated to them by using RDP: The trainees are
invited to access the system via RDP. The educator may explain that this will be their
main system for the exercises and the total approach.

2. Access the CTF platform to access the instructions: The trainees are invited to access
the web API of the platform where the main features of the platform are explained.
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3. Set up the SIEM agents: The trainees must follow a specific process to install and
configure the SIEM agents. The SIEM agents are parsers with the main purpose of
retrieving log files to the SIEM (as mentioned above, in PocketCTF, we have deployed
Wazuh SIEM).

4. Configure IDS and read alerts: The trainees should read and evaluate the alerts from
the IDS by checking the log file generated by Suricata (i.e., fast.log). Afterwards, this
file will be forwarded to the SIEM.

5. Forwarding log files to SIEM for parsing: The trainees should configure the SIEM
agents to ingest the fast.log (generated by Suricata) and the generic log files (generated
by the host OS) into Wazuh.

6. Create scheduled queries which will trigger the corresponding alerts: The trainees
must create scheduled queries that will fetch data to detect the DoS attack and generate
an alert.

By following and completing the proof-of-concept scenario, the trainees are able to
understand the fundamental concepts of data shippers by deploying the SIEM agents and
to technically investigate the logs from the intrusion detection. The trainees are able to
follow step-by-step instructions from the CTF platform in order to detect and respond to
the attack in real-time.

5. Discussion

The main benefit of the proposed PocketCTF is the high performance and fewer
requirements, due to the kernelless deployment of the LXC containers. Another important
benefit is the small disk space required to run the containers in contrast to virtual machines.
The above is possible since the LXC images (also called LXC templates) can be used to
deploy multiple LXC containers that minimize the required disk space. Educators are
able to create customized exercises and to store the LXC images or distribute them online.
Therefore, every LXC image can maintain a different cybersecurity scenario, including
multiple attack paths, and have the software components for the defensive actions included.

The benefit for the trainees is that they maintain a single point of interaction by
entering the appointed LXC that maintains everything that is required. Once converted to
an LXC image, the LXC container will be used as the core for deploying the LXC containers.
Educators can use existing exercises that are hosted as virtual machine images (e.g., from
Vulnhub), as it is possible to convert them to LXC images. It is also important to note
also that we tested the possibility of deploying PocketCTF in a Raspberry Pi 4 board. The
benefits and challenges for deploying in a Raspberry Pi compared to a typical PC machine
are summarized in Table 4.

Table 4. Benefits and limitations of using a typical x86 compatible PC machine and Raspberry Pi.

Architecture Benefits Limitations

x86-compatible PC machine Can support many trainees and has a
better performance overall. Increased cost and less portability

Raspberry Pi (ARM) Easy to afford. Portability
Docker images might require conversion to ARM
architecture by using Docker buildx [66]. KVM is

too resource-intensive for RPi to run smoothly

In general, it was feasible to host the LXC containers on a Raspberry Pi 4 but with
some restrictions, as discussed in Table 4. Deploying the approach on a Raspberry Pi,
for example, restricted the deployment of the Dockers that are only designed for ARM
technology. However, it is possible to rebuild existing Docker images for ARM technology
using Docker buildx [66]. Using this tool, we successfully deployed more than 10 containers
by using an Ubuntu system as the LXD host operating system on the Raspberry Pi.
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In Table 5, a summary of the benefits and challenges of PocketCTF are presented with
regard to portability, scalability, compatibility, and usability. The numerous benefits of our
approach underscore the practical added value of PocketCTF.

Table 5. Benefits and challenges of PocketCTF.

Characteristic Benefits Challenges

Portability Running Dockers inside LXC containers allows a large
variety of services within a single virtual image.

The image size could be large depending on
the installed services. Need for a PC with

moderate resources to run multiple
machines.

Scalability Due to clustering support mode, LXC containers offer high
scalability.

The deployed SIEM is shared between all
participants.

Compatibility
All the popular services that have already published Docker
containers can be deployed. Virtual images could be revised

and executed as containers.

Windows are not supported unless KVM is
initiated. ARM-based dockers must be

created when Raspberry Pi is used.

Usability

Easy deployment of PocketCTF. For every new trainee, it is
easy to initiate new LXC containers. Trainees and educators

maintain a single endpoint of communication that
automatically deploys the trainees’ operating systems, CTF

platform, and other services (e.g., the SIEM)

Creating or importing new PocketCTF
scenarios is relatively complex.

The compatibility issues and, more specifically, the inability to deploy Windows hosts
should be taken into serious consideration. A possible solution is to utilize external net-
works to regularly initiate Windows hosts by using KVM or other virtualization technology.
Such an approach may solve this issue, but it is the opposite direction to having a portable
and performance-wise solution.

6. Conclusions and Future Work

This paper presented PocketCTF, a flexible and portable platform for cybersecurity
educators to create and manage virtual labs, both for offensive and defensive security
training. PocketCTF can host and manage a large variety of security tools that are ready to
deploy, decreasing the total effort needed to deploy the exercises. PocketCTF is focused
on portability and easy-deployment and introduces a way to include all of the important
software packages for hands-on labs inside a single virtual machine, while vulnerable
services are deployed as Docker containers along with the victim and attack hosts. We also
discussed the potential benefits of using containerization instead of virtualization technolo-
gies to deploy virtual labs. We investigated the various features that containerization and
virtualization provide by analyzing the benefits of each approach. The findings indicate
that deploying the required services in LXC and Docker containers will significantly de-
crease the total overhead. The deployment of PocketCTF confirms that the total overhead
is decreased by using containers instead of virtual machines and that the total management
is easier for creating and deploying cybersecurity hands-on labs. The required services
necessary for the intrusion detection, the SIEM, and the CTF platform are automatically
deployed or replicated and require less effort and system resources than other approaches.

Future work includes the extensive validation of PocketCTF by conducting stress
tests and by including other security scenarios as well. In terms of the evaluation, we
intend to further test the approach by deploying an LXD cluster to distribute the required
resources and scale the approach on multiple systems. Furthermore, future work includes
the conversion of existing challenges to containers and providing specific steps that have
to be followed as documentation. Finally, we consider the alignment of the exercises to
cybersecurity education frameworks as an important aspect. Towards this direction, we
intend to further investigate the existing taxonomies regarding the learning impact by
utilizing scenarios that will be executed and hosted accordingly to PocketCTF.
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