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Abstract: The evolution of web development and web applications has resulted in creation of numer-
ous tools and frameworks that facilitate the development process. Even though those frameworks
make web development faster and more efficient, there are certain downsides to using them. A
decrease in application performance when using an “off the shelf” framework might be a crucial dis-
advantage, especially given the vital role web application response time plays in user experience. This
contribution focuses on a particular framework—Ruby on Rails. Once the most popular framework,
it has now lost its leading position, partially due to slow performance metrics and response times,
especially in larger applications. Improving and expanding upon the previous work in this field, an
attempt to improve the response time of a specially developed benchmark application is made. This
is achieved by performing optimizations that can be roughly divided into two groups. The first group
concerns the frontend improvements, which include: adopting the client-side rendering, JavaScript
Document Object Model (DOM) manipulation and asynchronous requests. Another group can be
described as the backend improvements, which include implementing intelligent, granular caching,
disabling redundant modules, as well as profiling and optimizing database requests and reducing
database access inefficiencies. Those improvements resulted in overall up to 74% decreased page
loading times, with perceived application performance being improved above this mark due to the
adoption of a client-side rendering strategy. Using the different metrics of application performance
measurements, each of the improvement steps is evaluated with regards to its effect on different
aspects of overall performance. In conclusion, this work presents a way to significantly decrease the
response time of a particular Ruby on Rails application and simultaneously provide a better user
experience. Even though the majority of this process is specific to Rails, similar steps can be taken
to improve applications implemented with the use of other similar frameworks. As the result of
the work, a groundwork is laid for the development of the tool that could assist the developers in
improving their applications as well.

Keywords: web application; web development; application performance; database; Ruby; Ruby on
Rails; web browser; MVC

1. Introduction

Web applications and services play a prominent role in our society, affecting numerous
aspects of our day-to-day lives. Provided this prominent role, the possible cost of various
flaws in web applications—unresponsive services, unintuitive user interfaces or unsecure
systems—are also historically high. The importance of application performance, manifested
in the page response time, or the perceived page response time, in particular, cannot be
understated. Web users expect a page to load within two seconds, with every consecutive
second critically lowering the quality of user experience and resulting in about a 10%
increase of users abandoning the page per second [1].

A web application framework is a tool created to facilitate the process of web appli-
cation development, define the basic structure and functionality of the web applications
and make such flaws less likely to occur as the effect. In this contribution, we mainly focus
on one web framework in particular—Ruby on Rails (RoR) [2]. This approach is based on
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the dynamic multi-paradigm Ruby programming language. While being one of the first
frameworks of its kind and having an immense influence on key aspects of web application
development, RoR remains prominent to this day. However, RoR has ceded ground to its
competitors in recent years and is no longer the most popular backend framework [3], with
one of the speculative reasons for this development being relatively slower performance of
Rails-based applications compared to other frameworks, such as Django, Laravel, Flask or
Express [4].

The primary objective of this paper is to show the following: By using the API-only
subset version of Rails framework with various improvements in conjunction with moving
to client-side rendering and Single Page Application (SPA)-like architecture, it is possible
to achieve substantive improvements in application page response time, without the
downsides of reduced functionality or increase in code complexity.

2. Web Application Request Handling

The understanding of each step that occurs on a web application server and in browser
between the instance of time when a user navigates to a particular page to the moment the
page is displayed in browser and is interactive, is crucial for the ability to comprehend and
optimize web application performance. In Figure 1, a general overview of the application
request handling process of a Rails application is given. Even though, the elements and
the code are typical for Rails, most entities and steps of this process are similar in other
relevant Model-View-Controller (MVC) frameworks.

The initial step is the user request. Based on the manner of interaction of the end-user
with the web page, two different kinds of requests can be differentiated:

• Explicit requests are directly initiated by the user. For example, those requests occur
after the user has clicked the link or entered the Uniform Resource Locator (URL)
into their browser’s address bar. Commonly associated with the GET HTTP request
method.

• Implicit requests occur in the background, oftentimes asynchronously, without the
direct knowledge of a user and are indirect result of user actions. For example,
different tracking scripts can initiate requests of this type. Commonly associated with
the POST HTTP request method.

If the host navigates to a page for the first time, the Domain Name Server (DNS)
lookup takes place as a result of a request. The Transmission Control Protocol (TCP)
handshake as well as Transport Layers Security (TLS) key negotiation are other steps that
take place if the connection was not established prior to the given request [5]. Upon the
application server registering the request, it has to establish which particular application
module or functionality is being accessed. One approach to this is to map combinations
of fragments of the URL with generic parameters and HTTP action-verbs (POST, GET,
DELETE, etc.) onto different controller ‘actions’, represented by functions in a controller
class. After establishing the controller ‘action’, the body of a relevant controller function
starts executing. Typically, for the sake of security, the first step of the controller routine is
checking whether the user is authenticated and has the rights to perform the given action,
and whether the session is not expired, and relevant security tokens are valid. After this
step, the retrieval of relevant data from the database typically takes place, with the further
possibility of modifying or deleting retrieved data from the system and the database.

Since the objects or entities in the system are represented by Objects (in the Object-
Oriented Programming sense), while the databases which store the information about
those objects typically conform to Relational model, with those two models being similar
but not necessarily one-to-one congruent, the intermediary layer between the Model and
the database needs to be included. The Object-Relational Mapping (ORM) is used in web
application frameworks for this purpose. ORM maps the class methods of the model
onto commands in an appropriate Data Manipulation Language of a given Database
Management System (DBMS). The retrieved data is stored as an instance of a given Model
or Object. In case the instance has been modified, it can then be written back to the database,
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to maintain Consistency and Durability (in the ACID sense) of the application system and
the database.

Each controller routine typically ends with a render command. Server-side rendering
typically involves inserting the data from the retrieved Model instances into the View.
To make this process easier and more developer-friendly, most frameworks utilize the
Templating languages, which combine HTML syntax and tags with a subset of various in-
structions of a scripting language (those instructions most commonly consist of conditional
statements and loops). The final result of this stage is a fragment of HTML document in
which information about the objects of interest is inserted into the HTML tags.
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One of the final steps is assembling the proper HTML document, by combining the
fragments with the necessary meta information, style and script tags, typically present
inside the HEAD section of the HTML document. The Layout application element typically
defines the way an HTML page is assembled. It also describes the layout-forming visual
and functional elements of the application, that are common between multiple pages of an
application, such as the navigation bar, side bars, headers, footers, etc.

Ultimately, the prepared HTML document is being sent back to the user. Once the first
parts of the document have been received, the browser begins processing it. The process of
turning the HTML document received from a server into an interactable page on the screen
of a device, known as the critical rendering path [5], can be divided into the following steps:

1. The HTML elements are being parsed into the DOM (Document Object Model) Tree;
2. In a similar process, the CSSOM Tree arises from the CSS (Cascading Style Sheets)

rules specified in the style sheets included in the document;
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3. Both the CSSOM and DOM Trees are then combined into the Render, or Style Tree,
on the basis of which the computed styles, applied to each visible page element,
are established;

4. Render Tree information is then used to establish the position, height and width of
each element, called the Layout;

5. The final step, called Painting, involves painting the individual nodes as pixels on
the screen.

Once the painting step has been finished and all the blocking scripts included in the
document have finished executing, the page becomes interactive.

The process of assembling the HTML page on the application server described above
is also known as Server-Side rendering, and the applications based on this process will
be referred to as ‘monolith’ applications (due to the entirety of codebase being in the one
framework), as opposed to Client-Side Rendering applications, which have a clear divide
between the Server-side data and logic layer and Client-side View layer.

3. Ruby on Rails Performance Considerations

RoR [2] is an open-source web application development framework. By building upon
the assumptions and idioms that have emerged in the web development community, it is
designed to make web development easier and more straightforward. It draws heavily
upon the Model-View-Controller (MVC) architectural pattern and has two self-ascribed
guiding core principles:

The Don’t Repeat Yourself (DRY) principle emphasizes the tendency to avoid repeat-
ing the same knowledge (can be broadly understood as data, algorithms, functions, etc.)
multiple times at various places of the system. Instead, the repeated functionality can be rel-
egated to the special components (Helpers, Concerns, Mixins), that can be included into the
functional parts of the applications to enable shared functionality without code repetition.

The Convention over Configuration (COC) principle means that Rails can be described
as an ‘opinionated’ software that comes with certain preconceptions about the core architec-
ture and functionality of an application. Those conventions enable the quick development
of the application but can be overridden if more custom behavior is required [2].

Ruby on Rails has been the primary factor behind the popularity of Ruby program-
ming language and those two technologies have become tightly linked together to the
point of codependency.

3.1. Caching

In a general sense, caching is the concept that involves storing the result of an operation
so that as long as the result is not ‘expired’, the repeated invocations of said operation are
expected to have the same results, thus, instead of performing all steps of an operation, it
is sufficient to just return to this stored result. Caching is present on multiple levels of both
software and hardware. Modern CPUs have multiple cache memories, the SSD storages
use flash caching to achieve greater access speed. On a software level, multiple DBMS
systems support function result caching.

In the context of web development and web applications, caching means that entire
HTTP responses, HTML documents or fragments of documents can be stored and served to
the users upon repeated requests. Oftentimes, the execution of the entire request handling
process can be avoided and replaced with the check to determine whether the requested
page is present in the cache: If so, the next step is to establish whether the cache entry has
‘expired’. Oftentimes, this check comes down to finding out if any of the relevant objects
have been modified or new related objects have been created since the time the page was
last generated.

Rails provides the timestamps for the modification and creation of system objects.
Cache keys as well as partial View caching can be used to further optimize caching be-
havior. Intelligent caching can be one of the most effective ways to boost application
performance [6].
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3.2. Database Access

Since every datapoint that ends up on a web application page is retrieved from the
database at a certain point, slow database accesses can be another performance bottleneck
of an application. It is important to be cognizant of the fact that each tag with object data
on a page has a certain performance cost [7]. So, including only relevant information on the
page may not only be a good user experience guideline, but also an important consideration
in terms of application performance.

It is important to selectively retrieve only the necessary data from the database, ideally
only at times when it is necessary [8]. Since ORM is not a perfect system, a developer
needs to be aware of certain performance pitfalls when it comes to object representations
of relations. One such common pitfall is the N + 1 query problem presented in Figure 2a.
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The execution of the code presented in Figure 2a will result in 11 database queries:
One to retrieve the first 10 users, and another one for each user to retrieve their posts
based on their id. Because the practice of iterating over all objects that belong to different
‘owner’-objects is quite common in web development, the function includes(), which allows
it to specify the relationships to be included in the result set and is implemented in the core
Rails framework.

This function, showed in Figure 2b, allows to achieve a substantive performance boost
compared to the first example, by decreasing the number of database queries needed to
execute the code only to 2: First query is executed to retrieve the list of user ids, and the
second one mass-retrieves posts that belong to users on the id list [9].

3.3. RoR Modules

Since Rails is a general-purpose framework, it includes a set of Components, Modules
and Middleware that can be utilized to develop and maintain different types of appli-
cations [10]. Some of those modules are redundant in certain applications and can be
disabled. In particular, most of the modules and middleware can be disabled for API-only
applications. Such a configuration was once a part of the community-created custom
Ruby on Rails library, called ‘gem’ [11], but it has since become a part of the core Rails
framework [11,12] and can be used to create an application that uses a subset of Rails
framework that offers only basic functionality of routing requests, accessing the database
and ORM, and responding with data in a serialized, typically JSON, format.
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4. Software Implementation

In order to evaluate the impact of different types of optimizations on application
performance, the benchmark application was implemented. This is a simplified version of
modern feed-driven social networking application. The application has multiple endpoints
that differ in terms of database request intensity as well as page elements count. Test
endpoints are presented in Table 1.

Table 1. Specification and general description of benchmark application test endpoints.

Endpoint Database Load Page Element Count Description

/feed

Very High. Every table in the
database schema is involved.
High number of
resource-intensive join queries
are executed.

High. For each of N posts,
about 250 HTML elements are
present. Total element number
varies depending on the
number of posts on a page.

Displays the timeline of posts either
authored by the current user or by
other users that are followed by the
current user. For each post, comments
are shown as well. The display of every
post or comment also includes the
information about the author or
respective content as well as number of
upvotes and display of number of
reactions of different types.
Information about the author of the
content includes number of following
and followed users, number of posts as
well as rating, defined as sum of
upvotes of every post authored by
a user.

/post/:id

Medium. Multiple tables in
the database schema are
involved. A few
resource-intensive join queries
are executed.

Low. Total page HTML
element count is about 300.

Displays a single post along with
relevant information, as described in
the feed endpoint.

/user/:id/followers

Low. A few tables in the
database schema are involved.
Single resource-intensive join
query is executed.

Moderate. For every user,
about 50 HTML elements are
present. Total element number
less than 2000.

Displays the table that contains all of
the followers of the current user. The
information of each follower is similar
to that described in the feed endpoint.

In order to evaluate the impact of different types of optimizations on application
performance, the benchmark application was implemented.

The schema of the database used in the application server is presented in Figure 3.
Among notable things, the password digest needed for user authentication is stored in
the Users table, the exclusive OR relation between the Reaction and Post or Comment
entities is resolved by adding content_type and content_id columns to the Reactions table,
which corresponds to a polymorphic association on the ORM level in the application. The
self-referential relations between Users, Users-Followers and User-Followees are modeled
by adding an additional table that stores pairs of follower and followee ids.

After implementing baseline application as a monolithic Ruby on Rails application
that uses Server-Side Rendering, a sequence of steps was taken in order to bring down the
page response time and improve the user experience. The steps can be divided into two
categories: Backend Optimizations and Rendering Strategy and Frontend Optimizations.
After each step, application performance measurements were taken.
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4.1. Rendering Strategy: Transition towards Client-Side Rendering

In order to make a transition from a monolithic web application towards a client-side
rendering, or Single Page Application architecture in particular, the following fundamental
adjustments need to be made [13,14]:

• The elements of View layer—Templates and Layouts need to be remade to take the
input data either in the form of Javascript Objects or JSON notation and output HTML
elements. In other words, the templating mechanism needs to be reimplemented in
the JavaScript-compliant technology.

• Controllers need to be functionally divided into two categories: API Controllers, the
primary role of which is to respond to requests from the frontend with the appropriate
serialized data, and Pages, or Entry-Points Controllers, the role of which is to serve
usually pre-determined and static at the point of server-side generation, resources,
usually HTML documents with the included frontend scripts that are responsible for
the frontend logic. For SPA, only a single such page needs to be provided at the first
load of the application. The latter category of controllers is largely optional, as another
parallel gateway application can be used instead [15].

• Routing and the state-management needs to be re-implemented in the Javascript frontend.
• Serializers—Components that transform the information about the attributes of rel-

evant Model layer objects and associations between them to a standardized form,
typically JSON or XML, need to be implemented [16,17].

Most Model components, responsible for business logic and data representation,
remain largely unchanged between the studied monolith and SPA applications. In addition,
the logic and principles underlying the Templating mechanism, Routing, State management
and other components present in both types of architecture are also overlapping to a large
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extent, as demonstrated by the example of the custom templating mechanism in JavaScript
(Figure 4a) compared to an HTML templating language Slim [18], popular in monolith
Rails applications (Figure 4b).
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4.2. Backend Optimization
4.2.1. Resolving the N + 1 Query Problem and Preloading Optimizations

Feed endpoint uses data from multiple interconnected database tables. In the code
displayed in Figure 5, the code responsible for retrieving the posts in the feed, and only
posts either authored by the current user or his followed users are selected.
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Since for each retrieved post, multiple database queries regarding posts’ comments
and the users-authors of those respective comments will be fired consecutively. The code
listed in Figure 5 can be seen as an instance of N + 1 query problem.

The Rails framework provides multiple methods that could alleviate this issue, by
preloading information from the tables associated with the given class. To this end, Rails
provides four different methods [19]:

1. Joins()—Executes a single database query that uses INNER JOIN;
2. Includes()—Loads data from the associated table by either executing a separate query

or using the single LEFT OUTER JOIN query, depending on whether the WHERE
condition was given for the associated table;

3. Preload()—Similar to Includes(), but always executes a separate query;
4. Eager_load()—Similar to Includes(), but always executes a single LEFT OUTER

JOIN query.

As an intermediary step in the backend optimization process, the performance metrics
of different preloading functions were compared. A select few configurations are given in
Table 2. For this case, since no additional condition block is given (every single comment
of a post needs to be included), the Preload() is functionally equal to the Includes() method

Table 2. Comparison of different preloading functions for the Feed (100) endpoint.

Preloading Function View Time (ms) Database Time (ms) Total Time (ms) # of sql Queries
Executed

(1) Baseline (no preloading) 2410.5 863.1 3273.6 1423

(2) incudes (:comments,
comments: :user) 2016.0 752.3 2768.3 1189

(3) eager_load (:comments,
comments: :user) 2235.2 825.1 3060.3 1197

(4) includes (:reactions,
:comments, comments: :user,

comments: :reactions)
2495.0 855.5 3350.5 1317

(5) joins (:reactions, :comments,
comments: :user, comments:

:reactions)
4094.1 185.7 4279.8 167

Out of all the different tested combinations of preloading functions and associations,
example (2) was experimentally established to be the best performing combination for
this endpoint.

As exemplified by example (5), preloading a large amount of data might free up the
database, due to a smaller number of queries fired, but the huge chunks of the retrieved
data need to then be manipulated on the View layer in order to be properly filled into the
resulting page, which causes a drastic decrease in the overall performance, however, such
an approach might be a good choice when the database resources are severely limited.

4.2.2. Using the Rails API-Only Subset

Rails provides a set of middleware for general purpose applications by default. It is
possible to disable redundant parts of this middleware when using the “api-only” configu-
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ration. Among the disabled middleware are different modules responsible for assembling
and delivering the appropriate HTML or other format responses to user requests, storing
the session state in cookies and others. When this configuration is selected, however, the
serving of regular HTML responses becomes not supported, and the application cannot
function properly. In order to overcome this issue, a “regular” Entry-Point controller was
created by overriding the default behavior of API-only controllers, with the sole task of
serving as the default index page with the relevant scripts and stylesheets (see Figure 6).
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4.2.3. Database Access Improvements

The user information displayed on both “feed” and “followers” endpoints contains,
among others, the information about the number of user posts, user followers as well as
following accounts, and rating, which is a weighted sum of the score of every piece of
content a user has published (both posts and comments). Originally, an aggregate query
was executed in order to retrieve this information for each user. This approach turned
out to be suboptimal and resulted in a lot of excessive database queries executed for each
endpoint. In order to alleviate this problem, four further solutions were evaluated:

1. Baseline: When a comment or a post is upvoted or downvoted by a user, the number
of its upvotes is updated in the database. This, however, does not affect the rating
of a user who published the content. The aggregate query is executed each time to
retrieve the rating.

2. Caching: The number of upvotes is stored in the application cache, when the upvote
is registered, the rating cache of the author-user becomes invalidated.

3. Database storage: The user rating is stored in the database and is retrieved each time;
upvotes will result in updating.

4. Database storage and caching: Combination of two above approaches; the database
query is only executed if the cache is not valid.

Those four approaches were compared by executing a series of 1000 typical operations
and evaluating the results. The two operations were: “fetch + get” (retrieving the user and
the information about his rating) and “update + fetch + get” (updating the post’s upvotes,
which will result in change of user’s rating and then retrieving user and information about
his rating). The results are displayed in Table 3.

The optimal approach for this case was determined to be the (3) Database, since the
time to retrieve the User rating is the lowest in the “fetch + get” scenario (this is explained
by the fact that after retrieving the User information from the database, no additional
operations are required to obtain the rating of a user). Contrary to the original conception,
the Caching solution would be preferable if the User rating was updated very frequently.
This is due to the fact that updating a post’s or a comment’s upvotes does not result in
an additional database writing operation in this case, and the cost of invalidating the
application’s cache is negligible. The combination of both Caching and Database storing
can be a good middle ground between those solutions, especially if the cached database
operation was very costly, but in this case, it is not preferable to either of them.
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Table 3. Comparison of database storing and caching of User rating, time for 1000 operations.

Storing and Retrieval Strategy “Fetch + Get” “Update + Fetch + Get”

(1) Baseline 1388 ms 5477 ms

(2) Cache 479 ms 5457 ms

(3) Database 355 ms 6107 ms

(4) Database + Cache 460 ms 6361 ms

4.2.4. Introducing Caching to Serializers

Object Serializers can be typically invoked multiple times per single API call (i.e., when
a single user has authored multiple posts or comments on a feed page, Author Serializer
can be invoked once per each post or comment). In addition, typical serializer procedure
combines retrieving information about associated objects from the database with the
transformation of this information into a standardized format, which adds computational
overhead. Thus, a serializer appears to be an optimal place for implementing application
caching, especially in case when a large percentage of object retrievals result in the call of
corresponding serializers.

The Fast JSONAPI gem provides a possibility of including caching directly in the
serializers. Instead of performing the serializer routine, the presence of a non-expired cache
entry is checked first. The procedure is only performed if such entry is not found. Different
cache intervals as well as custom behavior in case of cache miss can be defined [17].

5. Performance Measurements

Performance measurements were performed with the rails_performance Gem [20] in
the controlled local network environment, with a single user at a time. After each optimiza-
tion step, a series of performance measurements were taken for four configurations: “/feed”
endpoint with number of posts N = 100 and N = 10, “/user/:id/followers” endpoint. In
addition, a more extensive series of tests were performed to establish different performance
metrics of baseline and final optimized application configuration. Measurements for each
step are listed in Table 4. The rails_performance Gem, which provides data for the amounts
of time spent in the View and Database (Model) layers, was used in conjunction with the
Rails’ internal profiling capabilities. Furthermore, the Google Chrome browser’s built-in
developer measuring tools were utilized, to provide the total time until the page was ready
as well as the time to the initial load [21].

Performance measurements results are given in Table 4. For the baseline application
and after each step, the following metrics were taken:

• Time (VW)—Time spent in the View Layer of the application, directly obtained from
the Rails internal monitoring for monolith applications and calculated as the difference
between the moment the page was initially received and the moment when the page
was fully rendered in Client-Side Rendering applications (marked with **);

• Time (DB)—Time spent in the Model Layer of the application, taken from the Rails
monitoring;

• Time (DOM)—Time from the first load of the page until the page was fully rendered
and interactive in the browser, measured with the use of Google Chrome’s profil-
ing tool.

5.1. Results Analysis

Five discrete optimization steps were taken:

1. First was Resolving the N + 1 Query problem and preloading optimizations (marked
as N + 1&Pre). After this step, due to more optimal resource loading and management,
both Database Time and View Time decreased as predicted, and the page loading
time decreased as well. This effect was most pronounced for the Feed (100) endpoint
due to the large amount of data retrieved.
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2. Second was switching to the Client-Side Rendering strategy. This resulted in an
overall decrease of Feed endpoint page loading time; however, due to another metric
used for View Time, there appears to be an increase in the amount of time spent in
the View layer, but it is not conclusive.

3. Another step was using the API-only version of the Rails framework. This resulted
in an overall increased efficiency of both communication with the database and
serialization process, included in the Time (VW), which resulted in somewhat better
page loading times.

4. The fourth step was optimizing database accesses. This resulted in the most drastic
increase in the database communication efficiency. Because of the improved perfor-
mance of the object-level serializers, the View Time appears to have decreased sharply
as well. A very data intensive Feed (100) endpoint has improved the most.

5. The fifth step was introduction of the Object-level serializer caching. The Database
Access time plummeted across all the endpoints due to only initial database access be-
ing necessary in order to produce a serialized object. Predictably, the most data-heavy
endpoint has benefited the most, in part due to high degree of object interrelations.
The least data intensive endpoint has benefited the least, due to the smaller time dif-
ference between retrieving the serialized object from the cache and building the same
object based on information accessed from the database. In other words, the gain from
serializer caching was highly correlated to the degree of object interconnectedness as
well as the regular serializer process overhead.

Due to the drastically different dataflow processes in the last application configuration,
that involved serializer Caching, the previous configuration was chosen for the further
benchmarks instead.

5.2. Comparison with the Baseline Application

A more extensive series of tests was performed to compare the baseline and the
optimized versions of the application. In order to maintain the continuity in dataflow
between the baseline and optimized version of the application, the non-cached version of
the optimized application, presented in the fourth step of the optimization, is chosen for
those benchmarks. Firstly, the initial load times of all the implemented endpoints were
compared, as can be seen in the Figure 7.

In the graph in Figure 7, the entire bar represents the page loading time (or DOM time).
It is divided into two parts—the Server Response Time, defined as the time from the start of
a request until the application server has finalized and sent its response, and the Rendering
time, which is the difference between the DOM time and the server response time. As is the
case with the other optimizations, the effect is most pronounced, having the most data and
page element intensive endpoint out of the three, that is, Feed (10). Among notable things,
not only has the server response time decreased sharply, the Rendering time appears to
also have fallen, which is due to the JSON payload (used in the optimized version of the
application) taking less space and thus travelling faster through the network. The browser
also does not need to spend a lot of time parsing a heavy HTML, and this process is overall
faster because JavaScript DOM manipulation capabilities are used instead.

Those conclusions are further substantiated by the relationship shown in Figure 8:
The difference between the Page Response Time and the Server Response Time for the
optimized applications is virtually constant for the Client-Side Rendering application. At
the same time, this gap seems to increase as the amount of the elements on HTML response
page increases. This demonstrates the overhead time spent parsing the HTML in browser.
Another factor is the Response Sizes of HTML (baseline application) and JSON (optimized).
Both lines have a linear character, but the pale green line representing JSON is less steep
and is lower than the HTML size line (this can be viewed as monolith applications being
less data-efficient and taking up more network capacity to serve the same page).
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Table 4. Endpoint performance measurements.

Optimization
Step

Endpoint Response Times

Feed (100) Feed (10) Followers (30)

Time (VW)/∆% Time (DB)/∆% Time
(DOM)/∆% Time (VW)/∆% Time (DB)/∆% Time

(DOM)/∆% Time (VW)/∆% Time (DB)/∆% Time
(DOM)/∆%

Baseline 2326 844.8 4176 435.16 211.62 1240 176.42 107.34 789.6

∆% 100% 100% 100% 100% 100% 100% 100% 100% 100%

N + 1&Pre 2162.7 801.14 3910 428.68 208.3 1202 N/A * N/A * N/A *

∆% 92.97% 94.83% 93.63% 98.51% 98.43% 96.93% N/A * N/A * N/A *

Client Side ** 2767.2 790 2988 918.2 216.74 1126 604.6 123.66 817.4

∆% 127.94% 98.60% 76.41% 214.19% 104.05% 93.67% 342.70% 115.20% 103.52%

API Only ** 2632 771.42 2804 787 216.3 933.8 551.8 119.8 705.6

∆% 95.11% 97.64% 93.84% 85.71% 99.79% 82.93% 91.26% 96.87% 86.32%

DB opt ** 1557.2 270.34 1756 545.4 87.28 724.4 380.2 45.76 592.4

∆% 59.16% 35.04% 62.62% 69.30% 40.35% 77.57% 68.90% 38.19% 83.95%

Srl. Cache **
(Cache H.R =

100)
571.2 41.28 822.4 389.6 23.02 651 339.6 5 556

∆% 36.68% 15.26% 46.83% 71.43% 26.37% 89.86% 89.32% 10.92% 93.85%

* For Followers endpoint, Preloading was not utilized, ** Different View Time measurements for SPA-type applications, “∆%” Rows mark the relative difference between the current results and results of the
previous step. Cache H.R.—Cache Hit Ratio, chosen to be 100% for the experiment, the approximation for intermediary values can be calculated as the weighted sum of DB opt and Srl Cache values.
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6. Conclusions

The main goal of this article—to quantitatively and qualitatively describe the steps
of the optimization of a Rails-based application—was achieved. The initial load response
times of the final optimized application are up to 74% faster compared to the baseline
application. Different aspects of the application’s performance as well as avenues of
optimizations were explored during the course of this work. This article opens up different
possibilities for further work and research in this field. The conclusions regarding the
optimization steps can be applied to the existing applications, in particular, A-B testing can
be undertaken to see both the effects of different optimizations on the response times of
existing web applications, as well as the relationship between the application load times
and the positive outcomes (financial, in the case of web-enterprise applications, and social,
in case of government service) associated with a web application can be established in a
similar manner. For Ruby on Rails applications, further work in this field with a possibility
to build a universal tool that would help developers better monitor, recognize problems and
improve performance can be undertaken. Despite the rather narrow scope and inherent
limitations in this research, the conclusions can be applied to different web applications
and web application frameworks.
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