
 information

Article

A Buffer Management Algorithm Based on Dynamic Marking
Threshold to Restrain MicroBurst in Data Center Network

Yan Yu 1, Xianliang Jiang 1,* , Guang Jin 1, Zihang Gao 2 and Penghui Li 1

����������
�������

Citation: Yu, Y.; Jiang, X.; Jin, G.;

Gao, Z.; Li, P. A Buffer Management

Algorithm Based on Dynamic

Marking Threshold to Restrain

MicroBurst in Data Center Network.

Information 2021, 12, 369. https://

doi.org/10.3390/info12090369

Academic Editor: Carlos Filipe Da

Silva Portela

Received: 26 July 2021

Accepted: 10 September 2021

Published: 12 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Electrical Engineering and Computer, Ningbo University, 818 Fenghua Road,
Ningbo 315211, China; ylsbylsb123red@gmail.com (Y.Y.); jinguang@nbu.edu.cn (G.J.);
1911082059@nbu.edu.cn (P.L.)

2 Department of Information and Technology, Wenzhou Vocational College of Science and Technology,
Wenzhou 325006, China; gaozihang@wzvcst.edu.cn

* Correspondence: jiangxianliang@nbu.edu.cn

Abstract: The data center has become the infrastructure of most Internet services, and its network
carries different types of business flow, such as query, data backup, control information, etc. At the
same time, the throughput-sensitive large flows occupy a lot of bandwidth, resulting in the small
flow’s longer completion time, finally affecting the performance of the applications. Recent proposals
consider only dynamically adjusting the ECN threshold or reversing the ECN packet priority. This
paper combines these two improvements and presents the HDCQ method for coordinating data
center queuing, separating large and small flows, and scheduling in order to ensure flow completion
time. It uses the ECN mechanism to design load-adaptive marking threshold update algorithms for
small flows to prevent micro-bursts from occurring. At the same time, packets marked with ECN or
ACK are raised in priority, prompting these packets to be fed back to the sender as soon as possible,
effectively reducing the TCP control loop delay. Extensive experimental analysis on the network
simulator (NS-2) shows that the HDCQ algorithm has better performance in the face of micro-burst
traffic, reducing the average flow completion time by up to 24% compared with the PIAS.

Keywords: data center network; flow scheduling; active queue management; Incast; explicit congestion
notification

1. Introduction

With the rapid development of network applications, high-performance data centers
have been established worldwide to carry most of the internet traffic [1]. Traffic can
be classified into large and small or long and short flows according to their size. Since
long and short flows originate from different applications, they correspond to additional
requirements. For example, applications such as regular updates of massive data, data
reorganization, backup, and replication belong to large flows and need to ensure stable
and high throughput [2]. By contrast, applications with little traffic, such as Web search,
require fast response from users [3]. Therefore, a well-designed data center network must
provide low latency for short flows and high throughput for long flows.

In the data center network environment, simply improving the network transmission
speed does not meet the differentiated application needs, with limited resources requiring
us to target traffic characteristics. In recent years, flow priority scheduling schemes have
addressed the requirement by arranging the priority of flows. The existing methods can
be classified according to flow sizes [4,5] and deadline information [6–8], etc. The typical
scheduling design [5] progressively marks the packets of this flow with a higher to lower
priority based on the cumulative number of bytes sent by the end host, enabling short flows
to be complete in the first few high-priority queues and improving the completion time.
This method judges traffic on the end host side. However, the network state is changing.
The researcher should design a scheme that is adaptive to the specific network conditions.

Information 2021, 12, 369. https://doi.org/10.3390/info12090369 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1211-2742
https://doi.org/10.3390/info12090369
https://doi.org/10.3390/info12090369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12090369
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12090369?type=check_update&version=3

Information 2021, 12, 369 2 of 19

Hamed et al. [9] developed an algorithm based on the network state. Specifically, they
increased the priority of packets marked with the Explicit Congestion Notification (ECN)
at the switch side. Since ECNs provide congestion signals, raising the priority of these
packets reduces the completion time of the tail flows. Theoretically, increasing the priority
of ACK packets or setting them directly to the highest priority also works. It speeds up the
TCP control loop by receiving packets containing signals fast.

On the other hand, micro-burst flows [10] cannot be ignored as data center networks
continue to scale. Its emergence causes standard ECN to suffer from performance degra-
dation because the ECN threshold is generally set to a small and fixed value. When two
micro-burst flows arrive at the switch simultaneously, a micro-burst flow can reach up
to 64 KB instantaneously; thus, the fixed ECN marking threshold in the switch cannot
mitigate the microburst phenomenon [11]. We need to adjust the threshold dynamically.
Although Hamed et al. [9] used ECN signals, they did not consider dynamic adjustment of
ECN marking thresholds. In this paper, relevant experiments (in Section 3) were conducted
further in order to illustrate the effect of different thresholds on the network, and the
experimental results confirmed the phenomenon. Therefore, we expect to compensate
for the drawback of marking packets on the end host side only, which lacks real-time,
by increasing the priority of ECN and ACK packets on the network side. At the same time,
the ECN threshold is dynamically adjusted to prevent micro-burst flow. The basic idea of
changing the ECN threshold can be analogous to setting the red light time at different times
of the day. When fewer vehicles are present, the red light is set for an extended period
(with a larger ECN marking threshold). By contrast, when the number of vehicles increases
or even when there are long queues, we need to reduce the red light time so that vehicles
pass as quickly as possible.

Inspired by the above explanation, We proposed a buffer management algorithm
for the Harmony Data Center Queue (HDCQ) in this paper. The main design idea of the
algorithm is first to create three types of priorities based on the characteristics of data
center network traffic and mark them on the sender side. We set packets containing ACK
information to the highest priority, thus ensuring that the packets carrying signals reach the
sender side quickly and reducing the TCP control loop delay. Marking second and third
priorities by the cumulative number of packets ensures that small flows can be completed
first. On the switch side, we increased the priority of small or large flow packets marked
with ECN. Since ECN is readily supported and widely deployed in today’s data centers,
relying on ECN makes our design much more implementation-friendly. In order to prevent
network microbursts, the HDCQ algorithm dynamically adjusts the threshold based on
the number of packets marked by the ECN in the queue to avoid network congestion from
occurring and to maintain network robustness. Compared with other flow scheduling and
ECN-based congestion control schemes, the HDCQ algorithm can more effectively reduce
the completion time of short flows and maintain the throughput of long flows.

In summary,HDCQ’s contributions include the following:

• Unlike previous solutions, the HDCQ algorithm is deployed on both the end-host
side and network side, making full use of network resources and requiring no addi-
tional hardware support, with the exception of only simple modifications. Moreover,
dynamically adjusting the small-flow ECN marking threshold in the switch prevents
network microbursts, avoids network congestion, and increases the robustness of the
data center.

• The HDCQ algorithm speeds up the TCP control loops by setting the ACK and ECN
packets to the highest priority, reducing short flows’ completion time, especially the
tail flow completion time, and maintaining the throughput of large flows.

• We conducted experiments in Incast topology and showed that the HDCQ algorithm
outperforms both Practical Information-agnostic Flow Scheduling(PIAS) and Random
Early Detection (RED) algorithms in terms of Average Flow Completion Time (AFCT)
of small flows and the throughput of large flows. Under severe network congestion, it
has up to 24% reduction in AFCT of small flows compared to the PIAS algorithm.

Information 2021, 12, 369 3 of 19

• We evaluated PIAS, Data Center TCP(DCTCP) [12], Low Latency Data Center Trans-
port (LLDCT) [13], and HDCQ algorithms under various web searching and data
mining workloads. The results show that the HDCQ algorithm performs well in AFCT
under varying traffic. Under small flows, it reduces 2.11~4.70% compared to the PIAS
algorithm and 21.74~44.25% on average compared to the DCTCP algorithm (data
mining workload). It outperforms other algorithms under both medium and large
flows.

2. Relate Work

To motivate our design, we first introduce the schemes related to flow scheduling
and classify them into whether the traffic distribution is aware of it or not. Moreover,
because ECNs are easily supported and widely deployed in today’s data centers, there are
already algorithms designed based on ECNs, such as the DCTCP [12] algorithm, etc. We
further discuss the relevant schemes for using ECNs to prevent or mitigate microbursts.

2.1. Flow Scheduling Schemes

We present the flow scheduling schemes categorized according to whether the traffic
distribution is aware or not.

2.1.1. Information-Aware Scheduling

Various algorithms for flow scheduling assume that the size distribution of the flow is
aware, and these schemes require switches to know essential information about the flows,
such as the traffic size and deadline, etc. This information is usually given to switches
either by a central controller or by end-host applications. In general, we can divide these
methods into two different groups.

(1) Prior to being aware of flow deadlines: Deadline-Driven Delivery (D3) [6] is a
deadline-based priority scheduling for achieving differential service for various types
of flow-based deadlines. Still, it cannot optimize performance when flows of the same
priority use network resources, while D3 requires changes to the switch hardware and
is not compatible with TCP. The Deadline-Aware Datacenter TCP (D2TCP) [7] algorithm
combines the advantages of DCTCP and D3, taking into account congestion avoidance
and flow deadline, hardware, and TCP compatibility. However, D2TCP’s sender decision
only addresses the congestion level of the previous RTT and its flow demand. It cannot
control the flow rate of each flow, resulting in it being impossible to render the most
reasonable flow rate planning for the entire data center network and limiting the overall
performance improvement of the data center network. The Preemptive Distributed Quick
(PDQ) protocol [8] achieves global Earliest Deadline First (EDF) and Shortest Job First (SJF)
by collaborating among switches distributed across the data center network. However,
taking into account the rate of each flow requires the switch to provide enough information.
It involves the coordination of all switches to participate, which is difficult to achieve in
the dynamically changing data center network. (2) Prior to being aware of flow sizes: The
pFabric [4] protocol provides a priority-based and balanced solution for short and long
flows. Since data center network applications require low latency for short flows while long
flows do not, the key to reducing latency is to reduce short flow wait times. The pFabric
considered only conceptual models. It is challenging to realize this idea in the real world.

There are serious practical problems that plague the above Information-aware schedul-
ing protocols. First, we must modify the hardware or the upper-layer protocol to provide
some flow information. The extensive complexities are added to end-hosts and switches,
which is impossible. Second, such information is challenging to obtain for most applications
and may even be unavailable.

2.1.2. Information-Agnostic Scheduling

Bai et al. [5] proposed the PIAS algorithm in 2017, which is designed based on the
premise that the distribution of flows in the network is agnostic and reduces FCT by SJF.

Information 2021, 12, 369 4 of 19

The algorithm takes advantage of the capability of existing switches. It sets up a Multi-Level
Feedback Queue (MLFQ) at the sender side to downgrade packets from high-priority to
low-priority queues based on the number of bytes sent. Short flows can be completed in the
first few high-priority queues, thus reducing FCT. The PIAS is the first algorithm that does
not apply a priori knowledge, increasing pervasiveness compared to previous schemes.
However, PIAS is deployed at the end host and relies heavily on selecting multi-level
feedback queue thresholds. The heuristic algorithm used consumes an extended time to
compute the thresholds.

The most significant point of information-agnostic flow scheduling schemes is they do
not rely on a priori information about the flow and are, therefore, easy to implement in data
center networks. However, they still have several drawbacks, such as algorithms mainly
deployed on the end-host side. In the data center, the network side is more authoritative
in relieving network congestion by obtaining information about the entire network in
order to understand the traffic distribution. It is not enough to consider only limited
flow information for scheduling packets. Hamed et al. [3] mentioned that relying on the
scheduling algorithm alone, regardless of the packet history experience, results in a packet
of the flow experience queuing delay at multiple hops, resulting in an increase in flow
completion time which is not tolerable in datacenter networks. Moreover, some machine
learning solutions [14,15] are gradually applyied to data centers.

2.2. Protocols Using ECN Signals

ECN is an Active Queue Management (AQM) [16] solution widely used in data cen-
ters. For example, DCTCP mainly converts the ECN sequence into the multi-bit signal to
indicate congestion and adjust the congestion window size in order to achieve congestion
avoidance. High-bandwidth Ultra-Low Latency Protocols (HULL) [17] centers on reducing
FCT for small flows by emulating a low-rate switch port with advanced ECN marking.
When the queue length exceeds a certain threshold, the switch marks the packet and
notifies the sender to adjust the sending rate by marking the packet with ECN to avoid
network congestion. Zhang et al. [18] propose the Adaptive Marking Threshold (AMT),
which proactively tunes the marking threshold to eliminate unnecessary queueing delay
and maintains high link utilization. Yan et al. [19] designed an automatic run-time opti-
mization scheme that leverages the multi-agent reinforcement learning technique to adjust
the marking threshold at each switch dynamically. The switches are all capable of ECN
marking, so this simple signal is frequently used in algorithms that prevent micro-burst
flows. In 2017, Shan et al. [20] proposed the Combined Enqueue and Dequeue ECN Mark-
ing (CEDM) strategy based on queue rise slope and double threshold. If the instantaneous
queue length is greater than the ECN marking threshold and the queue length does not
decrease, the packet is marked; when the packet leaves the queue, the queue length is
less than the ECN threshold, or the queue length decreases, the ECN marking is revoked.
In 2018, Shan et al. [21] proposed the S-ECN scheme by further studying the generation of
microbursts, when the slope s is equal to or greater than the send rate R, all packets are
marked ECN, and the traffic is immediately slowed down; when the slope s is lower than
the send rate R, then packets are marked ECN with the probability of s/R. Finally, when
the slope is lower than or equal to zero, no packets are marked. LossPass was proposed by
Kim et al. [22] to break the trade-off of ECN by absorbing microbursts without headroom.
Kang et al. [11] proposed a MicroBurst ECN (MBECN) algorithm for the case of false
congestion signals generated by microbursts and triggering ECN mismarking.

However, most of the studies on ECN marking strategies cannot adapt to dynamic
data center network environments and make too many changes to network hardware
devices. They mainly target network measurement, load balancing, less congestion control,
and are designed for only one of the network’s metrics.

As we saw, numerous flows scheduling schemes have problems realizing them in the
real world and cannot be applied to data center networks. Marking packets with priority
at the sender side causes some packets to experience multiple queuing delays because the

Information 2021, 12, 369 5 of 19

network side’s current link state is unknown. Therefore, we need to design algorithms to
use signaling packets such as ECN within the switch in order to understand the link-state
and to avoid network congestion. On the other hand, fixed ECN thresholds cannot mitigate
microbursts in data center networks, and we need to adjust ECN thresholds dynamically.
Datacenter switches can mark ECNs on packets without additional hardware support. Our
biggest motivation is to provide a scheme that uses both end-host-side and network-side
information. It improves the priority of packets containing signals (ECNs and ACKs),
notifying the sender as soon as possible, and dynamically changing the ECN marking
threshold to adapt to the network link-state. For this purpose, we propose the HDCQ
algorithm, which improves network performance and robustness. In the next section, we
specify the design ideas of the HDCQ algorithm.

3. The HDCQ Design

This section introduces the general idea of the HDCQ design and then describes the deploy-
ment of algorithms on the end-host side (Section 3.2) and network side (Section 3.3), respectively.

We propose the HDCQ algorithm based on network traffic characteristics and network
micro-burst phenomena according to the current stage of data centers. Figure 1 shows the
overall framework of the HDCQ algorithm. We only need to configure at the sender and
switch sides and require no NIC modification or a customized TCP.

Figure 1. The overall design framework of HDCQ algorithm.

3.1. Overall Scheme

Sender: We used the PIAS [5] algorithm’s MLFQ idea, which marks packet priorities
from highest to lowest according to the cumulative number of bytes sent by the flow in the
face of agnostic flows. The PIAS sets eight priority levels, and the difficulty lies in selecting
the threshold value for each priority level. Inaccurate selection of the threshold value or
failure to match between priorities can result in loss of switch performance. The HDCQ
algorithm establishes only three types of priorities at the end host according to network
traffic characteristics: signal, small flow, and large flow packets. On the one hand, such a
design approach avoids complex threshold calculations. On the other hand, short flows
complete transmission earlier by their high priority [23].

Switch: According to the priority setting of the end host, we create the corresponding
three queues in the switch. The high priority queue receives ACKs or packets marked
with ECNs, the medium priority queue receives small flows packets, and the low priority
queue receives large flows packets. On this basis, in order to effectively deal with data
center network congestion, the HDCQ algorithm switches on the switch ECN marking
threshold and notifies the sender to reduce the sending rate in time by adjusting the
packet priority [9] (Packet Classifier model). To further prevent microbursts effectively, we
dynamically change the ECN marking threshold. To additionally avoid starving the long
flow for a long time, which affects its throughput, we consider the strict priority out queue
or the Weighted Round-Robin (WRR) [24] approach (SP/WRR Scheduler module).

Information 2021, 12, 369 6 of 19

The HDCQ algorithm also guarantees the robustness of the network in the face of
multi-congestion. As long as each switch performs ECN marking individually, congestion
is recognized independently at each hop. This ensures whether there is only one congestion
point or multiple points of congestion, and it will be reported by the corresponding switches
to end hosts.

Next, we will follow the general idea of the HDCQ algorithm framework shown in
Figure 1, from left to right, from end host to switch, and introduce the specific implementation
details of the algorithm in turn.

3.2. Sender Modifications

Designing multiple queues in a switch to meet the demand of different types of traffic is
an effective measure to improve network performance [22]. Algorithm 1 shows the specific
implementation of the HDCQ algorithm for priority marking of packets at the sender side.
First, we set the ACKs from the receiver priority Priority1 (in the switch, the priority of the
packets are marked ECN will adjust to Priority1, the specific algorithm is in Section 3.3).
Packets containing ACK signals are marked as the highest priority because such packets
require a fast response and feedback on the network condition. When a new flow is
initialized at the sender side, packets are marked as the second (medium) priority Priority2.
While the cumulative number of packets of the flow f low_size exceeds the parameter
f low_type_thresh that distinguishes between small and large flows, the subsequent packets
of those flows are marked as the third (low) priority Priority3. The threshold parameter
f low_type_thresh between Priority2 and Priority3 will be set according to the empirical
value [25].

Algorithm 1: Packet Priority Marking Algorithm
input : pkt; f low_size; f low_type_thresh;
output : pkt.priority

1 if pkt with ACK info then
2 pkt.priority← priority1;
3 else if f low_size ≤ f low_type_thresh then
4 pkt.priority← priority2;
5 else
6 pkt.priority← priority3;
7 end

The three types of priorities established by the HDCQ algorithm at the sender side are
further summarized as flowing:

• Priority1: The highest priority, which include packets containing ACK or ECN signals,
is marked as the highest priority.

• Priority2: For small flow priority, the packet marks this priority when the threshold
less than f low_type_thresh is set by the sender.

• Priority3: For the priority of large flows, when the accumulated number of packets
exceeds f low_type_thresh, the packets coming after are marked with this priority.

We design three queues in the switch Q1, Q2, and Q3 to receive packets with the
corresponding priority, i.e., Q1 corresponds to Priority1 and so on. Current data center
network switches support priority scheduling and ECN marking features, so we do not
need additional hardware configuration. With the priority scheduling feature, the switch
queues packets in order of priority, with the highest priority packets being transmitted first.
We choose the SP scheduling method instead of WRR because round-robin scheduling
breaks the priority order among packets. For SP scheduling, we set three types of priorities
at the sender side, and flows are downgraded from high priority to low priority in order
to ensure the order among packets. Next, we will describe the buffer management of the
switch, which mainly revolves around the ECN marking threshold.

Information 2021, 12, 369 7 of 19

3.3. Switch Buffer Management

The ECN marking threshold affects the performance of each traffic flow in the network.
We design a simple Incast experiment in ns-2 [26] (see Section 4 for the specific introduction)
in order to verify it. The parameters switch buffer capacity B and bottleneck link bandwidth
C are set to 100 packets and gigabytes. The switch buffer port ECN threshold is adjusted to
vary from 20 to 100. The experiment first sends one long flow L of infinite bytes during
0.5 s, followed by 300 short flows S randomly sent in parallel according to the 100 KB
uniform distribution condition.

From Figure 2a, the AFCT of short flow S increases with the ECN marking threshold,
while the value of small flow FCT is at the maximum when the ECN value is equal to the
switch buffer because the ECN threshold does not work at this time. On the other hand,
it is observed in Figure 2b that the long flow throughput varies with the ECN marking
threshold and has the highest throughput and the lowest packet loss rate when the ECN
threshold is set to 100. Yet, the small flow has the highest AFCT at this time because the long
flow occupies the link bandwidth to transmit packets, resulting in the small flow packets
not being delivered, which affects the FCT. Therefore, when we set the ECN threshold,
we need to consider both the AFCT of small flows and the throughput of large flows.
Through the experiments, we can observe that the setting of the ECN threshold marking
has a significant impact on the network performance.

20 40 60 80 100

ECN threshold

100

200

300

400

500

A
F

C
T

(m
s)

AFCT

(a) AFCT

20 40 60 80 100

ECN threshold

100

200

300

400

500

600

700

800

A
F

C
T

(m
s)

AFCT

0.010

0.015

0.020

0.025

0.030

P
ac

ke
t

lo
ss

(%
)

packet loss

(b) Throughput and loss

Figure 2. Incast environment, the impact of different ECN thresholds on short-flow AFCT, long-flow
throughput, and network packet loss rate.

Information 2021, 12, 369 8 of 19

Next, we will introduce how the HDCQ algorithm modifies the ECN marking thresh-
old at the switch side. We first provide the reasons for enabling ECN marking. Secondly,
we present the specific implementation of the HDCQ algorithm for packet priority adjust-
ment. We find that arranging packets marked with ECN to the highest priority and placing
them in queue Q1 can effectively prevent microbursts. Then, we describe the algorithm for
dynamically adjusting the ECN marking threshold. Finally, we will compare which one of
the two queueing methods, SP or WRR, is better at ensuring the throughput of long flows.

3.3.1. ECN Threshold Marking

Related studies [5] have shown that setting the threshold f low_type_thresh at the
sender side based on network history information or empirical values is efficient and robust
to microbursts. However, although existing technologies can collect sufficient network
traffic history information, in practice, this information is also unable to predict traffic
changes fully, so we need to consider ECN marking within the switch to prevent network
microbursts. For this purpose, we introduce two ECN marking threshold parameters,
per-port ECN and per-queue ECN, in the HDCQ algorithm.

• per-port ECN. The per-port ECN parameter marks the ECN threshold of the switch
port, which can provide better burst tolerance and prevent packet overflow when
traffic bursts. In addition, since we set high priority packets to dequeue first, there are
many low priority packets in the switch. When the arrival of a low-priority packet
exceeds the per-port ECN threshold, the packet will be marked ECN. Adjusting its
priority to the highest priority (Proirity1) introduces queue Q1, which notifies the
sender quickly in order to reduce the sending rate and to prevent the long flows from
being starved.

• per-queue ECN. We set the ECN marking threshold per-queue ECN in queue Q2
because queue Q2 receives packets of small flows with FCT requirements. Establishing
a dedicated ECN marking threshold satisfies the network’s sensitivity to the FCT of
small flows. When the network condition performs well, the per-queue ECN can be
set to a larger value to make full use of the link bandwidth; conversely, if the current
network link condition is terrible, the value of per-queue ECN needs to be adjusted
to a smaller value in order to reserve space in the switch buffer to prevent packets
from overflowing instantaneously, which will result in an increase in the FCT of small
flows and a decrease in the throughput of large flows. The above discussion clarifies
that the data center network needs to dynamically adjust the per-queue ECN in order
to reserve enough buffer space.

Noted that whether a small flow packet with priority2 is marked ECN is decided by
per-queue ECN and per-port ECN together. Switching on these two marking thresholds
in the switch ensures that enough packets can be stored in the switch and prevents the
switch from having too little free buffer space left to cope with the problem of ECN not
being marked in time when network microbursts occur.

3.3.2. Adjusting Packet Priority

Algorithm 2 shows a detailed implementation of adjusting the priority of a packet as
it enters the switch. The parameter Q_size indicates the number of packets in the switch
buffer, and q2_size shows the number of packets in the queue Q2.

The meaning of lines 1–3 of the algorithm determines whether an incoming packet will
make the buffers exceed the port threshold per-port ECN in the switch. If it does, then this
means that too many packets are in the link, and they to be marked ECN. Second, we place
the packet in the appropriate queue relying on priority (lines 4–21 of Algorithm 2). Queue
Q2 is designed for small-flows packets. We need to observe the situation of this queue first.
If the packet makes the cumulative number more than the threshold per-queue ECN, it will be
marked ECN, and the priority will be modified to Priority1; otherwise, the ECN of the packet
is set to 0 and enqueue Q2. Then, we manage the packet for which its priority is Priority3.

Information 2021, 12, 369 9 of 19

If the packet is marked with ECN, its priority is raised to Priority1; otherwise, enter the packet
into queue Q3. Finally, the packet marked with Priority1 directly enters into queue Q1.

Algorithm 2: Packet Enqueue Algorithm
input : pkt.ecn; pkt.priority; per_port_ecn; q2.per_queue_ecn; Q_size
output :The queue assignment for a packet.

1 if Q_size + pkt.size > per_port_ecn then
2 pkt.ecn← 1;
3 end
4 if pkt.proirty == priority2 then
5 if q2_size > per_queue_ecn then
6 pkt.ecn← 1;
7 pkt.priority← priority1;
8 Adjustment(q2.per_queue_ecn);
9 else

10 pkt.ecn← 0;
11 q2.Enqueue(pkt);
12 end
13 end
14 if pkt.priority == priority3 then
15 if pkt.ecn == 1 then
16 pkt.priority← priority1;
17 else
18 q3.Enqueue(pkt);
19 end
20 end
21 if pkt.priority == priority1 then
22 q1.Enqueue(pkt);
23 end

There are three types of packets in queue Q1: (1) ACK packets; (2) Priority3 packets
that exceed the per-port ECN port marking threshold; and (3) Priority2 packets that exceed
the per-queue ECN queue marking threshold. Among them, (2) and (3) are packets marked
with ECN, and they are placed into queue Q1 to prioritize the sender and to reduce the
sending rate and prevent network congestion.

F =

{
0, q2 ≤ 0
q2(pkt.ecn)

q2(pkt) , 0 < q2
(1)

The Adjustment function in line eight of Algorithm 2 is for adjusting the per-queue
ECN dynamically. When the network condition is poor, the queue threshold per-queue
ECN still maintains the original value, resulting in untimely feedback of marked ECN
packets. Hence, we need to reduce the per-queue ECN weight in advance. q2(pkt) means
the number of packets in queue Q2 per RTT cycle, and q2(pkt.ecn) represents the packets
marked with ECN, which reflect the congestion of the network. As shown in Equation (1),
the current network load is decided by the ratio.{

β = (1− k)× β + k× F
per-queue ECN = β× 100%

0 < F < 1, 0 < k < 1, 0 < β < 1
(2)

Since the network is time-varying, the condition in the following period depends on
the accumulated network changes in the previous period. As shown in the Equation (2),
we perform a smoothing equation, β indicates the packet percentage of the queue, and
it is multiplied by 100 is the value of per-queue ECN. k is the smoothing parameter that

Information 2021, 12, 369 10 of 19

regulates the weights, and it is taken to prevent the value of β from changing too much
each time.

In the actual network, when packets are dequeued, the high sequence number may
leave the queue earlier than the lower’s, resulting in packet priority reversal, and it affects
network performance. If using the SP enqueuing method, although the orderliness between
packets is guaranteed [5], it may result in long flow packet starvation. We improve on
this basis and propose the SP+WRR dequeuing method. The specific dequeuing scheme
is shown in Algorithm 3. Queue Q1 packets are all out of queue first (following the SP
method, Algorithm 3, lines 1–3), and then packets in queues Q2 and Q3 are queued out
following the WRR method. The parameter w controls the dequeuing weights of large and
small flows, and after queue Q2 dequeues w packets, queue Q3 dequeues one packet.

Algorithm 3: Packet Dequeue Algorithm
input : pkt.priority;w;q1;q2;q3
output :Packets that are out of the queue.

1 if q1.length > 0 then
2 pkt=q1.Dequeue();
3 else
4 if q2.length > 0 then
5 if w > 0 then
6 w← w− 1;
7 pkt=q2. Dequeue();
8 return pkt;
9 else

10 w← 5;
11 end
12 end
13 if q3.length > 0 then
14 pkt=q3.Dequeue();
15 end
16 end
17 return pkt;

Keeping the same parameters and environment as is described in Section 4, we
compare the SP and SP+WRR dequeuing scheme. The experimental results are shown in
Figure 3. Although the AFCT of the SP scheme is slightly smaller than that of SP+WRR,
the throughput of the SP+WRR scheme is much better than SP’s, which is due to the low
latency and high throughput being the two relative performance metrics of data networks.
We sacrificed some latency but obtained high throughput in return. The dequeuing method
we designed is effective, and when w = 5, we obtained the best result.

100 200 300 400 500

Number of parallel senders

100

150

200

250

300

A
F

C
T

(m
s)

dequeue algorithm
SP

SP+WRR

(a) AFCT

100 200 300 400 500

Number of parallel senders

100

200

300

400

500

T
h

ro
u

g
h

p
u

t

dequeue algorithm
SP

SP+WRR

(b) Throughput

Figure 3. Incast environment: the impact of different dequeue method thresholds on short-flow
AFCT and long-flow throughput.

Information 2021, 12, 369 11 of 19

3.3.3. Packet Dequeue Scheduling

In summary, the design idea of the HDCQ algorithm contains the following advantages.

• The HDCQ algorithm sets the signaling packets to the highest priority to prevent
congestion in the data center network. The incoming small and large flows are divided
by the MLFQ method and marked as Priority2 and Priority3 to ensure the AFCT of
small flows and the throughput of large flows.

• The HDCQ algorithm creates only three queues in the switch, reducing the space
complexity of the algorithm and keeping the switch in a shallow buffer state to ensure
low latency.

• The HDCQ algorithm switches on the per-port ECN and per-queue ECN parameters
to adjust the priority of packets according to their ECN marking, which does not bring
about priority reversal since only a small number of packets are marked with ECN.

• The HDCQ algorithm uses the SP+WRR queue-out method to prevent the large flows
from being starved and by comparing with other experiments prove its effectiveness.

4. The HDCQ’s Parameters

Before starting the experiment, we need to determine the values of the parameters of
the HDCQ algorithm. We first introduced the setting of the Incast experiment and then
analyzed the choice of the HDCQ algorithm’s per-port ECN, k, and β parameter values.

4.1. Incast Experimental Topology and Parameter

This paper uses NS-2 simulation software to build the experimental environment and
establish the Incast topology. As shown in Figure 4, where Router1 and Router2 represent
the queue of the switch, Si(i = 2, 3, . . . , N) represents the parallel senders, and R represents
the receiver. Incast is a many-to-one communication mode. A parent server initiates a
request to a group of nodes, and all nodes respond almost simultaneously, resulting in
many nodes sending TCP data flows to one machine. Incast easily results in the switch
buffer overflow. We need to verify whether the HDCQ algorithm can effectively reduce
network congestion in the Incast environment.

Figure 4. The overall design idea of HDCQ algorithm.

The default parameter values for all experiments in this paper are shown in Table 1.
To closely match the actual data center network traffic characteristics, we send short flow
packets after the long flow runs for Sst seconds.

Information 2021, 12, 369 12 of 19

Table 1. Incast environment: experimental parameters for different ECN marking thresholds.

Parameters Description Value

C Bottleneck link bandwidth 1000 Mbps

B The size of the buffer that the
switch contains 240 pkts

L Number of long flows 1
S Number of short flows 100∼500

Sst
The time when the short flows

starts to be sent 0.5 s

4.2. Parameter Analysis

This section analyzes the effect of per-port ECN, β, and k parameters in the HDCQ
algorithm. We conduct experiments in the Incast environment. To make the experimental
results more distinct, we modify the number of long flows to 3 to build more intense traffic
conflicts. The remaining parameter settings are shown in Table 1.

4.2.1. Per-Port ECN

The per-port ECN is marked based on the total number of packets in the switch, which
controls the rest buffer space. We set the ECN marking threshold to 60% (144 packets) of
the switch buffer [12]. To verify its applicability, we set the per-port ECN threshold to 40%
(96 packets), 50% (120 packets), 60% (144 packets), and 70% (168 packets) of the switch
buffer, and the rest experiment parameters are shown in Table 1. Suppose the results show
a significant difference between the percentages, the value per-port ECN needs to be more
fine-grained to find the optimal threshold.

The experimental results are shown in Figure 5. The per-port ECN value variation
does not affect the network to a great extent because it mainly ensures a certain amount of
buffer space within the switch to make full use of the bandwidth. The per-port ECN plays
a secondary role in the HDCQ algorithm, and whether a packet is marked ECN or not re-
quires further determination by the parameter per-queue ECN threshold. For convenience,
the subsequent experiments fix the per-port ECN as 60%(144 packets) of the switch buffer.

100 200 300 400 500

Number of parallel senders

100

150

200

250

300

A
F

C
T

(m
s)

Per-port
ECN thresholds

96

120

144

168

Figure 5. AFCT for short flows with different marking thresholds for per-port ECN.

4.2.2. β

As is shown in Equation (2), per-queueECN = β× 100%.We investigate the effect of
selecting β primaries on the convergence speed of the HDCQ algorithm by setting 30%
(24 packets), 40% (32 packets), 50% (40 packets), 60% (48 packets), and 70% (56 packets)

Information 2021, 12, 369 13 of 19

primaries of a single queue. The results are shown in Figure 6. At first, all initial values
of per-queue ECN had little effect on the AFCT of small flows, with the number of small
flows sent in parallel increasing, and the AFCT is the lowest when the β initial value is set
to 40% and 50%. When a number of short flows are sent in parallel N = 500 and β is 40%,
the AFCT increases suddenly, indicating that this value cannot effectively cope with the
gradual increase in network microbursts; thus, we chose β = 50% (40 packets).

100 200 300 400 500

Number of parallel senders

100

200

300

400

A
F

C
T

(m
s)

β
24

32

40

48

56

Figure 6. AFCT for short flows with different initial β values.

4.2.3. k

The parameter k is a smoothing parameter for the dynamically adjusted per-queue ECN
values, and its value should not be large. In this paper, we chose the values of 0.025, 0.05,
0.075, and 0.1, with 0.025 experiments between each value, and fix per-portECN = 144 (60%
of the switch buffer) and β = 50%; the rest of the parameters are shown in Table 1. The results
in Figure 7a show that the selection of k value has a significant impact on the experimental
results, and the optimal value of k is between [0.05∼0.075]. Therefore, we chose 0.055, 0.06,
0.065, 0.07, and 0.075 for further experiments, and the results are shown in Figure 7b. We can
find that when k = 0.06, the results are all better than the other values.

100 200 300 400 500

Number of parallel senders

0

100

200

300

A
F

C
T

(m
s)

k
0.025

0.05

0.075

0.1

(a) from 0.025 to 0.1

100 200 300 400 500

Number of parallel senders

0

50

100

150

200

250

A
F

C
T

(m
s)

k
0.05

0.055

0.06

0.065

0.07

0.075

(b) from 0.05 to 0.075

Figure 7. AFCT for short flows with different k values.

5. Experiment Results

In this section, we first conduct two comparison experiments in Incast environment [27].
The first experiment sends concurrent short flows and analyzes the experimental results by
comparing HDCQ with RED [28] and PIAS algorithms. After that, we increase the number
of small flows and compare the FCT of small flows under various algorithms when the

Information 2021, 12, 369 14 of 19

network state is more deplorable. Finally, we experiment with realistic workloads by using
the widely accepted data center traffic distribution, i.e., data mining and web search. We built
a client/server model, generated dynamic traffic [24], and measured the FCT.

5.1. Incast Experiment

We control the microburst degree by changing the concurrent number of small flows.
The number of long flows is set at L = 5, and the rest specific parameters are shown in
Table 1. With the parameter analysis in Section 4, we set the variables at per-portECN = 144
(60% of the switch buffer), β = 0.5, and k = 0.06.

The experiments first send the packets of long flows to enter the switch. When filling
a certain number of buffer, we start sending short flows containing different numbers of
bytes randomly in order to recreate the micro-burst phenomenon caused by one node
sending requests and multiple nodes correspondingly to the data center.

The results are shown in Figure 8. Figure 8a indicates that the AFCT of short flows in
the HDCQ algorithm is better than the RED (sender side is set DCTCP algorithm) and PIAS
algorithm. Figure 8b reveals that when the number of short flows is small, the throughput
of long flows does not differ much among the schemes. As the number of short flows
increases, resulting in the possibility of microbursts in the network, the throughput of
long flows of the HDCQ algorithm gradually outperforms the RED and PIAS algorithm.
Indicating that the HDCQ algorithm prevents network microbursts effectively.

100 200 300 400 500

Number of parallel senders

100

150

200

250

300

A
F

C
T

(m
s)

scheme
RED

PIAS

HDCQ

(a) AFCT

100 200 300 400 500

Number of parallel senders

0

100

200

300

400

T
h

ro
u

g
h

p
u

t

scheme
RED PIAS HDCQ

(b) Throughput

Figure 8. Incast environment: the impact of different scheme on short-flow AFCT and long-flow
throughput.

We modify the network parameter C = 10Gbps and S = 1000∼4000 flows and
observe the performance of RED, PIAS, and HDCQ algorithms in the case of severe network
congestion. The results are shown in Figure 9. At S = 1000 flows, the AFCT when executing
these three schemes is almost the same. However, as the number of concurrent short flows
keeps increasing, the AFCT of PIAS and RED algorithms still maintain similar AFCT, while
HDCQ is gradually more diminutive than the other two algorithms. At S = 3000 flows,
the difference between the two reaches the maximum value, i.e., it comes to 24%. Thus,
we verify that the HDCQ algorithm outperforms the RED and PIAS algorithms for poor
network conditions, indicating that the HDCQ algorithm is robust. The queue management
scheme we designed in the switch is reasonable and adequate. The difference in throughput
under each algorithm is not significant because of severe network congestion.

Information 2021, 12, 369 15 of 19

1000 1500 2000 2500 3000 3500 4000

Number of parallel senders

200

400

600

800

1000

A
F

C
T

(m
s)

scheme
RED

PIAS

HDCQ

Figure 9. Incast environment, the impact of different scheme on short-flow AFCT.

5.2. Realistic Traffic Model

In the realistic traffic model, the topology is a client application on a machine that
connects to the rest of 15 machines by establishing five persistent TCP connections. In the
experimental run, the client application periodically generates requests to other machines
for data by using available connections, and the application running on the other 15 ma-
chines responds with the data. The traffic is sent as Poisson flow, and the sending time of
the traffic obeys the negative exponential distribution. The required load size calculates
each flow’s average sending interval time, which is the negative exponential distribution
value. We evaluated the PIAS, DCTCP, LLDCT, and HDCQ algorithms while varying the
network loads from 0.1 to 0.9(0.1 per interval). We ran 10,000 flows for each setting.

Figure 10 provides the overall AFCT for the web search workload and the data mining
workload at various loads. Overall, HDCQ performs the best, and the AFCT of HDCQ
can be as low as 8.91% in terms of web searching compared to the PIAS algorithm and
up to 14.78% compared to the DCTCP algorithm. As for data mining, HDCQ’s AFCT can
reach as low as 5.46% compared to the PIAS algorithm and up to 11.31% compared to the
DCTCP algorithm.

0.2 0.4 0.6 0.8

Load

10

11

12

13

14

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(a) Data mining workload

0.2 0.4 0.6 0.8

Load

10

11

12

13

14

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(b) Web search workload

Figure 10. Overall average flow completion times for both workloads.

We further break down the FCT across different flow sizes. Figures 11 and 12 show
the FCT across small flows (a,b) 0~100 KB, (c) medium flows 100 KB~10 MB, and (d)
large flows 10 MB~∞, respectively. Through conducting experiments, we observed the
following: First, in both the average and 99th percentile FCTs of small flows, The HDCQ

Information 2021, 12, 369 16 of 19

algorithm performs slightly better than the PIAS algorithm and far better than the other
two algorithms (LLDCT and DCTCP). Figure 11a shows that the AFCT values reduced
from 2.11% to 4.70% compared to the PIAS algorithm and 21.74% to 44.25% compared
to the DCTCP algorithm. The HDCQ algorithm is similar to the PIAS algorithm and
much smaller than the DCTCP algorithm, with a range of 70.20% to 80.10%, as shown in
Figure 11b. Similarly, under web search, as shown in Figure 12a, it is 42.19~84.85% smaller
than DCTCP. Under 99th percentile FCT of short flows (Figure 12b), it is 80~95% smaller.
Second, the HDCQ algorithm also performs well in medium flows, effectively reducing
FCT by up to 6.61~24.26% in data mining compared to the LLDCT algorithm and reduces
28.72% compared to the LLDCT in the web search. Third, the HDCQ algorithm performs
slightly better than the other three algorithms under FCT of large flows. When designing
the HDCQ algorithm, we mainly considered maintaining the throughput of long flows. We
effectively prevent microbursts and improved the network’s overall performance through
methods such as our design of the SP+WRR queuing mechanism and raising the priority
of packets marked by the ECN.

0.2 0.4 0.6 0.8

Load

0.2

0.3

0.4

0.5

0.6

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(a) 0~100 KB: avg

0.2 0.4 0.6 0.8

Load

0

1

2

3

4

5

6

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(b) 0~100 KB: 99th

0.2 0.4 0.6 0.8

Load

2

3

4

5

6

7

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(c) 100KB~10 MB: avg

0.2 0.4 0.6 0.8

Load

220

240

260

280

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(d) 10 MB~∞: avg

Figure 11. Data mining workload: FCT across different flow sizes.

Information 2021, 12, 369 17 of 19

0.2 0.4 0.6 0.8

Load

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(a) 0~100 KB: avg

0.2 0.4 0.6 0.8

Load

0

5

10

15

20

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(b) 0~100 KB: 99th

0.2 0.4 0.6 0.8

Load

10

20

30

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(c) 100 KB~10MB: avg

0.2 0.4 0.6 0.8

Load

20

40

60

80

100

120

A
F

C
T

(m
s)

scheme
DCTCP

LLDCT

PIAS

HDCQ

(d) 10 MB~∞: avg

Figure 12. Web search workload: FCT across different flow sizes. The performance of DCTCP and
LLDCT is outside the plotted range of (b).

Using large-scale NS-2 simulations, we showed that HDCQ scales to multi-hop topolo-
gies and performs the best among all schemes. The HDCQ algorithm speeds up the network
TCP control loop in the switch by setting the ACK to the highest priority (Priority1) on the
sender side and raising its priority within the switch for packets marked with an ECN to
maintain the data center network. On the other hand, the PIAS algorithm only deploys
the algorithm at the end host and lacks feedback to the network, thus performing worse
than the HDCQ algorithm. While helping to speed up the FCT of small flows, it also
indirectly improves large flows’ FCT. Meanwhile, combined with our SP+WRR out queue-
ing algorithm, the HDCQ algorithm still performs the best in the AFCT for medium and
large flows.

6. Conclusions

This paper presents the HDCQ algorithm based on the data center network micro-
burst phenomenon, which establishes multi-priority queues for flows based on the different
characteristics of ACK/ECN packets, short-flows, and long-flows packets. In the switch,
the HDCQ algorithm dynamically adjusts the ECN marking threshold according to the
current buffer space and adjusts the packet priority according to the packet features. Exper-
imental results demonstrate that, compared with RED and PIAS algorithms, the HDCQ
algorithm proposed in this paper effectively reduces the AFCT of short flows by up to 24%
while maintaining the throughput of long flows. We plan to investigate the impact on FCT
and throughput when dynamically marking the ECN threshold through extensive experi-
ments in the future, to quantify the results through theoretical analysis, and to develop the
HDCQ algorithm in order to enhance the network performance of the data center with few
changes to the network.

Information 2021, 12, 369 18 of 19

7. Patents

The authors of this work have applied for a patent and that patent is undergoing
substantive examination.

Author Contributions: Conceptualization and methodology, Y.Y. and X.J.; software and validation,
Y.Y. and X.J.; formal analysis, Y.Y.; investigation and resources, Y.Y.; data curation, Y.Y. and X.J.;
writing—original draft preparation, Y.Y.; writing—review and editing, Y.Y., P.L. and G.J.; visualization,
G.J.; supervision, G.J. and Z.G.; project administration, G.J. and X.J.; funding acquisition, G.J. and
Z.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61601252),
the Natural Science Foundation of Zhejiang Province (LY20F020008, LY21F020006), the Ningbo Natu-
ral Science Foundation (202003N4085, 2019A610088), the Ningbo Public Welfare Project (202002n3109),
the Basic Scientific Research Project of Wenzhou (G2020021), the Key Laboratory (Engineering Cen-
ter) Construction Project of Wenzhou (ZD202003), the Ningbo Key Science and Technology Plan
(2025) Project (2018B10075, 2019B10125, and 2019B10028), the Special Research Funding from the
Marine Biotechnology and Marine Engineering Discipline Group in Ningbo University (422004582),
the Quzhou Science and Technology Planning Project (2020k06), Key Project of National Natural
Science Foundation of China (u20a20121).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript
or in the decision to publish the results.

References
1. Zhang, J.; Yu, F.R.; Wang S. Load balancing in data center networks: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2324–2352.

[CrossRef]
2. Zeng, G.X.; Hu, S.H.; Zhang, J.X.; Chen, K. Transport Protocols for Data Center Networks: A Survey. J. Comput. Res. Dev. 2020, 57, 74.
3. Rezaei, H.; Vamanan, B. ResQueue: A Smarter Datacenter Flow Scheduler. In Proceedings of the Web Conference 2020 (WWW’20),

Taiwan, China, 20–24 April 2020; pp. 2599–2605.
4. Alizadeh, M.; Yang, S.; Sharif, M.; Katti, S.; McKeown, N.; Prabhakar B.; Shenker, S.pFabric: Minimal near-optimal datacenter

transport. In Proceedings of the Special Interest Group on Data Communication (SIGCOMM), Hong Kong, China, 12–16 August
2013; pp. 435–446.

5. Bai, W.; Chen, L.; Chen, K.; Han, D.S.; Tian, C.; Wang, H. PIAS: Practical information-agnostic flow scheduling for commodity
data centers. IEEE/ACM Trans. Netw. 2017, 25, 1954–1967. [CrossRef]

6. Wilson, C.; Ballani, H.; Karagiannis, T.; Rowtron, A. Better never than late: Meeting deadlines in datacenter networks. In Proceed-
ings of the Special Interest Group on Data Communication (SIGCOMM), Toronto, ON, Canada, 15–19 August 2011; pp. 50–56.

7. Vamanan, B.; Hasan, J.; Vijaykumar, T.N. Deadline-aware datacenter tcp (d2tcp). In Proceedings of the Special Interest Group on
Data Communication (SIGCOMM), Helsinki, Finland, 13–17 August 2012; pp. 115–126.

8. Hong, C.Y.; Caesar, M.; Godfrey, P.B. Finishing flows quickly with preemptive scheduling. In Proceedings of the Special Interest
Group on Data Communication (SIGCOMM), Helsinki, Finland, 13–17 August 2012; pp. 127–138.

9. Rezaei, H.; Malekpourshahraki, M.; Vamanan, B. Slytherin: Dynamic, network-assisted prioritization of tail packets in datacenter
networks. In Proceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN),
Hang Zhou, China, 30 July–2 August 2018; pp. 1–9.

10. Shan, D.; Ren, F.; Cheng, P.; Shu, R.; Guo, C.X. Micro-burst in data centers: Observations, analysis, and mitigations. In Proceedings
of the 2018 IEEE 26th International Conference on Network Protocols (ICNP), Cambridge, UK, 24–27 September 2018; pp. 88–98.

11. Kang, K.; Zhang, J.H.; Jin, J.H.; Shen, D.; Luo, J.Z.; Li, W.X.; Wu, Z.A. MBECN: Enabling ECN with micro-burst traffic in
multi-queue data center. In Proceedings of the IEEE International Conference on Cluster Computing, Albuquerque, NM, USA,
23–26 September 2019; pp. 1–12.

12. Alizadeh, M.; Greenberg, A.; Maltz, D.A.; Padhye, J.; Patel, P.; Prabhakar, B.; Sengupta, S.; Sridharan, M. Data center tcp (dctcp).
In Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi, India, 30 August–3 September 2010; pp. 63–74.

13. Munir, A.; Qazi, I.A.; Uzmi, Z.A.; Mushtaq, A.; Ismail, S.N.; Iqbal, M.S.; Khan, B. Minimizing flow completion times in data
centers. In Proceedings of the 32nd IEEE International Conference on Computer Communications, Turin, Spain, 14–19 April 2013;
pp. 2157–2165.

http://doi.org/10.1109/COMST.2018.2816042
http://dx.doi.org/10.1109/TNET.2017.2669216

Information 2021, 12, 369 19 of 19

14. Giannakas, F.; Troussas, C.; Voyiatzis, I.; Sgouropoulou, C. A deep learning classification framework for early prediction of
team-based academic performance. Appl. Soft Comput. 2021, 106, 107355. [CrossRef]

15. Giannakas, F.; Troussas, C.; Krouska, A.; Sgouropoulou, C.; Voyiatzis, I. XGBoost and Deep Neural Network Comparison: The
Case of Teams’ Performance. In Proceedings of the 2021 International Conference on Intelligent Tutoring Systems, Cambridge,
UK, 7–11 June 2021; pp. 343–349.

16. Liu, Z.F.; Sun, J.S.; Hu, S.Q.; Hu, X.L. An Adaptive AQM Algorithm Based on a Novel Information Compression Model. IEEE
Access 2018, 6, 31180–31190. [CrossRef]

17. Alizadeh, M.; Kabbani, A.; Edsall, T.; Prabhakar, B.; Vahdat, A.; Yasuda, M. Less is more: Trading a little bandwidth for ultra-low
latency in the data center. In Proceedings of the Usenix Conference on Networked Systems Design and Implementation (NSDI),
San Jose, CA, USA, 25–27 April 2012; pp. 253–266.

18. Zhang, T.; Wang, J.X.; Huang, J.W.; Huang, Y.; Chen, J.; Pan, Y. Adaptive marking threshold method for delay-sensitive TCP in
data center network. J. Netw. Comput. Appl. 2016, 61, 222–234. [CrossRef]

19. Yan, S.Y.; Wang, X.L.; Zheng, X.L.; Xia, Y.B.; Liu, D.R.; Deng, W.S. ACC: Automatic ECN tuning for high-speed datacenter
networks. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, Online, 23–27 August 2021; pp. 384–397.

20. Shan, D.; Ren, F. Improving ECN marking scheme with micro-burst traffic in data center networks. In Proceedings of the IEEE
Conference on Computer Communications (INFOCOM), Atlanta, GA, USA, 1–4 May 2017; pp. 1–9.

21. Shan, D.; Ren, F. ECN Marking With Micro-Burst Traffic: Problem, Analysis, and Improvement. IEEE/ACM Trans. Netw. 2018, 26,
1533–1546. [CrossRef]

22. Kim, G.; Lee, W. Absorbing microbursts without headroom for data center networks. IEEE Commun. Lett. 2019, 23, 806–809.
[CrossRef]

23. Peng, Y.; Chen, K.; Wang, G.H.; Bai, W.; Ma, Z.Q.; Gu, L. Hadoopwatch: A first step towards comprehensive traffic forecasting in
cloud computing. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Toronto, ON, Canada, 27
April–2 May 2014; pp. 19–27.

24. Bai, W.; Chen, K.; Chen, L.; Kim, C.H.; Wu, H.T. Enabling ECN over generic packet scheduling. In Proceedings of the 12th
International on Conference on emerging Networking Experiments and Technologies, Irvine, CA, USA, 12–15 December 2016;
pp. 191–204.

25. Noormohammadpour, M.; Raghavendra, C. Comparison of flow scheduling policies for mix of regular and deadline traffic in
datacenter environments. arXiv 2017, arXiv:1707.02024.

26. The Network Simulator NS-2. Available online: http://www.isi.edu/nsnam/ns/ (accessed on 4 November 2011).
27. Almasi, H.; Rezaei, H.; Chaudhry, M.U.; Vamanan, B. Pulser: Fast Congestion Response using Explicit Incast Notifications for

Datacenter Networks. In Proceedings of the 2019 IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), Paris, France, 1–3 July 2019; pp. 1–6.

28. Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1993, 1, 397–413.
[CrossRef]

http://dx.doi.org/10.1016/j.asoc.2021.107355
http://dx.doi.org/10.1109/ACCESS.2018.2844407
http://dx.doi.org/10.1016/j.jnca.2015.10.012
http://dx.doi.org/10.1109/TNET.2018.2840722
http://dx.doi.org/10.1109/LCOMM.2019.2907087
http://www.isi.edu/nsnam/ns/
http://dx.doi.org/10.1109/90.251892

	Introduction
	Relate Work
	Flow Scheduling Schemes
	Information-Aware Scheduling
	Information-Agnostic Scheduling

	Protocols Using ECN Signals

	The HDCQ Design
	Overall Scheme
	Sender Modifications
	Switch Buffer Management
	ECN Threshold Marking
	Adjusting Packet Priority
	Packet Dequeue Scheduling

	The HDCQ's Parameters
	Incast Experimental Topology and Parameter
	Parameter Analysis
	Per-Port ECN
	
	k

	Experiment Results
	Incast Experiment
	Realistic Traffic Model

	Conclusions
	Patents
	References

