
  information

Article

A Guided Scratch Visual Execution Environment to Introduce
Programming Concepts to CS1 Students

Raquel Hijón-Neira 1 , Cornelia Connolly 2,3,* , Daniel Palacios-Alonso 1 and Oriol Borrás-Gené 1

����������
�������

Citation: Hijón-Neira, R.; Connolly, C.;

Palacios-Alonso, D.; Borrás-Gené, O.

A Guided Scratch Visual Execution

Environment to Introduce

Programming Concepts to CS1

Students. Information 2021, 12, 378.

https://doi.org/10.3390/info12090378

Academic Editor: Enrico Denti

Received: 27 August 2021

Accepted: 13 September 2021

Published: 17 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Universidad Rey Juan Carlos, 28032 Madrid, Spain;
raquel.hijon@urjc.es (R.H.-N.); daniel.palacios@urjc.es (D.P.-A.); oriol.borras@urjc.es (O.B.-G.)

2 School of Education, National University of Ireland Galway, H91 TK33 Galway, Ireland
3 Lero, SFI Centre for Software Research, National University of Ireland Galway, H91 TK33 Galway, Ireland
* Correspondence: cornelia.connolly@nuigalway.ie

Abstract: First-year computer science (CS1) university students traditionally have difficulties under-
standing how to program. This paper describes research introducing CS1 students to programming
concepts using a Scratch programming language guided visual execution environment (VEE). The
concepts addressed are those from an introductory programming course (sequences, variables, op-
erators, conditionals, loops, and events and parallelism). The VEE guides novice students through
programming concepts, explaining and guiding interactive exercises executed in Scratch by using
metaphors and serious games. The objective of this study is, firstly, to investigate if a cohort of
124 CS1 students, from three distinct groups, studying at the same university, are able to improve
their programming skills guided by the VEE. Secondly, is the improvement different for various
programming concepts? All the CS1 students were taught the module by the same tutor in four
2-h sessions (8 h), and a qualitative research approach was adopted. The results show students
significantly improved their programming knowledge, and this improvement is significant for all
the programming concepts, although greater for certain concepts such as operators, conditionals,
and loops than others. It also shows that students lacked initial knowledge of events and paral-
lelism, though most had used Scratch during their high school years. The sequence concept was
the most popular concept known to them. A collateral finding in this study is how the students’
previous knowledge and learning gaps affected grades they required to access and begin study at the
university level.

Keywords: programming; visual execution environment; CS1; metaphors

1. Introduction

Computer programming education is key to the acquisition of 21st-century skills
such as creativity, critical thinking, problem solving, communication and collaboration,
social–intercultural skills, productivity, leadership, and responsibility [1]. Studies in many
countries report using Scratch or games [2–4]. That being so, it is still unclear the best
order in which to introduce programming concepts to CS1 students. There are difficulties
teaching basic concepts such as program construction [5], loops [6], control structures, and
algorithms [7]. Difficulties may arise from poor or even a lack of a proper teaching method-
ology [8,9], and teachers need some guidance to approach this task efficiently [10,11].

Papert argued that a child able to program a computer would be able to gain an
actionable understanding of probabilistic behavior, as, through such activity, they would
be connected with empowering knowledge about the way things work [12]. His view
was that programming was a way to connect the programmer with cognitive science,
in that programming enables one to articulate ideas explicitly and formally and to see
whether the idea works or not. Papert encouraged one to ‘look at programming as a
source of descriptive devices’ [12], predicting that, ‘in a computer-rich world, computer
languages that simultaneously provide a means of control over the computer and offer

Information 2021, 12, 378. https://doi.org/10.3390/info12090378 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-3833-4228
https://orcid.org/0000-0001-9778-5569
https://orcid.org/0000-0001-6063-4898
https://orcid.org/0000-0002-1866-1857
https://doi.org/10.3390/info12090378
https://doi.org/10.3390/info12090378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12090378
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12090378?type=check_update&version=1


Information 2021, 12, 378 2 of 15

new and powerful descriptive languages for thinking will . . . have a particular effect on
our language for describing ourselves and our learning’ (p. 98). Affected by the learning
procedure, instructional materials, and technology used, along with metacognitive factors,
there are many variables involved in learning to code. Others emphasized that well-
designed lessons with interesting activities become meaningful only when they affect the
students in the process [13]. It was also asserted that innovations in the methods of teaching
and the use of teaching aids may improve students’ feeling of success [14] and may help
them develop confidence, which correlates with the practices and theories of Piaget and
Vygotsky and the adoption of constructivism in teaching [15–19].

Many approaches have been implemented to help students learn programming for the
first time, for example with different devices such as using mobile devices [20] or different
methodologies such as pair programming [21]. Students have traditionally encountered
difficulties and misconceptions on the concepts learned [22]. Along with the learning
of programming, researchers and educators in higher education aim to improve student
computational thinking (CT) skills using appropriate interventions [23] and approaches
using games for teaching and learning, CT principles, and concepts [24].

In response to this proposition, the contribution of this paper is a rigorous study aimed
at determining a satisfactory way to introduce basic programming concepts and CT at the
CS1 level and inquire how this affects students’ learning gains. This paper evaluates a
Guided Scratch Visual Executing Environment developed for CS1 students as a method to
teach, develop, practice, and learn computer programming. To address this, there are two
research questions.

1. Can programming concepts be improved with a Visual Execution Environment for
this cohort for CS1 students?

2. Which of the programming concepts tend to be more easily understood, and which
are more difficult?

The concepts addressed here are those in a traditional ‘Introduction to Programming’
course such as: sequences, flowcharts, variables and types of data, operators, conditionals,
loops, events, and parallelism.

This research proposal investigates if a cohort of 124 CS1 students, from three distinct
groups, studying at the same university, are able to improve their programming skills
guided by the VEE. Secondly, it investigates if the improvement varies for different pro-
gramming concepts. The CS1 students were taught the module by the same tutor, and the
procedure included a review of material in an interactive way using the Guided Scratch
VEE, where there was an explanation of the concepts with prepared ad-hoc exercises based
on metaphors for each concept and practice with proposed exercises in Scratch. This was
conducted in four 2-h sessions (8 h). There was a pre- and post-test evaluation to measure
the gains in students’ learning. The same test was used for the pre-test and the post-test,
consisting of 27 short-answer questions covering the programming concepts addressed.
The results demonstrate students significantly improved their programming knowledge,
and this improvement is significant for all the programming concepts, although greater
for certain concepts such as operators, conditionals, and loops. Results also demonstrate
that students lacked initial knowledge of events and parallelism, although most had used
Scratch in high school. The sequence concept was the most popular. A collateral finding
with the study is how the students’ previous knowledge and learning gap affected the
grades with which they gain access to study at university.

2. Theoretical Framework
2.1. Learning Programming

It has been argued that programming is simply a very difficult subject or skill, and
therefore, it is unsurprising that students find it challenging [25]. Others have investigated
the factors that indicate students’ ability to learn programming, demonstrating mathemat-
ical ability, processing capacity, analogical reasoning, conditional reasoning, procedural



Information 2021, 12, 378 3 of 15

thinking, and temporal reasoning [26]. Therefore, a competent programmer must master
multiple skills.

Brooks [27] states, “I believe the hard part of building software to be the specification,
design and testing of this conceptual construct, not the labor of representing it and testing
the fidelity of the representation. We still make syntax errors, to be sure; but they are fuzz
compared to the conceptual errors in most systems. If this is true, building software will
always be hard.” (p. 182). First-year computing students (CS1), in their first semester of
learning how to program, are likely to encounter many of the challenges Brooks highlights.
Apart from understanding the algorithm design process and algorithm creation, novice
programmers are required to master abstract conceptualization, the programming language,
and the environment in which they will be working.

Many CS1 students are introduced to the simplest of computer programs, where only
the basic concepts of the main function and system output are presented, such as ‘hello
world’. Additional components are included over the course of the term, and by the end,
students have gradually been introduced to the complete language. Students are expected
to practice the use of the programming concepts by undertaking various exercises, until
they have demonstrated an ability to author programs given specifications [28].

The process of transforming system design specifications into working program code
is sequential, involving five particular components: specification, algorithm, design, code,
and test. The specification (normally written in plain language) draws the students to
an understanding of the problem domain and devises an appropriate algorithm, often
ensuring the specification is re-written in a precise manner that is close to implementation.
Drawing heavily on abstraction, the algorithm is translated into programming concepts
through design and subsequently into actual code. Given a correct design, this stage should
not be challenging and is determined by the programming language. The final stage is that
of testing, which leads to the implementation of the program. This sequence is the most
appropriate in developing an efficient computer program; however, students often leap
into the final ‘code’ section before any specification or design takes place. Many novice
programmers tend to concentrate on syntax [29], as, often, such approaches are reinforced
in the manner the topic is presented in both lectures and books.

Programming draws on many skills such as problem solving, abstraction, mathematics
logic, procedural, testing, debugging, and professional development [26], and these skills
cannot be applied in isolation. They are applied in the context of a particular problem
or problem area. In an educational environment, the degree program a student is follow-
ing will often determine the amount of programming conducted, the language, and the
environment.

2.2. Complementary Approaches for Teaching Programming and CT

Many approaches have been identified to help students trying to master computer
programming when they are first introduced to it, such as by using an adaptive virtual
reality platform [30], as well as through solving problems in artificial intelligence [31],
simulation games [32], serious games [33,34], using robots [35], or comparisons between
block or text programming [36,37]. In this vane, other important contributions have been
highlighted for helping to teach CT to students using robotics [38] or adaptive scaffolding
for learner modeling [39]. Another approach includes hands-on projects using R with
application to mathematics [40], such as the Lab Rotation Approach [41]. On the other
hand, methods that try to help teachers improve their CT [42,43] include storytelling [44]
or, as previously, using robotics [45,46].

2.3. The Visual Execution Environment

The Scratch Visual Execution Environment (VEE) proposed in this paper utilizes
pre-established Scratch programs, which include the theory and practice corresponding
to each of the proposed lessons. It is a web application that can be accessed from any
device apart from a PC (smartphones, tablets, etc.). Such block-based coding environments



Information 2021, 12, 378 4 of 15

prevent syntax errors while ensuring concepts and practices foundational to programming
are uncovered. These environments are comfortable for novices at programming and help
develop their computational problem-solving skills, which can be used to generate a wide
spectrum of problems from easy to difficult.

Structuralist theory considers that a game establishes the way of seeing the world and
thinking of the participant. The absence of this ‘learn to think’ prevents further learning
from having depth (they are not reflexive), and therefore, it does not activate the emotional
part that enables long-term learning [47]. On the other hand, the Fogg model [48], designed
to change human behavior, establishes that three elements are necessary to modify human
behavior: the motivation (individuals feel inclined to perform an action for pleasure, fear,
recognition, rewards, etc.); the skill (the level of difficulty perceived by the person to
perform the action), and the trigger (the agent that triggers the behavior). This game
facilitates a dynamic in which these three components converge simultaneously, an optimal
method for teaching–learning dynamics of new concepts, which, in our case, comprises
concepts related to programming for the CS1 cohort.

The VEE draws on the TPACK model by Mishra and Koehler [49] in integrating the
necessary knowledge and the development of a useful tool to transmit the programming
concepts [50]. TPACK defines the area in which technology is consistently integrated
into teaching, and the transfer of knowledge to the student is enhanced. This area is the
intersection of three fields of knowledge: Content Knowledge (programming concepts),
Pedagogical Knowledge (demonstration and serious game integration), and, thirdly, Tech-
nological Knowledge (coding with Scratch and the development of web pages). At the
intersection of the three domains is TPACK, as demonstrated in Figure 1.

Information 2021, 12, x FOR PEER REVIEW 4 of 16 
 

 

2.3. The Visual Execution Environment 
The Scratch Visual Execution Environment (VEE) proposed in this paper utilizes pre-

established Scratch programs, which include the theory and practice corresponding to 
each of the proposed lessons. It is a web application that can be accessed from any device 
apart from a PC (smartphones, tablets, etc.). Such block-based coding environments pre-
vent syntax errors while ensuring concepts and practices foundational to programming 
are uncovered. These environments are comfortable for novices at programming and help 
develop their computational problem-solving skills, which can be used to generate a wide 
spectrum of problems from easy to difficult. 

Structuralist theory considers that a game establishes the way of seeing the world 
and thinking of the participant. The absence of this ‘learn to think’ prevents further learn-
ing from having depth (they are not reflexive), and therefore, it does not activate the emo-
tional part that enables long-term learning [47]. On the other hand, the Fogg model [48], 
designed to change human behavior, establishes that three elements are necessary to mod-
ify human behavior: the motivation (individuals feel inclined to perform an action for 
pleasure, fear, recognition, rewards, etc.); the skill (the level of difficulty perceived by the 
person to perform the action), and the trigger (the agent that triggers the behavior). This 
game facilitates a dynamic in which these three components converge simultaneously, an 
optimal method for teaching–learning dynamics of new concepts, which, in our case, com-
prises concepts related to programming for the CS1 cohort. 

The VEE draws on the TPACK model by Mishra and Koehler [49] in integrating the 
necessary knowledge and the development of a useful tool to transmit the programming 
concepts [50]. TPACK defines the area in which technology is consistently integrated into 
teaching, and the transfer of knowledge to the student is enhanced. This area is the inter-
section of three fields of knowledge: Content Knowledge (programming concepts), Peda-
gogical Knowledge (demonstration and serious game integration), and, thirdly, Techno-
logical Knowledge (coding with Scratch and the development of web pages). At the inter-
section of the three domains is TPACK, as demonstrated in Figure 1. 

 
Figure 1. TPACK model [51]. 

3. Research Method 
The didactic research approach in computing education, adopted in this study, was 

developed based on the principles of research-based learning to cultivate the students’ 

Figure 1. TPACK model [51].

3. Research Method

The didactic research approach in computing education, adopted in this study, was
developed based on the principles of research-based learning to cultivate the students’ skills
in developing CS skills. The quasi-experimental procedure with pre- and post-test was
followed. For the pre- and post-tests, the same evaluation tests were used for programming
and computational thinking. Each test was completed individually by each student in their
‘Introduction to Programming’ class.



Information 2021, 12, 378 5 of 15

3.1. Pedagogical Approach

The seven computational concepts proposed by Brennan and Resnick [50], which
were developed in differentiated applications, allow coherent sequencing without mixing
concepts. An eighth theme was included: the concept of computational thinking detailed.
The TPACK Scratch Visual Execution Environment has pre-established programs, which
include the theory and practice corresponding to each of the proposed lessons. This sepa-
ration allows the teacher to use different sequencing from the one proposed, if necessary.
Since some concepts are supported by prior learning, it is necessary, e.g., to explain the
operation of conditionals, it is necessary to previously understand logical operators. The
order of topics proposed is presented in Table 1.

Table 1. Proposal for sequencing topics in the Guided Scratch VEE.

Lesson Number Topic

Lesson 1. Sequences

Lesson 2. Variables

Lesson 3. Operators

Lesson 4. Conditionals

Lesson 5. Loops

Lesson 6. Events

Lesson 7. Parallelism

Lesson 8. Computational Thinking

Use of Visual Metaphors

The use of metaphors for educational purposes dates back to ancient times (e.g.,
Plato’s Dialogues), where a known concept is transferred from one object to another,
to provide a new notion or intuition [52]. In this work, attempts have been made to
make metaphors evident, and, where possible, graphic representations have been used to
facilitate assimilation. Below is a list of the main metaphors used (Table 2).

Table 2. Metaphors of programming concepts in the Guided Scratch VEE.

Concept Metaphor

Sequence Cooking recipe
Variable Container with label

Conditional Detour on the road
Loop How a clock works
Event Traffic light operation

Synchronization Set the same time on two watches
Computational thinking NIM game

In the case of the ‘Operator’ concept, it has not been considered necessary to evoke a
metaphor, since the notion of a mathematical operator is widely extended. The metaphor
associated with computational thinking is the NIM game, a game that had its origin in
China, although its first reference was in Europe in the sixteenth century. The current name
was coined by Bouton of Harvard University, who developed the full game theory—a
mathematical game in which the player who starts the game always wins if they know the
rule to find the solution of each movement: exclusive disjunction by digits in binary [53].

The topics developed are closely related to the computational concepts implicit in
Scratch as a programming initiation language [28]. Therefore, the first seven themes are
valid tools for learning programming. The last topic includes the notion of computational
thinking as an exercise of recapitulation and reinforcement of the previous points. Compu-
tational thinking is a complex competence that is related to the mental schemes of human



Information 2021, 12, 378 6 of 15

beings, which allows the development of ideas and links abstraction (ideas–concepts) with
pragmatism (action). It is not synonymous with programming, since it requires different
degrees of abstraction and does not depend on computer equipment (unplugged). How-
ever, the use of computer equipment allows us to undertake tasks that without them would
be unapproachable [54].

In the development of each topic, it was considered that the best way for the assim-
ilation of the concept to be treated was to first provide an exhibition and then carry out
several exercises or practice sessions on the concept. To highlight this separation, a visual
key was used as a resource. The exhibition part has a classic slate background, and the
practical part has a grid notebook background (Figure 2). In the practical element, the
combined interaction with the treated concept permits instant feedback, allowing both the
assimilation and the accommodation of the new concepts (Figure 3).

Information 2021, 12, x FOR PEER REVIEW 6 of 16 
 

 

know the rule to find the solution of each movement: exclusive disjunction by digits in 
binary [53]. 

The topics developed are closely related to the computational concepts implicit in 
Scratch as a programming initiation language [28]. Therefore, the first seven themes are 
valid tools for learning programming. The last topic includes the notion of computational 
thinking as an exercise of recapitulation and reinforcement of the previous points. Com-
putational thinking is a complex competence that is related to the mental schemes of hu-
man beings, which allows the development of ideas and links abstraction (ideas–concepts) 
with pragmatism (action). It is not synonymous with programming, since it requires dif-
ferent degrees of abstraction and does not depend on computer equipment (unplugged). 
However, the use of computer equipment allows us to undertake tasks that without them 
would be unapproachable [54]. 

In the development of each topic, it was considered that the best way for the assimi-
lation of the concept to be treated was to first provide an exhibition and then carry out 
several exercises or practice sessions on the concept. To highlight this separation, a visual 
key was used as a resource. The exhibition part has a classic slate background, and the 
practical part has a grid notebook background (Figure 2). In the practical element, the 
combined interaction with the treated concept permits instant feedback, allowing both the 
assimilation and the accommodation of the new concepts (Figure 3). 

 
Figure 2. Examples of exposure (left) and practice (right) in the TPACK Guided Scratch VEE. 

 
Figure 3. The TPACK Guided Scratch VEE with the programming concepts and some of their 
Scratch programs. Last option is Local Scratch. 

  

Figure 2. Examples of exposure (left) and practice (right) in the TPACK Guided Scratch VEE.

Information 2021, 12, x FOR PEER REVIEW 6 of 16 
 

 

know the rule to find the solution of each movement: exclusive disjunction by digits in 
binary [53]. 

The topics developed are closely related to the computational concepts implicit in 
Scratch as a programming initiation language [28]. Therefore, the first seven themes are 
valid tools for learning programming. The last topic includes the notion of computational 
thinking as an exercise of recapitulation and reinforcement of the previous points. Com-
putational thinking is a complex competence that is related to the mental schemes of hu-
man beings, which allows the development of ideas and links abstraction (ideas–concepts) 
with pragmatism (action). It is not synonymous with programming, since it requires dif-
ferent degrees of abstraction and does not depend on computer equipment (unplugged). 
However, the use of computer equipment allows us to undertake tasks that without them 
would be unapproachable [54]. 

In the development of each topic, it was considered that the best way for the assimi-
lation of the concept to be treated was to first provide an exhibition and then carry out 
several exercises or practice sessions on the concept. To highlight this separation, a visual 
key was used as a resource. The exhibition part has a classic slate background, and the 
practical part has a grid notebook background (Figure 2). In the practical element, the 
combined interaction with the treated concept permits instant feedback, allowing both the 
assimilation and the accommodation of the new concepts (Figure 3). 

 
Figure 2. Examples of exposure (left) and practice (right) in the TPACK Guided Scratch VEE. 

 
Figure 3. The TPACK Guided Scratch VEE with the programming concepts and some of their 
Scratch programs. Last option is Local Scratch. 

  

Figure 3. The TPACK Guided Scratch VEE with the programming concepts and some of their Scratch
programs. Last option is Local Scratch.

3.2. Research Participants

The research participants are three cohorts of CS1 university students, totaling 124,
studying the same Video Games Design and Development undergraduate degree program
divided into two campuses in the Madrid city catchment area. All were enrolled in an
‘Introduction to Programming’ module in the first semester of their degree. The research
was carried out at a public university in Madrid with two differentiated campuses: one
located in the city center and the other in a nearby town.



Information 2021, 12, 378 7 of 15

The breakdown of the 124 university students was 28 students (22.6%) from the double
degree with computers (G1) from the Mostoles campus (nearby town to Madrid city),
41 students (33.1%) from the single degree in the Madrid campus (G2), and 55 students
(44.4%) from the single degree in the Móstoles campus (G3). Student ages ranged from
17 to 18 years. The CS1 students were taught the module by the same tutor who had a
computer science Ph.D. and more than 18 years’ experience in teaching this particular
programming module. The classroom assistants also had a computer science Ph.D. and
teaching experience, and they assisted all three groups.

The ‘Introduction to Programming’ module was taught in the same manner as the
three classes, avoiding object-oriented programming, as that was not the purpose of this
course. The work in class during the first two weeks of the course was a brief introduction
to programming, a text-oriented programming language, where the participants were
introduced to the basic concepts of sequences, variables, and expressions. In the third
week of teaching, visual programming with Scratch was added for a short period of time,
as required by the degree syllabus. The procedure included a review of material in an
interactive way using the Guided Scratch VEE, where there was an explanation of the
concepts with prepared ad-hoc exercises based on metaphors for each concept and practice
with proposed exercises on Scratch. The research study was conducted in four 2-h sessions
(8 h). The evaluation used for the pre-test and post-test was the same: 27 short-answer
questions covering the programming concepts addressed in Table 1. The scoring rubric
graded each question differently based on the complexity and completeness of the concepts,
ranging from either from 0 to 1 or from 0 to 2.

4. Findings and Discussion

In presenting the outcomes of the research, we will first present results from the cohort
in its entirety, the 124 students in total. The second approach was a subdivision of the
first, subdivided into the two campus locations, Ferraz and Mostoles, and degree type, just
one degree (Design and Development of Video Games at Ferraz and Mostoles) or two at
the one time (dual Design and Development of Video Games and a degree in Computer
Science). Each cluster was based on the degree level and the campus location of the student.
Students were enrolled in the degree of Design and Development of Video Games or on a
dual degree studying Design and Development of Video Games and Computer Science.

Students belonged to the campus in the city center (Ferraz) or to the Mostoles campus.
A handful of learners with remarkable final marks in the high-school stage registered for
the dual degree in the Mostoles campus. In Table 3, the frequency table is documented.

Table 3. Frequency table to second approach.

Campus Frequency Percent

Dual 28 22.6%
Ferraz 41 33.1%

Mostoles 55 44.4%
Total 124 100%

4.1. Phase One Results: All Students

In presenting the results of the research, we will first present results from the cohort in
its entirety, the 124 students in total. Due to the number of samples in the dataset, N = 124,
a Kolmogorov–Smirnov test was carried out assessing the distribution of both datasets
using the total score accomplished, which was 0–16 points. As shown in Table 4, both test
variables, pre and post, were normal distributions. All tests were conducted using an alpha
level of 0.05. Consequently, parametric tests could be used to assess the difference between
the scores achieved before and after using the Guided Scratch VEE.



Information 2021, 12, 378 8 of 15

Table 4. One-sample table: Kolmogorov–Smirnov test to pre- and post datasets.

Pre-Test Post-Test

N 124 124
Kolmogorov–Smirnov Z 0.937 0.794

p-value (95% significance) 0.344 0.553

A paired-sample t-test was used to contrast the score obtained before and after using
the application. In Table 5, the relevant scores about the Student’s t-test are shown. The
outcomes indicated an extremely statistically significant difference before using the app,
µpre = 2.98 and σpre = 1.73, compared to after using the app, µpost = 9.42 and σpost = 2.48,
with Student’s t-test = −30.303 and p-value = 0.1 × 10−13.

Table 5. Paired samples statistics: outcomes of the Student’s t-test for all students.

Mean N Std. Deviation Std. Error Mean

Pair 1, Pre-test 2.9778 124 1.72629 0.15503
Pair 1, Post-test 9.4238 124 2.47579 0.22233

Paired Differences

95% Confidence Interval
of the Difference

Mean Std.
Dev.

Std. Error
Mean Lower Upper t df Sig

(2-tailed)

Pair 1
Pre-test,
Post-test

−6.44 2.36 0.212 −6.86 −6.02 −30.3 123 0.0

Figure 4 illustrates the graphical comparison between scores achieved before and after,
and Table 6 shows the descriptive statistics. It seems that there was a significant difference
in respect of the two distributions. The median of the left boxplot, pre-test, was equal to
three. Therefore, 50% of learners did not reach a score greater than three out of sixteen total
scores. A group corresponding to the fourth quartile (75%) of all students achieved a score
greater than four, but the maximum score obtained was 8.25 out of 16 points.

Information 2021, 12, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 4. Pre-test and post-test of CS1 students after using Guided TPACK VEE. 

Table 6. Descriptive statistics of results of students. 

      Percentiles 
 N Mean Std. Dev Min Max 25th 50th 75th  

Pre-test 124 2.9778 1.726 0.0 8.25 1.5000 3.0000 4.2375 
Post-test 124 9.4238 2.475 3.50 14.5 7.7125 9.4750 11.200 

On the other hand, the first quartile showed that a group of students reached a score 
of fewer than 2 points out of 16. Thus, the pre-test scores seem to indicate that students 
did not have enough programming knowledge. According to the second boxplot, post-
test, the outcomes achieved improved remarkably, with a median of 9.47 points. The var-
iation between pre- and post-tests was 6.47 points. The first and last quartiles were bigger 
than the second and third. The maximum score attained was 14.50 out of 16 points, and 
the last quartile improved until 11.20 points. Therefore, 25% of students achieved a score 
equal to or greater than 11.20 points. On the contrary, the lowest score was 3.5 points out 
of 16 points, and the first quartile was 7.71. 

4.2. Phase Two Results: All Students and Their Understanding of Programming Concepts 
Once a significant difference was observed between pre- and post-tests using the ap-

plication in absolute terms, the next step was to determine which concepts demonstrated 
a change in learning, in other words, which had a remarkable improvement before and 
after using the Guide Scratch VEE. It was therefore necessary to review which concepts 
were more difficult to understand for the students. 

To carry out this second part, the first thirteen answers of the rubric or test were 
considered. All questions were clustered into eight groups such as sequences, data flow, 
variables and types, operators, conditions, loops, events, and parallelism. The total score 
in this approach was 13 points. Additionally, the reliability of the items in the survey was 
very high. Cronbach’s alpha was carried out, obtaining a value equal to 0.887, in other 
words, 89% of the variance in the scores was reliable, as shown in Table 7. 

Table 7. Reliability statistics for the eight items in the survey. 

Cronbach’s Alpha Cronbach’s Alpha Based on Standardized 
Items 

N of Items 

0.887 0.900 8 

According to the number of samples, N = 124, the one-sample Kolmogorov–Smirnov 
test was carried out for each programming concept and kind of test (pre and post). In all 
cases, p-values obtained were less than the level of significance (0.05). This seems to indi-
cate that data were not from a normally distributed population. Thus, a non-parametric 

Figure 4. Pre-test and post-test of CS1 students after using Guided TPACK VEE.

On the other hand, the first quartile showed that a group of students reached a score
of fewer than 2 points out of 16. Thus, the pre-test scores seem to indicate that students did
not have enough programming knowledge. According to the second boxplot, post-test,



Information 2021, 12, 378 9 of 15

the outcomes achieved improved remarkably, with a median of 9.47 points. The variation
between pre- and post-tests was 6.47 points. The first and last quartiles were bigger than
the second and third. The maximum score attained was 14.50 out of 16 points, and the last
quartile improved until 11.20 points. Therefore, 25% of students achieved a score equal
to or greater than 11.20 points. On the contrary, the lowest score was 3.5 points out of
16 points, and the first quartile was 7.71.

Table 6. Descriptive statistics of results of students.

Percentiles

N Mean Std. Dev. Min Max 25th 50th 75th

Pre-test 124 2.9778 1.726 0.0 8.25 1.5000 3.0000 4.2375
Post-test 124 9.4238 2.475 3.50 14.5 7.7125 9.4750 11.200

4.2. Phase Two Results: All Students and Their Understanding of Programming Concepts

Once a significant difference was observed between pre- and post-tests using the
application in absolute terms, the next step was to determine which concepts demonstrated
a change in learning, in other words, which had a remarkable improvement before and
after using the Guide Scratch VEE. It was therefore necessary to review which concepts
were more difficult to understand for the students.

To carry out this second part, the first thirteen answers of the rubric or test were
considered. All questions were clustered into eight groups such as sequences, data flow,
variables and types, operators, conditions, loops, events, and parallelism. The total score in
this approach was 13 points. Additionally, the reliability of the items in the survey was
very high. Cronbach’s alpha was carried out, obtaining a value equal to 0.887, in other
words, 89% of the variance in the scores was reliable, as shown in Table 7.

Table 7. Reliability statistics for the eight items in the survey.

Cronbach’s Alpha Cronbach’s Alpha Based on Standardized Items N of Items

0.887 0.900 8

According to the number of samples, N = 124, the one-sample Kolmogorov–Smirnov
test was carried out for each programming concept and kind of test (pre and post). In
all cases, p-values obtained were less than the level of significance (0.05). This seems to
indicate that data were not from a normally distributed population. Thus, a non-parametric
Wilcoxon signed-rank (pair sample) test was conducted to assess the improvement before
and after using the app. The outcomes revealed that there was a statically significant
variation between the score obtained before and after, as shown in Table 8. In all tests, the
null hypothesis was rejected. Hence, this shows that distributions were different.

Table 8. Signed-rank test for the complete population and grouped by programming concepts.

Wilcoxon Signed-Rank Test W Level of Significance

Sequences −5.996 0.000
Flow Chart −9.240 0.000

Variables and Types −9.451 0.000
Operations −8.811 0.000

Conditionals −7.836 0.000
Loops −8.255 0.000
Events −9.205 0.000

Parallelism −9.072 0.000

In Figure 5, the graphical difference between pre- and post-distributions with respect
to programming concepts is shown. The pre-test of the sequence concept indicated that



Information 2021, 12, 378 10 of 15

just 25% of students achieved the maximum score in this answer. However, in the post-test,
more than 50% of learners obtained the maximum score (1 point). The following two
concepts (flow charts variables and types of data) were an extreme case of study because,
in the pre-test, more than 75% of learners did not reach a score greater than 0.75 out of
2 points. On the other hand, the post-test showed a remarkable improvement because
more than 50% achieved at least 1.5 points out of 2 points. The operators’ concept was
the first programming concept with a notable number of outliers. Although the scores
obtained in the post-test were better than the previous one, it had low scores. The fifth
concept, conditionals, had a participant who achieved the maximum score in the pre-test.
However, only 25% of students achieved a score greater than 0.75. The outcomes of the
post-test showed an important advance in the scores accomplished. The following concept,
loops, was another case of success of using the VEE because just 25% of learners did not
obtain at least a score greater than one point. Finally, the last two programming concepts
(events and parallelism), indicated that participants lacked pieces of knowledge about
these topics. Only a handful of students obtained a score distinct to zero at the pre-test, but
the improvement after the evaluation was also remarkable.

Information 2021, 12, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 5. Boxplots of programming concepts from pre- and post-tests for all students. Notice that * and ⚬ are outliers in 
the distribution. 

Therefore, before using the Guided Scratch VEE, students lacked knowledge about 
flow charts, variables, and data types, and after using the VEE, they greatly improved. In 
a similar vein, learning related to operators, conditional, and loops also improved, but 
their initial knowledge was also higher. However, in the case of events and parallelism, 
students did not have significant prior knowledge in the pre-test, and after using the VEE, 
they very much improved their knowledge. 

4.3. Phase Three Results: Student Group and Understanding of Programming Concepts 
Due to the fact that the dataset was divided into three groups (Ferraz, Mostoles, and 

Dual), it was necessary to overhaul the normal distributions of three sub-datasets. Ferraz 
and Dual had less than 50 samples in their respective corpus. Thus, the Shapiro–Wilk test 
of normality was carried out with the same p-value that in the previous section, in other 
words, a p-value less than 0.05. Moreover, the same situation was with the last group, 
Mostoles, but in this case, the number of samples was 55. Therefore, the one-sample Kol-
mogorov–Smirnov test was performed with the same output. It can also be noticed, a non-
parametric Wilcoxon signed-rank (pair sample) test was accomplished to evaluate the en-
hancement before and after employing the app for the three clusters. The results presented 
that there was a statically relevant variation between both distributions for all program-
ming concepts, except to the first (sequences) of the Dual group, as shown in Table 9. The 
level of significance was greater than 0.05, but there was very little difference (p-value = 
0.054). This fact could be produced because of the separate groups. The group of learners 
in the Dual group achieved better marks in their high-school stage than the others, and 
this may signify they had more prior knowledge in regard to programming at the begin-
ning of the test. However, the value was not too high, and this kind of discrepancy only 
occurred once to assert something like this. The rank sum test results are depicted. The 
Wilcoxon test measures if medians of both distributions are equal or not. If they are dif-
ferent, the test rejects the null hypothesis; otherwise, the null hypothesis is accepted. 

  

Figure 5. Boxplots of programming concepts from pre- and post-tests for all students. Notice that
* and ◦ are outliers in the distribution.

Therefore, before using the Guided Scratch VEE, students lacked knowledge about
flow charts, variables, and data types, and after using the VEE, they greatly improved. In a
similar vein, learning related to operators, conditional, and loops also improved, but their
initial knowledge was also higher. However, in the case of events and parallelism, students
did not have significant prior knowledge in the pre-test, and after using the VEE, they very
much improved their knowledge.

4.3. Phase Three Results: Student Group and Understanding of Programming Concepts

Due to the fact that the dataset was divided into three groups (Ferraz, Mostoles, and
Dual), it was necessary to overhaul the normal distributions of three sub-datasets. Ferraz
and Dual had less than 50 samples in their respective corpus. Thus, the Shapiro–Wilk
test of normality was carried out with the same p-value that in the previous section, in
other words, a p-value less than 0.05. Moreover, the same situation was with the last
group, Mostoles, but in this case, the number of samples was 55. Therefore, the one-sample
Kolmogorov–Smirnov test was performed with the same output. It can also be noticed,



Information 2021, 12, 378 11 of 15

a non-parametric Wilcoxon signed-rank (pair sample) test was accomplished to evaluate
the enhancement before and after employing the app for the three clusters. The results
presented that there was a statically relevant variation between both distributions for all
programming concepts, except to the first (sequences) of the Dual group, as shown in
Table 9. The level of significance was greater than 0.05, but there was very little difference
(p-value = 0.054). This fact could be produced because of the separate groups. The group of
learners in the Dual group achieved better marks in their high-school stage than the others,
and this may signify they had more prior knowledge in regard to programming at the
beginning of the test. However, the value was not too high, and this kind of discrepancy
only occurred once to assert something like this. The rank sum test results are depicted.
The Wilcoxon test measures if medians of both distributions are equal or not. If they are
different, the test rejects the null hypothesis; otherwise, the null hypothesis is accepted.

Table 9. Output of statistics of Wilcoxon signed-rank test for the sequence programming concept and
Dual group.

Sequences_Pre-Sequences_Post

Z −1.931 c

Level of significance 0.054
Campus = dual degree in all campuses; Wilcoxon signed-rank test; Based on positive ranks.

A graphical representation of the results is shown in Figure 6. According to the Dual
group, in the pre-test, programming knowledge was higher than in the Mostoles and Ferraz
groups. The possible reasons were previously explained, or perhaps these participants
studied more programming or technology subjects at high school, or they were simply
better prepared. The Ferraz group achieved the lowest scores with respect to the three
groups. Nevertheless, the post-test results demonstrated remarkable development out of
all groups. For the Dual group, compared to the other groups, their pre-test was higher,
as well as their post-test in all the programming concepts. It is also noteworthy that the
trajectory of the learning in all three groups follows the same path, even though results
are higher, respectively, in Dual, Mostoles, and Ferraz. Corresponding to the grade, each
group follows the same order (higher for Dual, Mostoles, and Ferraz, respectively).

Information 2021, 12, x FOR PEER REVIEW 12 of 16 
 

 

Table 9. Output of statistics of Wilcoxon signed-rank test for the sequence programming concept 
and Dual group. 

  Sequences_Pre-Sequences_Post 
Z −1.931 c 

Level of significance 0.054 
Campus = dual degree in all campuses; Wilcoxon signed-rank test; Based on positive ranks. 

A graphical representation of the results is shown in Figure 6. According to the Dual 
group, in the pre-test, programming knowledge was higher than in the Mostoles and Fer-
raz groups. The possible reasons were previously explained, or perhaps these participants 
studied more programming or technology subjects at high school, or they were simply 
better prepared. The Ferraz group achieved the lowest scores with respect to the three 
groups. Nevertheless, the post-test results demonstrated remarkable development out of 
all groups. For the Dual group, compared to the other groups, their pre-test was higher, 
as well as their post-test in all the programming concepts. It is also noteworthy that the 
trajectory of the learning in all three groups follows the same path, even though results 
are higher, respectively, in Dual, Mostoles, and Ferraz. Corresponding to the grade, each 
group follows the same order (higher for Dual, Mostoles, and Ferraz, respectively). 

 

Figure 6. Boxplots of programming concepts from pre- and post-tests divided into three groups. Notice that * and ⚬ are 
outliers in the distribution. 

As this study follows the same trajectory for the learning of programming concepts, 
the results shown in the previous section are equivalent. The programming concepts with 
the best performance in relation to the pre- and post-test are the event and parallelism 
concepts. The concept with the least knowledge gained is sequences, as the participants 
were familiar with it, followed by flowcharts, variables, and types, and then operators and 
conditionals. In most cases, the pre-test presented scores close to zero (except for some 
outliers in all groups). 

4.4. Discussion of Findings 
Results obtained from this research support previous studies [24], where participants 

gained relevant knowledge on also CT using games. This also correlates with other work, 

Figure 6. Boxplots of programming concepts from pre- and post-tests divided into three groups. Notice that * and ◦ are
outliers in the distribution.



Information 2021, 12, 378 12 of 15

As this study follows the same trajectory for the learning of programming concepts,
the results shown in the previous section are equivalent. The programming concepts with
the best performance in relation to the pre- and post-test are the event and parallelism
concepts. The concept with the least knowledge gained is sequences, as the participants
were familiar with it, followed by flowcharts, variables, and types, and then operators and
conditionals. In most cases, the pre-test presented scores close to zero (except for some
outliers in all groups).

4.4. Discussion of Findings

Results obtained from this research support previous studies [24], where participants
gained relevant knowledge on also CT using games. This also correlates with other work,
where an environment for learning programming such as Scratch was used to ensure
motivation and empowerment of students [4], and these positive effects of the Guided
Scratch VEE match earlier research studies [32–34]. Previous approaches [40] have also
used practical games [41] or math-proposed games for improving CT, as in this study.

Therefore, providing visual environments based on interactive games for introducing
such programming concepts and CT concepts to students may be the correct direction to
work with, or at least a very good recommendation.

Nonetheless, a limitation of this research is based on the lack of a control group to
check or extrapolate the outcomes accomplished. This fact does not have a trivial solution
because the number of students and groups is limited. A plausible solution was the use of
the smallest campus (e.g., Ferraz), as the control group, but the authors considered a better
option, consisting of an increase in samples instead of a control group.

5. Conclusions

The current COVID-19 pandemic has served to underscore the importance of enhanc-
ing young people’s ability, understanding, and use of computer code to develop and deploy
new software systems. Productive computer programmers must be able to apply general
practices and concepts involved in computational thinking and problem solving. That
said, computer science education represents a dynamically changing domain globally and
has faced many challenges in teaching programming concepts. This paper uses a guided
TPACK framework, incorporating a Scratch VEE for CS1 students as a method to teach
and introduce programming concepts. The objective was to investigate if programming
concepts could be improved upon by applying this approach and if the CS1 students
studying at the one university but different groups of students of the same undergraduate
degree were able to improve their programming skills.

This paper had two research questions, the first being, ‘Can programming concepts
be improved with a TPACK Visual Execution Environment for a cohort of 124 of CS1
students?’ Statistically significant results of their knowledge improvement in both cases
were observed, studying the results as a whole (all students) or dividing them into their
own groups, Ferraz, Mostoles, and both, in which case the results vary slightly depending
on their previous knowledge and precedence. The second research question focused on if
there were differences in the learning path of programming concepts, which could infer that
some concepts are easier to understand by students than others. The study observed that
there are differences depending on the concept being addressed and their initial knowledge
of each. It was observed that students lacked previous knowledge about flow charts,
variables, and data types, which they showed great improvement. Slightly the same thing
happened with operators, conditionals, and loops, but their initial knowledge was also
higher. Moreover, in the case of events and parallelism, students did not know about them
at all in the pre-test, and after using the VEE, their knowledge very much improved.

Another conclusion observed after the study is that ‘origin’ matters to CS1 students.
The three groups of students followed the same procedure and had the same teachers, but
their initial knowledge and knowledge gain were not the same for the three groups. In



Information 2021, 12, 378 13 of 15

evaluating their prior knowledge from high-school grades on accessing university, this
indicated more prior knowledge for the groups that scored higher.

The work, being a quasi-experimental research case study with CS1 students, though
with different groups of students belonging to the same degree, was conducted in one
country and therefore has the primary limitation of a narrow focus. This can effectively
point to results requiring further evaluation; however, such an approach does not facilitate
the development of generalizations.

While this VEE is not a panacea to all programming comprehension and learning, this
paper has demonstrated that by using metaphors and Scratch programs to explain and
practice the programming concepts addressed in this paper, the VEE effectively guides
CS1students in learning programming concepts in a short period of time. While ensuring
concepts and practices foundational to programming are understood, the students can
continue their practice and become competent and productive computer programmers.

Author Contributions: R.H.-N.; investigation, R.H.-N., D.P.-A., C.C. and O.B.-G.; resources, R.H.-N.,
C.C., D.P.-A. and O.B.-G.; data curation, R.H.-N., C.C. and O.B.-G.; writing—original draft–preparation,
R.H.-N., D.P.-A. and O.B.-G.; writing—review and editing, R.H.-N. and C.C.; visualization, R.H.-N.
and D.P.-A.; supervision, R.H.-N. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by in part by the Ministerio de Economía y Competitividad under
Grant TIN2015-66731-C2-1-R, in part by the Rey Juan Carlos University under Grant 30VCPIGI15, in
part by the Madrid Regional Government, through the project e-Madrid-CM, under Grant P2018/TCS-
4307, and in part by the Structural Funds (FSE and FEDER).

Data Availability Statement: All datasets are available and can be requested from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lau, W.W.; Yuen, A.H. Modelling programming performance: Beyond the influence of learner characteristics. Comput. Educ. 2011,

57, 1202–1213. [CrossRef]
2. Campe, S.; Denner, J. Programming Games for Learning: A Research Synthesis; American Educational Research Association (AERA):

Chicago, IL, USA, 2015.
3. Jovanov, M.; Stankov, E.; Mihova, M.; Ristov, S.; Gusev, M. Computing as a new compulsory subject in the Macedonian

primary schools curriculum. In Proceedings of the 2016 IEEE Global Engineering Education Conference (EDUCON), Abu Dhabi,
United Arab Emirates, 10–13 April 2016.

4. Ouahbi, I.; Kaddari, F.; Darhmaoui, H.; Elachqar, A.; Lahmine, S. Learning Basic Programming Concepts by Creating Games with
Scratch Programming Environment. Procedia Soc. Behav. Sci. 2015, 191, 1479–1482. [CrossRef]

5. Lahtinen, E.; Ala-Mutka, K.; Järvinen, H.-M. A study of the difficulties of novice programmers. ACM SIGCSE Bull. 2005, 37,
14–18. [CrossRef]

6. Ginat, D. On Novice Loop Boundaries and Range Conceptions. Comput. Sci. Educ. 2004, 14, 165–181. [CrossRef]
7. Seppälä, O.; Malmi, L.; Korhonen, A. Observations on student misconceptions—A case study of the Build—Heap Algorithm.

Comput. Sci. Educ. 2006, 16, 241–255. [CrossRef]
8. Barker, L.J.; McDowell, C.; Kalahar, K. Exploring factors that influence computer science introductory course students to persist

in the major. ACM SIGCSE Bull. 2009, 41, 153–157. [CrossRef]
9. Coull, N.J.; Duncan, I. Emergent Requirements for Supporting Introductory Programming. Innov. Teach. Learn. Inf. Comput. Sci.

2011, 10, 78–85. [CrossRef]
10. Yadav, A.; Gretter, S.; Hambrusch, S.; Sands, P. Expanding computer science education in schools: Understanding teacher

experiences and challenges. Comput. Sci. Educ. 2016, 26, 235–254. [CrossRef]
11. Yadav, A.; Mayfield, C.; Zhou, N.; Hambrusch, S.; Korb, T. Computational Thinking in Elementary and Secondary Teacher

Education. ACM Trans. Comput. Educ. 2014, 14, 1–16. [CrossRef]
12. Papert, S. Mindstorms: Children, Computers, and Powerful Ideas; Basic Books: New York, NY, USA, 1980.
13. Astin, W.A. College Retention Rates Are often Misleading; Chronicle of Higher Education: Washington, DC, USA, 1993.
14. Stuart, V.B. Math Course or Math Anxiety? Natl. Counc. Teach. Math. 2000, 6, 330.
15. Piaget, J. The Moral Judgement of the Child; Penguin Books: New York, NY, USA, 1932.
16. Piaget, J. Origins of Intelligence in Children; International Universities Press: New York, NY, USA, 1952.
17. Vygotsky, L.S. Thought and Language, 2nd ed.; MIT Press: Cambridge, MA, USA, 1962.
18. Vygotsky, L.S. Mind in Society: The Development of Higher Psychological Process; Harvard University Press: Cambridge, MA, USA, 1978.

http://doi.org/10.1016/j.compedu.2011.01.002
http://doi.org/10.1016/j.sbspro.2015.04.224
http://doi.org/10.1145/1151954.1067453
http://doi.org/10.1080/0899340042000302709
http://doi.org/10.1080/08993400600913523
http://doi.org/10.1145/1539024.1508923
http://doi.org/10.11120/ital.2011.10010078
http://doi.org/10.1080/08993408.2016.1257418
http://doi.org/10.1145/2576872


Information 2021, 12, 378 14 of 15

19. Vygotsky, L.S. The Genesis of Higher Mental Functions. In Cognitive Development to Adolescence; Richardson, K., Sheldon, S., Eds.;
Erlbaum: Hove, UK, 1988.

20. Maleko, M.; Hamilton, M.; D’Souza, D. Novices’ Perceptions and Experiences of a Mobile Social Learning Environment for
Learning of Programming. In Proceedings of the 12th International Conference on Innovation and Technology in Computer
Science Education (ITiCSE), Haifa, Israel, 3–5 July 2012.

21. Williams, L.; Wiebe, E.; Yang, K.; Ferzli, M.; Miller, C. In Support of Pair Programming in the Introductory Computer Science
Course. Comput. Sci. Educ. 2002, 12, 197–212. [CrossRef]

22. Renumol, V.; Jayaprakash, S.; Janakiram, D. Classification of Cognitive Difficulties of Students to Learn Computer Programming; Indian
Institute of Technology: New Delhi, India, 2009; p. 12.

23. De Jong, I.; Jeuring, J. Computational Thinking Interventions in Higher Education. In Proceedings of the 20th Koli Calling
International Conference on Computing Education Research, Koli, Finland, 19–22 November 2020.

24. Agbo, F.J.; Oyelere, S.S.; Suhonen, J.; Laine, T.H. Co-design of mini games for learning computational thinking in an online
environment. Educ. Inf. Technol. 2021, 26, 5815–5849. [CrossRef] [PubMed]

25. Jenkins, T. The motivation of students of programming. ACM SIGCSE Bull. 2001, 33, 53–56. [CrossRef]
26. Kurland, D.M.; Pea, R.D.; Lement, C.C.; Mawby, R. A Study of the Development of Programming Ability and Thinking Skills in

High School Students. J. Educ. Comput. Res. 1986, 2, 429–458. [CrossRef]
27. Brooks, F.P. No Silver Bullet: Essence and Accidents of Software Engineering. In Proceedings of the Tenth World Computing

Conference, Dublin, Ireland, 1–5 September 1986; pp. 1069–1076.
28. Mishra, D.; Ostrovska, S.; Hacaloglu, T. Exploring and expanding students’ success in software testing. Inf. Technol. People 2017,

30, 927–945. [CrossRef]
29. Clancy, M.J.; Linn, M.C. Case studies in the classroom. ACM SIGCSE Bull. 1992, 24, 220–224. [CrossRef]
30. Chandramouli, M.; Zahraee, M.; Winer, C. A fun-learning approach to programming: An adaptive Virtual Reality (VR) platform

to teach programming to engineering students. In Proceedings of the IEEE International Conference on Electro/Information
Technology, Milwaukee, WI, USA, 5–7 July 2014.

31. Silapachote, P.; Srisuphab, A. Teaching and learning computational thinking through solving problems in Artificial Intelligence:
On designing introductory engineering and computing courses. In Proceedings of the 2016 IEEE International Conference on
Teaching, Assessment and Learning for Engineering (TALE), Bangkok, Thailand, 7–9 December 2016.

32. Liu, C.-C.; Cheng, Y.-B.; Huang, C.-W. The effect of simulation games on the learning of computational problem solving. Comput.
Educ. 2011, 57, 1907–1918. [CrossRef]

33. Kazimoglu, C.; Kiernan, M.; Bacon, L.; Mackinnon, L. A Serious Game for Developing Computational Thinking and Learning
Introductory Computer Programming. Procedia Soc. Behav. Sci. 2012, 47, 1991–1999. [CrossRef]

34. Kazimoglu, C.; Kiernan, M.; Bacon, L.; MacKinnon, L. Learning Programming at the Computational Thinking Level via Digital
Game-Play. Procedia Comput. Sci. 2012, 9, 522–531. [CrossRef]

35. Saad, A.; Shuff, T.; Loewen, G.; Burton, K. Supporting undergraduate computer science education using educational robots.
In Proceedings of the ACMSE 2018 Conference, Tuscaloosa, AL, USA, 29–31 March 2012.

36. Weintrop, W.; Wilensky, U. Comparing Block-Basedand Text-Based Programming in High School Computer Science Classrooms.
ACM Trans. Comput. Educ. 2017, 18, 1. [CrossRef]

37. Martínez-Valdés, J.A.; Velázquez-Iturbide, J.; Neira, R.H. A (Relatively) Unsatisfactory Experience of Use of Scratch in CS1.
In Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality, Cadiz, Spain,
18–20 October 2017.

38. Aristawati, F.A.; Budiyanto, C.; Yuana, R.A. Adopting Educational Robotics to Enhance Undergraduate Students’ Self-Efficacy
Levels of Computational Thinking. J. Turk. Sci. Educ. 2018, 15, 42–50.

39. Basu, S.; Biswas, G.; Kinnebrew, J.S. Learner modeling for adaptive scaffolding in a Computational Thinking-based science
learning environment. User Model. User-Adapted Interact. 2017, 27, 5–53. [CrossRef]

40. Benakli, N.; Kostadinov, B.; Satyanarayana, A.; Singh, S. Introducing computational thinking through hands-on projects using R
with applications to calculus, probability and data analysis. Int. J. Math. Educ. Sci. Technol. 2016, 48, 393–427. [CrossRef]

41. Cai, J.; Yang, H.H.; Gong, D.; MacLeod, J.; Jin, Y. A Case Study to Promote Computational Thinking: The Lab Rotation Approach.
In Blended Learning: Enhancing Learning Success; Cheung, S.K.S., Kwok, L., Kubota, K., Lee, L.K., Tokito, J., Eds.; Springer: Cham,
Switzerland, 2018; pp. 393–403.

42. Dodero, J.M.; Mota, J.M.; Ruiz-Rube, I. Bringing computational thinking to teachers’ training. In Proceedings of the 5th
International Conference on Technological Ecosystems for Enhancing Multiculturality, Cádiz, Spain, 18–20 October 2017.

43. Gabriele, L.; Bertacchini, F.; Tavernise, A.; Vaca-Cárdenas, L.; Pantano, P.; Bilotta, E. Lesson Planning by Computational Thinking
Skills in Italian Pre-service Teachers. Inform. Educ. 2019, 18, 69–104. [CrossRef]

44. Curzon, P.; McOwan, P.W.; Plant, N.; Meagher, L.R. Introducing teachers to computational thinking using unplugged storytelling.
In Proceedings of the 9th Workshop in Primary and Secondary Computing Education, Berlin, Germany, 5 November 2014;
pp. 89–92.

45. Jaipal-Jamani, K.; Angeli, C. Effect of robotics on elementary preservice teachers’ self-efficacy, science learning, and computational
thinking. J. Sci. Educ. Technol. 2017, 26, 175–192. [CrossRef]

http://doi.org/10.1076/csed.12.3.197.8618
http://doi.org/10.1007/s10639-021-10515-1
http://www.ncbi.nlm.nih.gov/pubmed/33967590
http://doi.org/10.1145/507758.377472
http://doi.org/10.2190/BKML-B1QV-KDN4-8ULH
http://doi.org/10.1108/ITP-06-2016-0129
http://doi.org/10.1145/135250.134554
http://doi.org/10.1016/j.compedu.2011.04.002
http://doi.org/10.1016/j.sbspro.2012.06.938
http://doi.org/10.1016/j.procs.2012.04.056
http://doi.org/10.1145/3089799
http://doi.org/10.1007/s11257-017-9187-0
http://doi.org/10.1080/0020739X.2016.1254296
http://doi.org/10.15388/infedu.2019.04
http://doi.org/10.1007/s10956-016-9663-z


Information 2021, 12, 378 15 of 15

46. Hsu, T.-C.; Chang, S.-C.; Hung, Y.-T. How to learn and how to teach computational thinking: Suggestions based on a review of
the literature. Comput. Educ. 2018, 126, 296–310. [CrossRef]

47. Fogg, B.J. A behavior model for persuasive design. In Proceedings of the 4th international Conference on Persuasive Technology,
Claremont, CA, USA, 26–29 April 2009; pp. 1–7.

48. Piaget, J.; Inhelder, B. Memory and Intelligence; Basic Books: New York, NY, USA, 1973.
49. Mishra, P.; Koehler, M. Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teach. Coll. Rec.

2006, 108, 1017–1054. [CrossRef]
50. Brennan, K.; Resnick, M. New Frameworks for Studying and Assessing the Development of Computational Thinking; American

Educational Research Association: Vancouver, BC, Canada, 2012.
51. Mishra, P.; Koehler, M.J. Introducing Technological Pedagogical Content Knowledge; American Educational Research Association:

Vancouver, BC, Canada, 2008; pp. 1–16.
52. Diéguez, J.L.R. Metaphors in Teaching; Revista Interuniversitaria de Didáctica, Universidad de Salamanca: Salamanca, Spain, 1988;

pp. 223–240.
53. Bouton, C.L. Nim, a Game with a Complete Mathematical Theory. Ann. Math. 1901, 3, 35. [CrossRef]
54. Ramírez, S.U. Informática y teorías del aprendizaje. Píxel-Bit. Rev. Medios Educ. 1999, 12, 87–100.

http://doi.org/10.1016/j.compedu.2018.07.004
http://doi.org/10.1111/j.1467-9620.2006.00684.x
http://doi.org/10.2307/1967631

	Introduction 
	Theoretical Framework 
	Learning Programming 
	Complementary Approaches for Teaching Programming and CT 
	The Visual Execution Environment 

	Research Method 
	Pedagogical Approach 
	Research Participants 

	Findings and Discussion 
	Phase One Results: All Students 
	Phase Two Results: All Students and Their Understanding of Programming Concepts 
	Phase Three Results: Student Group and Understanding of Programming Concepts 
	Discussion of Findings 

	Conclusions 
	References

