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Abstract: The traditional 10 kV distribution network grounding system has some disadvantages, such
as small grounding current and poor arc extinguishing effect, thus, hindering the detection of high-
resistance grounding fault. Therefore, this paper studied the flexible grounding system consisting
of small-resistance and active inverter in parallel. The control system comprises the compensation
current calculation module, the fault detection module, and line protection strategy. During a single-
phase grounding fault, the device is designed to inject a current of a given amplitude and phase into
the neutral point to effectively suppress fault-point voltage and current and, meanwhile, quickly
identifying the fault line or the busbar fault and then systematically protecting the distribution line.
In addition, a large number of simulations have performed based on three grounding faults (metal,
low-resistance, and high-resistance) and two modes (ungrounded and small-resistance grounding).
The device can all be functional. Finally, a 400 V-level experimental prototype was built, and the
experimental results are consistent with the simulation results, which can verify the effectiveness
and feasibility of the flexible grounding device.

Keywords: flexible grounding; single-phase grounding fault; control system; current compensation;
fault detection; line protection

1. Introduction

As urban distribution network lines are gradually moving underground, research
has emphasized on the electric faults due to use of longer cables and presence of larger
capacitive currents. For the 10–66 kV distribution network system, the generally adopted
neutral point grounding is the arc suppression coil, which is gradually eliminated. More
power distribution networks are changed to small-resistance grounding system [1,2].

For the power system, from all types of faults, the probability of single-phase ground-
ing faults is about 70% [3,4]. The traditional compensation method is not obvious for the
compensation of resistive current and system active components. Thus, when a single-
phase grounding fault occurs in the system, the arc extinguishing effect is not significant,
and the harm to people and the power grid becomes more serious. For small-resistance
grounding systems, when a high-resistance grounding fault occurs, the grounding current
is very small, and it is not easy to identify the fault. If the fault is not removed quickly, it
will endanger the operation of the system and cause unpredictable economic losses [5,6].
Therefore, for the 10 kV distribution network with small-resistance grounding, the question
of how to quickly compensate for the fault current and fault voltage and how to effectively
identify the single-phase grounding fault has become the current mainstream research.

In recent years, with the development of control technology in power electronics,
scholars at home and abroad have proposed new arc-suppression technology based on
a distribution network with small-resistance grounding. The authors of [7] proposed
a three-phase cascaded H-bridge (CHB) converter with auxiliary sources and an arc-
suppression method based on the improved finite control strategy. The weaknesses were
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the complexity of the structure and control strategy of the converter, and the balance of
switching transitions should also be solved. The authors of [8] proposed a grounded-fault
transfer device based on controllable voltage source in order to suppress the arc, but it
cannot actually reduce the capacitive current. If the grounding current is large, the ground
potential will rise, compromising safety. The authors of [9] used a shunt circuit breaker
(SCB) to earth the faulty phase temporarily at the feeding. The major limitation was the
occurrence of false fault detection under high-resistance grounding state and short circuit
in non-defective lines due to resonant overvoltage interference.

Based on traditional small-resistance grounding in 10 kV distribution network, this
paper studied a flexible grounding system consisting of small-resistance and an active
inverter in parallel. For the control system, in the compensation current calculation module,
during a single-phase grounding fault, this device is designed to inject a current of a given
amplitude and phase into the neutral point, which can effectively suppress the voltage and
current at the fault point. In the fault detection module, the fault line selection strategy
based on wavelet packet decomposition is adopted in this paper. It can effectively perform
partial analysis of non-stationary signals, decompose high-frequency signals, improve the
accuracy of fault detection, quickly identify the fault line or the busbar fault, and then
conduct line protection. In addition, a large number of simulations have been performed
in order to compare the compensation effect of the device under different types of faults
and neutral grounding modes. Whether the metal grounding, low-resistance grounding,
or high-resistance grounding fault occurs, the structure of the small-resistance and the
flexible grounding device in parallel can all fully compensate the fault current and quickly
suppress arc. At the same time, it can also rapidly identify the faulty line and effectively
protect the lines. Finally, an experimental prototype was built to verify the effectiveness
and feasibility of the flexible grounding device adopted in this article.

2. Basic Principle of Flexible Grounding Device

The basic topology of 10 kV flexible grounding device is shown in Figure 1. Among
them, EA, EB, and EC are the three-phase power voltages of the 10 kV distribution network;
Rx (x = A, B, C) and Cx (x = A, B, C) are the equivalent resistance and equivalent capacitance
of the 10kV distribution network, respectively; T is the step-up transformer of grounding
transformer; R0 is the small resistance of neutral grounding; Ii is the compensation current
injected by the flexible grounding device to the neutral point of 10 kV distribution network;
L0 is the filter inductance; and C0 is the filter capacitance. Assuming that a single-phase
ground fault occurs in phase C, Rf is the transition resistance of ground fault.
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The flexible grounding device adopted in this paper is based on the active inverter,
and it adopts the parallel structure of small resistance and step-up grounding transformer.
The flexible grounding device consists of an active inverter, impedance grounding system
(small resistance), and three-phase uncontrollable rectifier. When the distribution network
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works normally, the flexible grounding device is out of use. When a grounding fault occurs,
the voltage at the fault point exceeds the safety threshold, and a fault arc forms at the fault
point. The flexible grounding device is put into use after the switch is closed. In order
to suppress the fault point voltage and to make it lower than the safety threshold, this
paper adopts a flexible grounding device in order to inject zero-sequence current with
controllable amplitude and phase into the neutral point of 10 kV distribution network
in order to suppress the fault point current and realize voltage arc extinguishing. The
flexible grounding device samples the signal data of the zero-sequence voltage and current
on the line, processes and analyzes the data, and then transmits the driving signal to the
power electronic device. The power electronic device can be switched into use, which can
achieve the functions of fault voltage and current compensation, arc extinguishment, fault
diagnosis, fault feeder identification, and fault suppression.

3. Control System of Flexible Grounding Device

In this paper, as shown in Figure 2, the control system of the flexible grounding device
includes the following: current PI controller module, PWM modulation module, fault line
detection module, voltage and current measurement module, and compensation current
calculation module [10–12].
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3.1. Current PI Controller Module

The voltage and current at the fault point on the line are measured by the detection
module, and the compensation current i*z is calculated. After comparing the inverter
output current Ii as the feedback with the compensation current and reference current
I*

i, the difference is processed through the current PI controller in order to generate the
inverter carrier modulation signal. After PWM modulation, the inverter outputs an ideal
current Ii with a given amplitude and phase [13–15] and then it is injected into the neutral
point of 10 kV distribution network in order to suppress the fault current and voltage
to zero.

3.2. Fault Line Detection Module

When the high-resistance ground faults occur, the zero-sequence current is very
small, and the change of current amplitude is not obvious, which may cause errors in
fault detection [16–20]. Therefore, in the fault detection module, the wavelet packet
decomposition is used to extract the fault characteristic signal on the 10 kV distribution
line. The wavelet packet transformation actually acts similarly to a filter. The essence of
its method is to firstly decompose the original fault signal into several frequency bands
with the same bandwidth connecting with each other. Subsequently, the coefficients of
fundamental and harmonic components are obtained in the corresponding scale space. The
fundamental and harmonic signals are reconstructed to obtain the fault line signal fault
detection function [16–20].

The fault signal f (t) is decomposed by the wavelet packet, as shown in Figure 3, which
is the schematic diagram of 4-layer wavelet packet [21,22]. The decomposition algorithm is
as follows: 

d2n
j = ∑

k∈Z
hk−2ldn

j+1

d2n+1
j = ∑

k∈Z
gk−2ldn

j+1
(1)
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where dj
2n is No. 2n coefficient of wavelet packet on layer j. h and g are the coefficients of

the wavelet decomposition of low and high pass filters, respectively.
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The energy Ej,k of each frequency band signal is as follows:

Ej,k = ∑
n
[dj

k(n)]
2 (3)

where dj
k is the kth coefficient of wavelet packet on layer j.

For the zero-sequence transient current on the 10 kV distribution network, the wavelet
packet transform can effectively extract the transient characteristics of the current. During
the wavelet packet transformation, the most important step is to select the appropriate
wavelet base. Compared with other wavelet basis functions, the db wavelet function is more
effective in extracting transient features [21,22]. After many simulations and comparisons
of some wavelet functions, the db4 (4-layer wavelet packet decomposition) provided the
closest waveform feature of the transient current; thus, db4 is selected as wavelet basis
function in the paper. The sampling frequency is selected as 6400 Hz. Considering the
boundary effect, in order to show the characteristic quantity more clearly, the waveforms
of 1/4 cycle before and 3/4 cycle after the fault are extracted and transformed through the
db4 4-layer wavelet packet. According to Shannon’s sampling theorem, the bandwidth of
each section on the last layer is 6400/2/16 = 200 Hz. After many comparisons, this paper
chooses to reconstruct the signal at (4,1), and the signal of 200–400 Hz can be accurately
extracted via only one sampling period. The principle of this method is equivalent to
low-pass filtering without time delay [21,22].

The specific flow of realizing the fault line detection algorithm is shown as follows.
Firstly, when a single-phase grounding fault occurs, the fault zero-sequence current and
fault zero-sequence voltage on 10 kV the distribution network line should be collected, and
the data should be saved for at least two cycles [21,22]. In order to distinguish between
ground fault and voltage imbalance, the zero-sequence voltage threshold Uset is set as
15% of the maximum phase voltage [21,22] in order to identify the ground fault from 0
to 2 kΩ. When the zero-sequence voltage exceeds the given value, the system fault is
set as single-phase grounding fault. Secondly, the fault time can be determined by the
wavelet singularity principle. When the zero-sequence voltage is extracted by wavelet
decomposition, the modulus maximum point is determined, which corresponds to the
fault time. Thirdly, the waveforms of 1/4 cycle before the fault and 3/4 cycle after the fault
are extracted for analysis. The zero-sequence characteristics of k lines are extracted by db4
wavelet packet transformation, and the waveform is processed. Finally, the first-half wave
method is used to identify the fault line. If the waveform direction of each line at the fault
moment is consistent, the fault is considered to have occurred on the bus. If there is one
line that possesses the opposite direction relative to the other lines, it is considered that the
fault has occurred on this line.
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3.3. Compensation Current Calculation Module

When a single-phase grounding fault occurs in phase C, Switch S is closed, and the
flexible grounding device is put into use. At this time, in order to enforce the fault point
voltage 0, that is, UC = 0, the neutral point voltage UN should be adjusted, that is, UN =
−EC [15,23,24]. At this time, the current Ii injected into the neutral point by the flexible
grounding device is as follows.

Ii = EA(
1

RA
+ jωCA) + EB(

1
RB

+ jωCB)− EC(
1

RA
+ jωCA +

1
RB

+ jωCB −
1

R0
) (4)

According to Formula (4), the current Ii is irrelevant to fault transition resistance
Rf [25–27]. The injected current can fully compensate the active and reactive components
of the fault current. Thus, it can effectively suppress the fault phase voltage to zero and
realize arc extinguishment. Using the simulation parameters shown in Table 1 and bringing
them into Equation (4), the relationship between neutral point voltage UN and neutral
point injection current Ii can be obtained, as shown in Figures 4 and 5.

Table 1. Parameter settings.

Parameters Data

Neutral grounding resistance R0/Ω 10
Fault transition resistance Rf/Ω 100

Phase-A equivalent resistance to ground RA/kΩ 7.5
Phase-B equivalent resistance to ground RB/kΩ 6.5
Phase-C equivalent resistance to ground RC/kΩ 5

Phase-A equivalent capacitance to ground CA/µF 0.8
Phase-B equivalent capacitance to ground CB/µF 0.82
Phase-C equivalent capacitance to ground CC/µF 0.91
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It can be observed from Figures 4 and 5 that when the current Ii with amplitude of
4.78 A and phase of 80.2◦ is injected through the neutral point, the fault phase voltage UN
is forced to be zero, and the fault point current is zero, which achieves the purpose of full
compensation of fault residual current and realizes arc extinguishment at the fault point.
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3.4. Line Protection Strategy

The flow of control strategy and line protection strategy of flexible grounding device
is shown in Figure 6. After the fault detection process, if the faulty line k is identified,
the switch is on, and the flexible grounding device is put into use. The compensation
current i*z is calculated. After comparing the inverter output current Ii as the feedback with
the compensation current and reference current I*

i, the difference is processed through
the current PI controller to generate the inverter carrier modulation signal. After PWM
modulation, the inverter outputs an ideal current Ii with a given amplitude and phase. It
can force the fault phase voltage to zero. After a time delay, if the zero-sequence voltage
is reduced proportionally with the current Ii, this means that the arc is extinguished at
the fault point [23,24]. Then, the switch is closed, and the flexible grounding device is out
of use. Otherwise, it is considered that the fault is permanent, and the fault line should
be isolated.
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4. Simulation Results
4.1. Compensation Characteristics of Flexible Grounding Device

The simulation model of the 10 kV flexible grounding device as shown in Figure 1
was built by MATLAB software. In order to verify the effectiveness of the flexible ground-
ing device used in this paper under three different fault types (metal grounding fault,
low-resistance grounding fault, and high-resistance grounding fault) and two different
grounding modes (ungrounded mode and small-resistance grounding mode), a large num-
ber of simulation analyses were carried out in this paper, and the compensation results
were compared before and after the flexible grounding device was put into use. Due to
the space limitation of the article, only the waveforms under metal grounding (grounding
fault transition resistance Rf = 0 Ω) and small-resistance grounding mode were taken as
an example in Figure 7, and the rest waveforms are not shown in this paper. At 0.04 s, the
single-phase grounding fault is set to occur on Phase-C, and at 0.1 s, the flexible grounding
device is put into use. All the simulation parameters and results are presented in Table 2.
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Table 2. Comparison of the fault current before and after flexible grounding.

Fault Types
Grounding Fault Transition

Resistance Rf/Ω
Grounding Modes

Fault Current If/A

Device
before Use

Device
after Use

metal grounding 0
ungrounded 85.68 0.86

small-resistance grounding 19.58 0.33
low-

resistance grounding 100
ungrounded 77.83 0.34

small-resistance grounding 2.84 0.23
high-

resistance grounding 1000
ungrounded 8.475 0.27

small-resistance grounding 1.42 0.11

It can be observed from Figure 7 and Table 2 that the system adopts small-resistance
grounding mode, and the single-phase metal grounding fault occurs in Phase-C. After the
fault occurs, UC drops to 0, and UA and UB increase sharply. When the flexible grounding
device is out of use, the peak value of neutral point voltage UN reaches 681.6V, and its
offset rate reaches 11.83%. The maximum value of fault current is 19.5 A. After the flexible
grounding device is put into use, a current Ii with amplitude of 4.78 A and phase of 80.2º is
injected into the neutral point. The peak value of neutral point voltage UN remains under
5.2 V, and its offset rate reaches 0.086%. The suppression effect of neutral point voltage is
remarkable, and the fault current remains only at 0.33 A, approaching zero, which destroys
the mechanism of arc resignation and realizes arc extinguishment.

It can be observed from Table 2 that whether it is metal, low-resistance, or high-
resistance grounding fault, when the flexible grounding device is put into use, it can
effectively suppress the current at the fault point and force it to zero. It can also realize full
compensation of residual current at the fault point and realize 100% arc extinguishment of
transient fault. Compared with ungrounded mode and small-resistance grounding mode,
the use of small-resistance grounding mode combined with flexible grounding device has
better effects on suppressing residual current at fault point and higher reliability of arc
extinguishment.

4.2. Fault Dectection of Flexible Grounding Device

In this paper, the simulation model of transformer substation with four lines on the
10 kV bus side was built, and the equivalent parameters of each line are different. Assuming
that a single-phase grounding fault occurs on one line or on the busbar, the fault line can be
identified by using the strategy based on wavelet packet transformation. The waveforms
of zero-sequence current on each line before and after fault are shown in Figures 8 and 9.
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It can be observed that, at the fault moment, the waveform directions of fault line and 
non-fault line are opposite to one another. When the grounding fault happens on the bus, 
the coefficient diagram of wavelet packet decomposition and reconstruction is shown in 
Figure 11. Since the bus fault is equivalent to single-phase short-circuit grounding fault 
on all lines, the waveform directions of each line are the same. This method can identify 
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It can be observed from Figures 8 and 9 that the change rates of the non-fault line
waveforms are basically the same, but the zero-sequence capacitive current of the fault line
is the opposite of the sum of the non-fault lines. The current of the fault line is the sum
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of the capacitive current, inductive current, and the current on the grounding resistance,
but the inductive current and resistive current have little impact on the capacitive current.
Thus, there is a significant difference in the change rate and amplitude of the fault line
current during the transient process.

By using the above strategy, the fault line can be identified by different current
directions at the fault moment. When the grounding fault happens on one line, the
coefficient diagram of wavelet packet decomposition and reconstruction is shown in
Figure 10. It can be observed that, at the fault moment, the waveform directions of fault line
and non-fault line are opposite to one another. When the grounding fault happens on the
bus, the coefficient diagram of wavelet packet decomposition and reconstruction is shown
in Figure 11. Since the bus fault is equivalent to single-phase short-circuit grounding fault
on all lines, the waveform directions of each line are the same. This method can identify
whether the line fault or the busbar fault occurs and can also effectively detect the fault
line k.
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5. Experiments

In order to further verify the effectiveness of the strategy adopted in this paper, an
experimental prototype with 400 V voltage level was built, and its control board uses
DSP and FPGA dual controller. The experimental parameters are shown in Table 3. The
experimental prototype is mainly composed of a distribution grid module, isolation trans-
former, controller module, inverter module, and rectifier module. The physical picture of
the experimental prototype is shown in Figure 12.

Table 3. Experimental Parameters.

Parameters Data

filter inductance L0/mH 1
filter capacitor C0/µF 100

neutral grounding resistance R0/Ω 10
fault transition resistance Rf/Ω 100
ratio of isolation transformer T 1:1

equivalent resistance of line /µF 0.82
equivalent capacitance of line /µF 20
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The experimental waveforms are shown in Figure 13. From top to bottom, they are
waveforms of inverter output voltage Ui, three-phase voltage UABC0 (between lines and
the neutral point) of distribution network, fault phase current If, fault phase voltage Uf,
and three-phase current IABC of distribution network.
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waveforms under steady state.

It can be observed from Figure 13 that, after the fault occurs, the fault phase voltage Uf
fluctuates only within 20 ms. Before the flexible grounding device is put into use, the fault
current If is 15.66 A. After the flexible grounding device is put into use, the fault current
If is 0.396 A, which means that the fault current is effectively suppressed. Furthermore,
the fault phase voltage Uf is also suppressed, which is consistent with the waveform UC
in Figure 7a The experimental results are consistent with the simulation results; thus, it
can be verified that the flexible grounding device adopted in this paper can effectively
suppress the voltage and current at the fault point in the case of a single-phase grounding
fault occurring in distribution network, which represents the effectiveness and feasibility
of the device.

6. Conclusions

The flexible grounding system consisting of small-resistance and active inverter in
parallel is adopted in this paper. Its control system contains the compensation current
calculation module and the fault detection module. During a single-phase grounding fault,
this device is designed to inject a current of a given amplitude and phase into the neutral
point, which can effectively suppress the voltage and current at the fault point. This device
can also quickly identify the fault line or the busbar fault, and then effectively conduct line
protection. In addition, a large number of simulations have been performed under different
fault types and neutral grounding modes. Finally, a 400 V-level experimental prototype
was built, and the experimental results are consistent with the simulation results, which
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can verify the effectiveness and feasibility of the flexible grounding device. Due to the fact
that the school laboratory does not have the conditions for experimental verification of the
content of fault detection and line protection, in the future, we will cooperate with a power
grid company to conduct further experiments.
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agreed to the published version of the manuscript.
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