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Abstract: The recent boom of artificial Neural Networks (NN) has shown that NN can provide viable
solutions to a variety of problems. However, their complexity and the lack of efficient interpretation of
NN architectures (commonly considered black box techniques) has adverse effects on the optimization
of each NN architecture. One cannot simply use a generic topology and have the best performance in
every application field, since the network topology is commonly fine-tuned to the problem/dataset
in question. In this paper, we introduce a novel method of computationally assessing the complexity
of the dataset. The NN is treated as an information channel, and thus information theory is used to
estimate the optimal number of neurons for each layer, reducing the memory and computational
load, while achieving the same, if not greater, accuracy. Experiments using common datasets
confirm the theoretical findings, and the derived algorithm seems to improve the performance of the
original architecture.

Keywords: topology optimization; network optimization; pruning

1. Introduction

One of the current biggest challenges in Deep Neural Networks (DNNs) is the limited
memory bandwidth and capacity of DRAM devices that have to be used by modern systems
to store the huge amounts of weights and activations in DNNs [1]. Neural networks require
memory to store data, weight parameters and activations. Memory usage is high, especially
during training, since the activations from a forward pass must be retained, until they can
be used to calculate the error gradients in the backwards pass. A typical example is the
‘ResNet-50’ network, which has approximately 26 million weight parameters and computes
approximately 16 million activations in the forward pass. Using the conventional 32-bit
floating-point format, one would require almost 170 MB.

All the above clearly demonstrate an urgent need to reduce the memory requirements
in modern DNN architectures. One way to address this is to reduce computation. A simple
technique is to discard values that are relatively cheap to compute, such as activation
functions, and re-compute them when necessary. Substantial reductions can be achieved by
discarding retained activations in sets of consecutive layers of a network and re-computing
them when they are required during the backwards pass, from the closest set of remaining
activations [2]. However, this does not appear to be the optimal way to save on memory. A
similar memory-reuse approach has been developed by researchers at Google DeepMind
with Recurrent Neural Networks (RNNs). For RNNs, re-computation has shown to reduce
memory by a factor of 20 for sequences of length 1000 with only a 0.3 performance over-
head [3]. A third significant approach has been recently discovered by the Baidu Deep
Speech team. Through various memory-saving techniques, they managed to obtain a 16×
reduction in memory for activations, enabling them to train networks with 100 layers,
instead of the previously attainable nine layers, using the same amount of memory [4].

The above three approaches mark a great improvement in memory handling; however,
the greatest memory hog is the a-priori non optimised neural network topologies. Thus,
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another method to solve this general computational-resource problem is to choose the
best network topology for each problem. However, in deep learning, the Neural Network
topologies that are used are stochastically/empirically determined. Consequently, there
is always room for improvement, either in terms of computational complexity, or model
efficiency/accuracy.

There is a rule of thumb that can be applied on supervised learning problems [5]. One
can usually prevent the network’s overfitting, provided the number of neurons are kept
below a threshold value Nh:

Nh = aNs(Ni + No) (1)

where Ni denotes the number of input neurons, No the number of output neurons, Ns the
number of samples in the training data set and a is an arbitrary scaling factor, usually
in the range of 2–10. Usually, a value of 2 will often work without overfitting. One can
consider a the effective branching factor or number of nonzero weights for each neuron.
The degrees of freedom in the dataset are expressed by the number of samples, multiplied
by the dimensions of each data sample or Ns(Ni + No) (assuming they are all independent).
In this context, a acts as an indicator of how general a model is desired to be, or equivalently
how much one needs to avoid overfitting to the training data. A hyper-parameter grid
search could start with a = 2 and test all the way up to 10, whether the error for the training
dataset is significantly smaller than that of the test dataset, which means that the neural
network does not generalise effectively.

The nature of hidden layers is defined by two distinct decisions. The number of the
aforementioned hidden layers and the number of nodes (neurons/filters) in each layer. The
question of the number of hidden layers used in the neural network will be answered first.

Problems that require two hidden layers, in theory, are rarely encountered. However,
neural networks with two or more hidden layers can model functions with any kind of
shape [6]. Hitherto, there was no theoretical reason to use neural networks with any more
than two hidden layers, due to the universal approximation theorem that states that two-
layer networks can perfectly approximate certain classes of functions. Nonetheless, it has
been extensively reported [7] that deeper (more layers) networks produce more compact
representations, compared to those produced by two-layer networks. In addition, using
neural networks that are deeper is more efficient than using neural networks that are wider
(more nodes per layer), since deeper networks capture the natural ‘hierarchy’ that is present
in the observed phenomenon.

Deciding the number of hidden neuron layers is only a small part of the problem. One
must also determine the number of neurons in each of these hidden layers. These layers
may not directly interact with the external environment; however, they pose a huge impact
on the final output and the network’s accuracy. The number of hidden layers and the
number of nodes in each of these hidden layers has to be chosen wisely, as using too few
nodes in the hidden layers will result in underfitting, which implies that the network cannot
model the dataset’s complexity adequately. On the contrary, using too many neurons in the
hidden layers can lead to even more damaging problems. First, too many neurons in the
hidden layers may result in overfitting, which means that the neural network has so much
information processing capacity that the limited amount of information contained in the
training set is not enough to train all the neurons. The second problem is about efficiency,
since a large number of nodes in the hidden layers can increase the training time of the
network, even leading to inability of current technology to be used because of the memory
size and bandwidth limitations. Generally, in order to secure the ability of the network
to generalise, the number of nodes/neurons has to be kept as low as possible, to avoid
creating a “memory bank” neural network that has mapped the training dataset one to
one but cannot extrapolate. As a matter of fact, there is a region, a sweet spot, between the
two situations, where the number of hidden layers and number of nodes in each layer is just
right for the problem. The automatic finding of this sweet spot is the scope of this paper.

To this day, there are many rule-of-thumb methods for determining the correct number
of neurons to use in the hidden layers, such as the following [8]:
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• The number of hidden neurons should be between the size of the input layer and the
size of the output layer;

• The number of hidden neurons should be 2/3 the size of the input layer, plus the size
of the output layer;

• The number of hidden neurons should be less than twice the size of the input layer.

These three rules provide only a starting point, since the selection of an optimal
architecture for the neural network in question would finally come down to trial and error,
thus utilising valuable time and computational resources, and of course reduced efficiency.

Hitherto, the key strategy for obtaining good generalisation is finding the simplest
model that explains the data. The idea is that, the more complex the model is, the greater the
probability of error outcomes. In terms of neural networks, the simplest model is the one
that contains the smallest number of free parameters (weights and biases), or, equivalently,
the smallest number of nodes. To find a network that generalises well, we need to find the
simplest network that fits the data.

There are at least five different approaches that people have used to produce simple
networks: growing, pruning, global searches, regularisation and early stopping [9,10].
Growing methods start with no neurons in the network and then add neurons until the
performance is adequate. Pruning methods start with large networks, which most likely
overfit, and then remove neurons (or weights) one at a time, until the performance degrades
significantly. Global searches, such as genetic algorithms, search the space of all possible
network architectures to locate the simplest model that explains the data. However, these
methods can either dynamically alter the size and topology of the network, while being
highly computationally inefficient, or can only remove information, which, in turn, requires
that the network starts from a bigger-than-required size.

The major differentiation, regarding pruning methods is (a) sparsity structure, (b) scor-
ing, (c) scheduling and (d) fine-tuning.

1. Structure: The pruning of individual parameters is followed by some methods, and
is called unstructured pruning. Following this method, a sparse neural network is
produced, which although smaller in terms of parameter-count, may not be optimally
arranged in a fashion conducive to speedups using modern libraries and hardware.
Another popular method considers parameters in groups, removing entire neurons,
filters, or even channels, exploiting hardware and software optimised for dense
computation. This method is called structured pruning [11];

2. Scoring: One common method is scoring the parameters based on their absolute
values, trained importance coefficients, or even contributions to network activations
or gradients. One way to achieve this is to score locally, pruning a fraction of the
parameters with the lowest scores within each structural sub-component of the net-
work [9], while the other views scores globally, comparing scores to one another
irrespective of the part of the network in which each parameter resides [10,12];

3. Scheduling: When considering the timing of each pruning algorithm, there are two
schools of thought. Some pruning methods prune all targeted weights at once in
a single step [13], while others prune a fixed fraction of the network iteratively
over several steps [14] or vary the rate of pruning, according to a more complex
function [15];

4. Fine-tuning: When a method utilises fine-tuning, the most common case is to train
the network using the before-pruning trained weights. The other major school of
thought rewinds the network to an earlier state [16] or even re-initialises the entire
network [13].

In this paper, we propose a novel approach of dynamically calibrating the width of
each layer, every arbitrary number of epochs. This is achieved using Shannon’s Channel
Capacity Theory [17] and considering the NN’s weight matrix as an information transition
matrix. A baseline complexity approximation of the dataset using Kolmogorov Complexity
Theorem [18–20] (entropy approximation) is firstly performed. To evaluate the capacity
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of each layer, we utilise a novel optimized Blahut–Arimoto algorithm, since the origi-
nal [21] is exponentially computationally expensive for a small increase in accuracy. For
the dataset, we use an entropy approximation of the Kolmogorov Complexity Theorem,
since the original is non computable, which converges to the entropy of the dataset. Experi-
ments have shown that the above method can be effectively used for either convolutional
layers or fully connected layers, treating each layer as a channel of information transfor-
mation/compression, while having enough capacity to encode the baseline information
complexity of the input pattern.

2. Outline of the Proposed Algorithm

The proposed algorithm aims at optimising the topology of neural networks online
during training, regardless of the dataset. The proposed algorithm consists of the following
discrete steps:

1. At first, the complexity of the dataset is evaluated, using the average entropy, multi-
plied by the bits needed to depict each class (i.e., 3 bits for 8 classes).

2. The initial network topology is a common topology, i.e., a network topology used in
the literature for similar datasets. The network is trained for a fixed number of epochs
(e.g., 10), drifting from the random initialisation stage, in order to start encoding
useful information in its layers.

3. After a number of epochs, the capacity of each layer is evaluated. Each layer is
considered an information channel and the weight matrix can be viewed as a channel
transition matrix (see (5)). We can then use a modified and optimized Blahut–Arimoto
algorithm to estimate the information capacity of each layer. Based on the capacity
of each layer and the given dataset complexity, extra filters are added with minimal
weights (median 0, max 0.04 and min −0.04), so as not to undermine the training
attained so far. In the case that the layer is found unable to contain the required
information, we increase the width of those layers that are found to be too coarse, by
adding new nodes with minimal weights. If a layer is found too wide, the nodes with
the lowest entropy in their connections are removed. If the information capacity is
found to lay within certain limits, no further action is taken. If there is no change of
width of any layer for two consecutive iterations, the size of that layer freezes, and no
computation takes place again for this specific part of the network.

4. The method terminates after a predefined number of epochs passes, or in the case that
every layer size does not update.

The whole procedure is outlined in Figure 1. In the following sections, we will describe
the operation of the algorithm in more detail.



Information 2022, 13, 405 5 of 26

Figure 1. Outline of the proposed Algorithm.

3. Dataset Complexity Estimation

The first step in our algorithm is to determine the complexity of the given dataset.
We propose to estimate the complexity of the dataset using an approximation of the
Kolmogorov complexity theorem, since computation of the actual Kolmogorov’s complexity
theorem is impossible. Kolmogorov complexity can be defined for any information source.
It can be shown [22–24] that, for the output of Markov information sources, Kolmogorov
complexity is related to the entropy of the information source [25]. More precisely, the
Kolmogorov complexity of the output of a Markov information source, normalised by the
length of the output, converges almost surely (since the length of the output goes to infinity)
to the entropy of the source [24,26].

Based on the above, we propose that one can evaluate the complexity of the dataset
by the product of the mean entropy of each sample and the bits required to represent
all categories (e.g., 6 bits for 60 classes, since 26 = 64). This method is quite effective
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and fast, even for large image-based datasets. One could compute only a representative
amount of samples from each class and not the full dataset, without losing accuracy in a
meaningful way.

Assume that X = x1, x2, . . . , xd is a discrete Markov source with d symbols or classes.
Let L(n) be a sequence of N symbols drawn from X. One can estimate the number of
occurrences of each symbol in the stream/dataset and thus calculate a histogram. If this
histogram is normalised by the number of symbols N, this yields the approximate pdf
p(X = xi). This can be used to estimate the entropy of the dataset, using Shannon’s formula:

H(X) = −
d

∑
i=1

p(xi) log2 p(xi) (2)

We then estimate the number of bits required to encode the number of symbols/classes via

Q = dlog2 de (3)

The dataset’s complexity DC can be estimated via:

DC = QH(X) (4)

The following Algorithm 1 outlines the proposed procedure.

Algorithm 1 Dataset complexity estimation

Require: Dataset L(n) of N samples, number of classes d.
Estimate dataset L(n) ’s histogram h(i), ∀i = 1, . . . , d.
Estimate dataset’s pdf p(i)← h(i)/N, ∀i = 1, . . . , d.
Estimate dataset’s entropy H
H ← 0
for all i ∈ [1, d] do

H ← H − p(i) log2 p(i)
end for
Q← dlog2 de
Dataset Complexity: DC ← Q×ME
return DC

4. Neural Network as an Information Channel—Capacity Estimation

The number of columns of the weight matrix of a layer in a neural network is equal to
the number of neurons in the hidden layer. The dimensions of the weight matrix between
two layers are determined by the size of the two layers it connects. There is one weight for
every input-to-neuron connection between the layers.

We can consider each neural network’s fully connected layer as an information channel
that transmits information from its input to its output. The information capacity of a channel
represents the upper bound of information that can be transmitted through the channel.
Moving this concept to a layer in a neural network, information capacity denotes the
information that can be transmitted through this layer, or equivalently the information that
can be processed or stored through this layer. This is a novel concept presented in this work,
and we intend to examine the effectiveness of information theory tools on automatically
determining the optimal neural network architecture.

The inception of this idea is that, macroscopically, a neural network functions similarly
to an information channel, transmitting and modifying the information of the input, to the
output, as a decision or a continuous value, depending on the type of the neural network
in question. In our quest to incorporate the information theory in the neural network, we
made the assumption that every stage/layer of the neural network can be considered an
information channel, as there are similarities in the usage of the weight matrix in a neural
network and the transition matrix in an information channel. During experimentation, we
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discovered that the concept of viewing a neural network layer and an information channel
as parallels is valid, as both can be regarded as ways of manipulating information.

An information channel is commonly described by the channel or transition matrix,
which describes the conditional probabilities of any channel/layer’s output given any of
the channel/layer’s input. For a discrete memoryless channel/layer with K inputs xk and
L outputs yk, the transition matrix P(X, Y) is given by:

P =

 p(y0|x0) p(y1|x0) . . . p(yL−1|x0)
p(y0|x1) p(y1|x1) . . . p(yL−1|x1)

p(y0|xK−1) p(y1|xK−1) . . . p(yL−1|xK−1)

 (5)

Given this transition matrix P(X, Y), the capacity of the channel/layer is given by:

C = max
pX(x)

I(X; Y) (6)

where I(X; Y) refers to the mutual information between the inputs X = [x1, x2, . . . , xK]
T

and Y = [y1, y2, . . . , yL]
T and pX(x) refers to the pdf of input x that achieves the maximum

transmission rate.
As it is evident, the above definition is rather theoretical. There are many methods

to estimate the information capacity of a channel/layer in practice. One method of chan-
nel capacity estimation is the Blahut–Arimoto algorithm [21,27–29]. The algorithm was
independently invented by Suguru Arimoto [21] and Richard Blahut [27]. The algorithm
is mostly applicable to the case of arbitrary finite alphabet sources. Recently, a version of
the algorithm that accounts for continuous and multivariate outputs was proposed with
applications in cellular signalling [30]. There also exists a version of the Blahut–Arimoto
algorithm for directed information [29].

4.1. The Blahut–Arimoto Algorithm

Suppose we have a source X with probability pX(x) of any given symbol and a
network layer channel that translates X to Y with a transition matrix P(X, Y). In order
to estimate the channel capacity C, we need to estimate the pdf of the source pX(x) that
maximises the mutual information between X and Y. The Blahut–Arimoto algorithm
attempts to maximise (6) by reforming the original cost function and transforming it to the
following equivalent alternating optimisation problem:

C = max
pX(x)

∑
i

∑
j

Pji pX(xi) log
( Pji

pX(xi)

)
(7)

The Blahut–Arimoto algorithm resolves to an iterative algorithm that estimates the
optimal source pdf that yields the maximum channel capacity C. The iterative procedure is
defined as follows [31]:

1. Start with an arbitrary pX(x)

2. Pt+1
X (xi) =

pt
X(xi) exp(λz(xi))

∑xi
pt

X(xi) exp(λz(xi))
, where z(xi) = D(Pi||pt

XP) is the Kullback–Leibler

divergence between the distributions of Pi and pt
XP.

3. Iterate 2, until convergence.

The constant λ ∈ R is a constant that controls the importance of the divergence
function in the estimation of the prior distribution. For λ = 1, we get the original Blahut–
Arimoto algorithm. Once pX(x) is estimated, we use the function of (7) to estimate the
capacity of the network. The presented algorithm is a “squeezed” version [31] of the
original Blahut–Arimoto algorithm, which is more possible to converge.

Our implementation of the Blahut–Arimoto algorithm is depicted in Algorithm 2. The
algorithm had to be modified to reflect the fact that we are now modeling the layer of a
neural network, instead of a communication channel. Since we are not interested in a very
accurate estimate of the layer’s capacity, but rather get a valid and quick measurement, we



Information 2022, 13, 405 8 of 26

lowered the accuracy from e−5 to e−2 and reduced the maximum number of iterations to
1000 (10% of the original number of iterations).

Algorithm 2 The modified Blahut–Arimoto algorithm

Require: TransitionmatrixP
Ensure: ChannelCapacityC

errortolerance← 1e− 2
r ← the initial distribution for channel input to 1s over the numberelements
q← P
for iterate← 1 to 1000 do

for all j ∈ [1,number of columns] do
q(all, j)← rT × P(all, j)
Capacity(q)← Capacity(q)/sum of cells in row q resides

end for
for all i ∈ [1,number of rows] and q ∈ [1,number of columns] do

r1(i)← q(i, all)P(i,all)

end for
r1(all)← r1(all)/SUM(r1)
if norm(r1− r) ≤ errortolerance then

the algorithm stops
else r ← r1
end if

end for
C ← 0
for i ∈ [1,number of columns] do

for j ∈ [1,number of columns] do
if r(i) > 0 or q(i, j) > 0 then

C← C + r(i)P(i, j) log q(i,j)
r(i)

Capacity(q)← Capacity(q)/sum of cells in row q resides
end if

end for
end for
return Capacitybits ← C/ log 2

Using the above two computations, the dataset information complexity is estimated
only once at the beginning and the channel capacity after a set number of epochs.

4.2. The Mutual Information Algorithm

We also evaluated the idea of using mutual information as a method of determining
the information capacity of each layer. However, during testing, we observed a large
oscillation and a lack of temporal stability in the values, resulting in a non stable network
topology with a sometimes wildly varying size of layers, which considerably hindered the
training process. To estimate the mutual information, we need to use its definition [17]:

I(X; Y) = ∑
X

∑
Y

p(X, Y) log
p(X, Y)

p(X)p(Y)
(8)

Since the transition matrix P(X, Y) is known, we initially assume the uniform distri-
bution for X. The following iterative algorithm(see Algorithm 3) is used to update the
mutual information and the estimated distribution of X. The final estimate of the mutual
information of each layer is provided as a final output.

A comparison between the two methods that led us to utilise the BA algorithm in
favour of Mutual Information will follow after explaining the rest of the proposed algorithm
in Section 5.2.
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Algorithm 3 The mutual information algorithm

Require: TransitionmatrixP
Ensure: MutualIn f ormationI

errortolerance← 1e− 2
lu← 1
ll ← 0
Pyc← P
(N, M)← sizeo f P
Pc← (1/M) · ones(M)
Qy← Pyc× Pc
while (Iu− Il) > e/N do

for j ∈ [1, M] do
temp← 0
for k ∈ [1, N] do

temp← temp + ((Pyc(k, j))× log((Pyc(k, j))/Qy(k)))
end for
F(j)← etemp

end for
x ← F× Pc
ll ← log 2(x)
lu← log 2(max(F))
if lu− ll < e then

temp2← 0
for j ∈ [1, M] do

for k ∈ [1, N] do
temp1← temp1 + ((Pyc(k, j))× log((Pyc(k, j))/Qy(k)))

end for
temp2← temp2 + Pc(j)× temp1;

end for
I ← temp2
Breakloop

else
Pc← (1/x) · FT × Pc;
qY ← Pyc× Pc;

end if
end while
return MutualIn f ormation← I

5. Automated Neural Network Topology Optimization
5.1. Proposed Method Description

In this section, we describe the proposed automated procedure to optimize the topol-
ogy of a neural network for a specific task. The proposed system is described in the block
logical diagram in Figure 2. The process starts by evaluating the dataset’s complexity using
Algorithm 1. The next step is to initialize NN training, based on an ad hoc topology, i.e.,
proposed in literature or used in a similar experiment and has been reported to perform
well. The NN is left for a couple of epochs to commence its training. The information
capacity of each layer is then computed using Algorithm 2 and compared to the complexity
of the dataset that was already estimated earlier. In a fully connected neural network,
the size of the layer connections/weight matrices are defined by the current and next
layer’s number of neurons. In the example of Figure 2, the weight matrix of layer n− 1
is 6× 10 and of layer n is 10× 4. When evaluating the capacity of a convolutional layer
(Figure 3), however, we must add the capacity of each individual filter, as calculated by the
BA algorithm. In other words, the capacity of the layer is the sum of the capacities of all
filters in each layer.
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Figure 2. Layers n− 1, n and n + 1 of a fully-connected Neural Network.

Figure 3. Layer n of a Convolutional neural network.
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The remaining details of the algorithms are discussed and validated over a specific
convolutive network that classifies the MNIST dataset.

5.2. Method Application and Validation on the MNIST Dataset
5.2.1. Optimal Layer Size Estimation

In the following experiment, we can uncover the connection between the dataset’s
complexity and the layer capacity. For demonstration purposes, we will use a simple con-
volutional neural network with one hidden convolutional layer and 10 decision neurons to
solve the MNIST classification problem. The dataset’s complexity is estimated to be 6.4102
using Algorithm 1. We will then vary the number of convolutional filters of the hidden
convolutional layer and estimate the capacity of each network layer, the classification
accuracy for each configuration and finally the corresponding capacity/layer complexity
ratio. This ratio is equivalent to the ratio of capacity over the number of filters in the
layer. This ratio demonstrates the amount of the dataset’s information that is stored by the
current network’s capacity. In other words, the greater the value of the ratio, the better the
utilization of the network’s resources for the corresponding classification problem. The
experiment was executed 10 times, and the average of these is presented in Table 1. In
addition, we denote the number of filters as the layer’s complexity. The ratio of Capacity
over the Layer’s Complexity is also presented in Figure 4.

Table 1. Accuracy, capacity and capacity/(layer’s complexity) with a varying number of filters in the
hidden layer. The layer’s complexity is shown by the number of filters. The optimal ratio appears at
22 conv. filters.

Conv. Filters Capacity Accuracy Capacity/(Layer’s Complexity)

16 4.1061 0.9652 0.25663125
18 5.1617 0.9674 0.286761111
20 5.937 0.9692 0.29685
22 6.8649 0.9715 0.3120409091
24 7.371 0.9724 0.307125
26 7.608 0.9733 0.292615384
28 7.9864 0.9736 0.285228571
30 8.599 0.9739 0.28663333
32 9.008 0.9741 0.2815

Figure 4. Estimating the Capacity/Layer Complexity ratio for a varying number of filters in the
hidden layer of a 1-layer convolutive NN. The configuration of 22 filters seems to yield the optimal
ratio for the MNIST dataset.

We can observe in Figure 4 that the best Capacity/Layer Complexity ratio can clearly
be achieved by the layer, whose capacity is the same as the dataset’s complexity. The
configuration of 22 layers yields a capacity of 6.8649, which is closer to the complexity
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of the dataset, i.e., 6.4102. The aim here is to achieve the greatest information capacity
capability, without resulting in a huge number of filters/neurons per layer. In other
words, we are aiming at finding a configuration that maximises the ratio of Capacity/Layer
Complexity, i.e., the best capacity match with the data’s complexity with the smallest
number of filters (neurons) in the layer.

In Figure 5 and Table 2, the accuracy is depicted for a varying number of filters
in the previous experiment. One can observe the decline of the slope after the optimal
number of neurons in the hidden layer. To further support this, the first-order derivative
of the accuracy chart is calculated, using the Mean Value Theorem, i.e., f ′(b) = ( f (b)−
f (a))/(b− a).

Figure 5. Accuracy diagram for a varying number of filters in the hidden layer of a 1-layer convolutive
NN for the MNIST dataset.

Table 2. Accuracy values and first-order approximated derivative of accuracy. The slope of the curve
reaches a maximum at the configuration of 22 filters, after which it is almost flat.

Conv. Filters Accuracy First Order Derivative (Using MVT)

16 0.9652 0.0019
18 0.9674 0.0022
20 0.9692 0.0018
22 0.9715 0.0023
24 0.9724 0.0009
26 0.9733 0.0009
28 0.9736 0.0003
30 0.9739 0.0003
32 0.9741 0.0002

The first order derivative of the accuracy metric in Figure 6 shows that adding nodes
beyond the number defined by the capacity of the layer in question has an adverse effect
on the efficiency of the neural network. The accuracy may increase slightly, but the
computation cost starts being disproportionately large. Thus, the further slight increase
in accuracy entails the considerable increase of nodes in the configuration of the NN,
which questions the overall efficiency of the network. In summary, the optimisation goal
of this approach is to optimise the resource utilisation of the network, i.e., provide the
smallest network that can perform efficient classification depending on the dataset. This
will definitely increase accuracy but may not give the network with the best accuracy. As
a result, the proposed scheme yields the best network configuration, in terms of resource
allocation, with the best possible classification accuracy.
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Figure 6. First-order derivative diagram of accuracy for the 1-layer convolutive NN and the
MNIST dataset. A clear peak is shown at the 22-filter configuration, after which the slope
decreases considerably.

5.2.2. Information Capacity Evolution over More Layers and Network Adjustment

While it is not very clear how information theory can guide us in the relevance of
capacity in each consecutive layer, it is clear that the last convolutional layer, before the
fully connected decision layer, should be able to contain all the information complexity of
the dataset, while the decision layer should be able to contain the information bits required
to represent the categories in a classification task, or the stepping of the real values in the
required accuracy. As mentioned above, only the last convolutional layer is required to
store the whole information, as reviewed from layer hierarchical representation in [32,33],
while all previous layers need to store exponentially less information. A natural logarithm
is used as an information vanishing factor, depending on the number of layers. All units
in (9) are measured in bits. Thus, we propose the following model to measure the capacity
of each layer:

DesiredCaplayer(i) =
1

ln(numberlayers − i + 1) + 1
DatasetComplexity (9)

where i is the layer number and numberlayers is the total number of layers in the network.
To test the validity of the proposed model in (9), we measure the capacity of each layer

in a nearly optimised 4-layer convolutional neural network with 32, 48, 64 and 128 filters,
respectively, classifying again the MNIST dataset. This NN architecture is depicted in
Figure 7. The measured capacity of each layer is compared against the desired capacity, as
predicted by the proposed model of (9). A comparison between the measurements and the
predicted capacity is displayed in Figure 8. It is evident that the measured capacity is very
close to the one predicted by the model, thus verifying the validity of Equation (9).

If the information capacity of the layer in question is larger than 1.05 of the required
capacity of the given layer, the least significant nodes are identified and removed, along
with their connection to and from the previous and next layer, respectively. The 0.05 margin
is in place to prevent unnecessary oscillations during training, while the removal criterion
for the excess nodes in the layer in question is the entropy of each connection. The
nodes/filters/neurons that display the least amount of entropy are not contributing to the
information holding capacity of the layer, as entropy is associated with information [34]. If
the layer is found to be of an inadequate size, i.e., of lower information capacity than 0.95 of
the desired capacity, compared to the dataset complexity, then nodes are added. The number
of nodes depends on the difference of the information capacity and information complexity
of the layer and dataset, respectively. The step of increase or decrease of filters/neurons
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steplayer(i) is calculated as double the difference of channel capacity Caplayer(i) minus the
dataset’s information complexity DesiredCaplayer(i), for each layer i, i.e.,

steplayer(i) = 2(DesiredCaplayer(i) − Caplayer(i)) (10)

The factor 2 in Equation (10) is used as an ad-hoc means to speed up the convergence
process after extensive experimentation. The improved network is left for a couple of
epochs to train and its performance is again evaluated using the procedure described
above. If there is no visible improvement or the maximum number of epochs is reached,
the improvement procedure stops, yielding the final optimised network. An overview of
the proposed algorithm is shown in Figure 1.

Figure 7. Manually optimized CNN architecture to validate the layer capacity model of (9).
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Figure 8. Observed capacity of manually optimized neural network vs. theoretical optimal capac-
ity calculations.

The procedure can be outlined, as follows:

1. Determine the complexity of the dataset;
2. Set the desired capacity of the last layer equal to the dataset complexity;
3. Set the desired capacity of each layer, according to (9);
4. Begin training and, after a number of epochs, examine each layer independently;

• if the information capacity of the layer is larger than 1.05 of the desired capacity
of the layer, remove nodes, according to (10);

• if the information capacity of the layer is smaller than 0.95 of the desired capacity
of the layer, add nodes, according to (10);

• in all other cases, the layer stays the same;

5. Go to 4 and continue the procedure, until the network is not updating or the accuracy
is not improving.

5.2.3. Comparison between Blahut–Arimoto and Mutual Information for Layer
Capacity Estimation

As mentioned earlier in the text, there are two methods to estimate channel capacity:
one using the Blahut–Arimoto algorithm and one using mutual information. To compare
the effectiveness between capacity estimation using the Blahut–Arimoto (BA) algorithm
and mutual information, we set the following experiment. We set a simple convolutional
neural network with three hidden layers, which we are trying to determine the optimal
number of nodes/filters, using the proposed algorithm. We examine two cases, where the
BA algorithm or the Mutual Information are used as a capacity estimation metric. We ran
six training phases of five epochs each, for a total of 35 epochs. In Figure 9, one can observe
the temporal oscillation on the number of nodes per layer, per training phase, especially,
when observing layer 2 for this example. In contrast, one can clearly observe that, using the
BA algorithm as an information capacity indication, the nodes per layer converge to a single
value, without oscillations, as expected. Consequently, the BA algorithm seems to produce
more stable estimates of information capacity, thus leading to more stable node predictions
for the proposed algorithm. Therefore, the BA algorithm will be used to estimate channel
capacity in the proposed approach.
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(a) (b)
Figure 9. Number of nodes/filters per training phase when using mutual information (a) and Blahut–
Arimoto (b) as an information capacity indication. The Blahut–Arimoto algorithm produces far less
oscillations compared to Mutual Information.

6. Experimental Results

As stated in the previous chapters, due to the different approaches, followed by
competing methods, we could not conduct any standardized testing. Our method is
implemented to be used during training and not after training and during inference as the
majority of the competing methods do. This can lead to difficulties in direct comparison;
however, we believe that training topology optimization is of greater importance, given
the vast memory and computation requirements during training. An optimal topology is
paramount for the best utilization of the available computational resources.

Driven by the above-mentioned restrictions, our method is compared against vanilla
neural networks used to solve popular datasets, whose topology would be used, if no
topology optimization was available during training. The datasets used in our experiments
are MNIST, Fashion MNIST, CIFAR-10 and Sign Language. The proposed method was
developed on Matlab 2020a using GPU acceleration on a nVidia Tesla K10 graphics card.
Below, a benchmark is followed for the proposed method over the commonly used datasets
MNIST, Fashion MNIST, CIFAR-10 and Sign Language.

6.1. MNIST

The MNIST database (Modified National Institute of Standards and Technology
database) is a large database of handwritten digits that is commonly used for training
various image processing systems [35,36]. It is widely used for training and testing in
machine learning models. The dataset was created from the samples from NIST’s original
datasets and applying modifications on them [35]. The black and white images from NIST
were resized into a 28× 28 pixel bounding box and anti-aliased and were converted to
grayscale [37]. The MNIST database contains 60,000 training images and 10,000 testing
images [38]. Half of the training set and half of the test set were taken from NIST’s training
dataset, while the other half of the training set and the test set were taken from NIST’s
testing dataset [38].

For our testing, we used five evaluations of the network’s capacity, once every five
epochs for a total of 30 epochs. The conventional topology is based on three Convolutional
Layers with max pooling only after the last layer and 10 neurons at the decision layer. The
automatic topology optimized neural network used the same network as a baseline and
further tuned each convolutional layer to the dataset’s needs using the proposed method.

The diagram in Figure 10 shows the neural network topology used in the MNIST and
FashionMNIST datasets for the conventional and proposed method. Figure 11a illustrates
the accuracy of 20 independent classification runs of the MNIST dataset, using the auto-
matic topology optimization with the blue colour, and using the conventional topology
with the red colour. It is obvious that the proposed method provides more consistent
results with lower standard deviation among runs, 0.000652445 versus 0.001555263 of the
conventional method, along with higher classification accuracy, 0.98426 versus 0.98029. The
corresponding F1-scores are 0.9798 for the proposed method vs 0.9785 for the conventional
one. Figure 11b illustrates the testing accuracy of the two competing network topologies
every five epochs (one phase) up to the total of 30 epochs. The automatically optimized
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topology achieves an increase in accuracy, compared to the static topology, starting from
the third phase of optimization.

Figure 10. Vanilla CNN for MNIST classification (left), Adaptive CNN for MNIST classifica-
tion (right).

Figure 12 shows the confusion matrices of the vanilla MNIST network and the pro-
posed network topology, respectively. Due to the low complexity of the dataset, the
confusion matrix of the vanilla network is nearly diagonal, mostly confusing 8 with 3,
which is expected. One can observe that the network, whose topology was automatically
configured, is strongly diagonal, more than the vanilla network, which demonstrates the
improvement offered by the proposed methodology.

(a) (b)
Figure 11. (a) MNIST Testing accuracy variation over random independent runs of the optimized
and the conventional NN; (b) MNIST Testing accuracy every five-epoch tranining (1 phase) for the
optimized and the conventional NN.
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(a) (b)
Figure 12. Confusion matrix of (a) the vanilla MNIST network topology and (b) the adaptive MNIST
network topology.

6.2. Fashion MNIST

Fashion-MNIST is a dataset of Zalando’s article [36], and it consists of a training set of
60,000 samples and a test set of 10,000 samples, with each sample being a 28× 28 grayscale
image, associated with a label from 10 classes, just like the original MNIST dataset. Zalando
intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST
dataset for benchmarking machine learning algorithms. For the fashion MNIST, we used
the same neural network topology used on the numerical MNIST dataset, due to the size
similarity of the two datasets.

Figure 13a illustrates the accuracy of 20 independent classification Runs of the Fashion
MNIST dataset, using the automatic topology optimisation with the blue colour, and
using the conventional topology with the red colour. The higher complexity of the dataset
enables the proposed method to provide more consistent results with lower standard
deviation among runs, 0.001720954 versus 0.002677681 of the original one, along with
higher classification accuracy, 0.90002 versus 0.869445. The corresponding F1-scores are
0.8920 for the proposed method vs. 0.8721 for the conventional one. Figure 13b illustrates
the testing accuracy of the two competing network topologies every five epochs up to the
total of 30 epochs. Notice that, because the starting topologies are the same, the accuracy
before any automatic change to the network topology is almost identical. However, we
can observe a very different behaviour after the network decides its topology based on the
dataset, achieving faster conversion and higher accuracy levels.

Figure 14 shows the confusion matrices of the vanilla fashion MNIST network and
the proposed network topology, respectively. The confusion matrix of the vanilla network
shows an inability to distinguish effectively some classes for the Fashion MNIST dataset,
due to the slightly higher complexity compared to the regular MNIST. The optimized
network shows a slightly stronger diagonal identity, due to the better suited topology,
optimized by our proposed method.

(a) (b)
Figure 13. (a) Fashion MNIST Testing Accuracy variation over random independent runs of the
optimised and the conventional NN; (b) Fashion MNIST Accuracy every five-epoch training (1 phase)
for the optimised and the conventional NN.



Information 2022, 13, 405 19 of 26

(a) (b)
Figure 14. Confusion matrix of (a) the vanilla Fashion MNIST network topology and (b) the adaptive
Fashion MNIST network topology.

6.3. CIFAR-10 and CIFAR-100 Dataset

The CIFAR-10 dataset consists of 60,000 32× 32 colour images in 10 classes, with
6000 images per class. The training set contains 50,000 training images and the test set
10,000 images. They were collected by Alex Krizhevsky, Vinod Nair and Geoffrey Hin-
ton [32]. The dataset is divided into five training batches and one test batch, each with
10,000 images. The test batch contains exactly 1000 randomly-selected images from each
class. The training batches contain the remaining images in random order, but some train-
ing batches may contain more images from one class than another. Between them, the
training batches contain exactly 5000 images from each class.

For the CIFAR-10 dataset, we used five evaluations of the network’s capacity, once
every 10 epochs for a total of 50 epochs(Figure 15). The conventional topology is based on
five Convolutional Layers with max pooling only after the last layer, and 10 neurons at the
decision layer. The automatic topology optimized neural network used the same network
as a baseline and further tuned each convolutional layer to the dataset’s needs.

Figure 16 illustrates the testing accuracy per phase of topology tuning, of the two
competing network topologies every ten epochs up to the total of 50 epochs. Even in
this more complicated case, we can observe a very different behaviour after the network
decides its topology based on the dataset, achieving faster conversion and higher accuracy
levels. The corresponding F1-scores are 0.7708 for the proposed method vs. 0.6805 for the
conventional one.

Figure 17 depicts the confusion matrices of the vanilla CIFAR-10 network and the
proposed network topology, respectively. The confusion matrix of the conventional topol-
ogy shows that the majority of the classification errors are between cats and dogs, and
trucks and automobiles as expected, since the images of these classes are quite similar. The
confusion matrix of the automatic topology shows that, while there are mostly classification
errors between cats and dogs, and trucks and automobiles, there is an increase of correct
classifications, due to the more optimal network topology.

The CIFAR-100 dataset is very similar to the CIFAR-10, except that it has 100 classes
containing 600 images each. There are 500 training images and 100 testing images per class.
They were collected by Alex Krizhevsky, Vinod Nair and Geoffrey Hinton [32]. We used
the same initial network that we used for the CIFAR-10 dataset. The only difference is that
the last fully-connected layer contains 100 neurons, equal to the number of classes.

Figure 18 illustrates the testing accuracy per phase of topology tuning, of the two
competing network topologies every ten epochs up to the total of 50 epochs. Despite the
more complicated classification nature of CIFAR100, the proposed optimization algorithm
improves the vanilla network, achieving faster conversion and higher accuracy levels of
0.6351 instead of 0.5421 of the vanilla network. The corresponding F1-scores are 0.6146 for
the proposed method vs. 0.5240 for the conventional one.
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Figure 15. Vanilla CNN for CIFAR10 classification (left), Adaptive CNN for CIFAR10 classifica-
tion (right).

Figure 16. CIFAR-10 testing Accuracy chart per phase of topology tuning.
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(a) (b)
Figure 17. Confusion matrix of (a) the vanilla CIFAR-10 network topology and (b) the adaptive
CIFAR-10 network topology.

Figure 18. Testing accuracy convergence of the vanilla CIFAR-100 network topology and the adaptive
CIFAR-100 network topology.

6.4. Sign Language Dataset

The American Sign Language letter database of hand gestures represents a multi-class
problem with 24 classes of letters (excluding J and Z which require motion). The Sign
Language MNIST data came from greatly extending the small number (1704) of the colour
images included as not cropped around the hand region of interest. To create new data,
an image pipeline was used based on ImageMagick and included cropping to hands-only,
gray-scaling, resizing, and then creating at least 50+ variations to enlarge the quantity. The
modification and expansion strategy was filters (‘Mitchell’, ‘Robidoux’, ‘Catrom’, ‘Spline’,
‘Hermite’), along with 0.05 random pixelation, ±0.15 brightness/contrast, and finally three
degrees of rotation. Because of the tiny size of the images, these modifications effectively
alter the resolution and class separation in interesting, controllable ways.

For the sign language dataset, we used the same number of layers as the CIFAR dataset,
but with narrower layers, as the dataset’s complexity is lower. The two architectures are
shown in Figure 19. The total number of epochs remained 30, with topology optimization
every five epochs. The improvement of accuracy during optimization of the NN architecture
is shown in Figure 20.
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Figure 19. Vanilla CNN for Sign Language classification (left), Adaptive CNN for Sign Language
classification (right).
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Figure 20. Sign Language accuracy progression.

We can observe that the network achieves better accuracy by using the topology
optimization proposed, compared to the vanilla network. We can spot a slight dip in
accuracy the first time a change in topology takes place, as new random filters/neurons are
integrated in the neural network. Figure 21 depicts the confusion matrices in both cases.
We can observe that the improved topology features a decrease in misclassifications and
a stronger diagonal behaviour, compared to the vanilla architecture. The corresponding
F1-scores are 0.9033 for the proposed method vs. 0.8393 for the conventional one.

(a) (b)
Figure 21. Confusion matrix of (a) the vanilla Sign Language network topology and (b) the adaptive
Sign Language network topology.

6.5. Computational Cost of the Proposed Algorithm

In this section, we attempt to evaluate the computational cost of the proposed algo-
rithm. In other words, we investigate the complexity added by our method to a common
NN architecture, in order to tune it up for better performance. In our measurements, we
used a Windows 10 PC with an Intel i7-4770S processor, 8MB cache, 16 GB RAM, running
MATLAB 2020a. We used the experiment described earlier for the MNIST dataset. More
specifically, we compared the operations performed at the 2nd layer of the two architec-
tures (vanilla and optimised), which contains 32 5× 5 filters. The aim is to measure the
difference in execution time for each filter update of this layer between the two architec-
tures. The measurement is performed using the “tic-toc” MATLAB command. In our
measurement, we have subtracted the computational cost of this command, in order to
reflect the added computational cost only. Figure 22 depicts the increase in computational
time per each of the 32 filters of the first layer, as induced by the proposed algorithm. We
can see that the average delay for all filters is 1.359± 0.468 ms. The average delay per
filter is relative small with minimal standard deviation, which demonstrated the stable
added computational cost, required by the proposed algorithm. In order to make this
figure independent of the specific CPU, where the measurement was taken, we take into
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account that an i7 4770S scores 447.7 single precision GFLOPS, according to the popular
synthetic benchmark AIDA64. The average delay induced by the proposed algorithm is
1.359 ms, thus this accounts for an extra computational cost of 447.7× 0.001359 = 0.608
GFLOP on average per filter. Consequently, the induced overhead is considered minimal
for modern CPUs and GPUs. It is also important to mention that this overhead is applied
only when the proposed algorithm optimises the NN’s architecture, which is every five
epochs. Of course, this interval can be set to any number of epochs, according to the load
of the system. In the meantime, there is no computational overhead between the vanilla
and the optimised architecture. These figures are indicative due to the limitations induced
by the measuring method, but clearly demonstrate that the induced computational burden
by the algorithm is minimal, whereas the gain in computational efficiency is increased.

Figure 22. Computational time (ms) increase per filter due to the proposed algorithm. The testbed is
the MNIST dataset and the comparison entails the first layer of the vanilla and proposed architecture,
as described earlier in the text.

7. Conclusions—Future Work

In this paper, we propose a strategy to improve the performance of any NN architec-
ture. First, the complexity of the dataset is computed, and the neural network is initialized,
as it would be if the automatic topology method was not used. Every fixed number of
iterations, the information capacity of each layer is calculated, considering each layer as
an information channel, using an optimized Blahut–Arimoto algorithm. If the layer is
found to be unable to pass the required information to the next stage, it is expanded. In
the opposite case in which the layer is found to encode the information sparsely, the extra
nodes (neurons/filters) are removed, while maintaining the encoded information trained
so far.

This strategy seems to be a viable, fast and computationally efficient method to boost
performance and reduce computational and memory requirements in neural network
architectures. One can use this method in order to achieve good accuracy without the
trial and error required traditionally in order to find the most optimised topology for
each problem.

As a next step, we will expand the method with the ability of adding whole layers, if
the process of expanding wide-wise the current layers does not improve the performance
considerably. Perhaps, adopting a greedy-wise search as the one presented in [39], but
adapted to the information theoretic perspective might provide a solution. We also plan to
combine this scheme with a previously proposed scheme [40], where the trained network
is used to perform a rough classification of the testing dataset. Data with confident classifi-
cation are used along with the training dataset to refine the training of the already trained
network, which boosts the classification accuracy. These combined with an automatic
topology network optimisation will be more likely to boost performance and usability
even more.
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