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Abstract: Heterogeneous test processes concerning test goals and test script languages are an integral
part of mechatronic systems development in supply chains. Here, test cases are written in a multitude
of different test script languages. The translation between test script languages is possible, a joint
understanding and a holistic view of the mechatronic system as a system under test is only achieved
in the minds of experienced test engineers. This joined-up information is called test knowledge
and is the key input for test automation and in turn, it is essential for reducing the cost of product
development. Persisted test knowledge enables the search for patterns semi-automatically without
reading countless test cases and enables the auto-completion of essential parts of test cases. In
this paper, we developed a knowledge graph that aggregates all the test knowledge automatically
and integrates it into the test processes. We derived an explorative search that simplifies the test
case creation. For that purpose, a corresponding user-friendly query language, and unidirectional
translation capabilities were developed that translates a test case into a graph tailored to the target
audience of test engineers. We demonstrated the usage and impact of this approach by evaluating it
on test cases from aircraft cabin doors.

Keywords: exploratory search; test knowledge; interoperability of test cases; knowledge graph

1. Introduction

Mechatronics is a multidisciplinary branch of engineering integrating electronics,
control engineering, mechanical engineering and, in some cases, microprocessors [1,2]. It fo-
cuses on the development of a compound that combines multiple distributed, discrete-event
systems that together fulfil a single specific purpose [3]. Examples of such mechatronic
systems are cars, aircraft, and trains. The development of these products is performed in a
supply chain where currently, a test process at the original equipment manufacturer (OEM)
and several test processes by the suppliers are carried out separately. The aim of the test
process is the verification of the mechatronic system with test cases proving the correct
behaviour of the system. In the case of aircraft, the related verification effort represents a
significant portion of avionics development costs. For example, the verification of software
in avionics made up 40% of the development costs in 2001 [4]. The amount of software
testing has been increasing on account of technological developments [5,6]. This increasing
complexity must be managed by the test processes in the supply chain.

Within a supply chain, there are multiple test processes which are heterogeneous
regarding their goals, the applied test script languages, and test benches that are used. A
side effect of the development process is that all specified test cases define the complete
functionality and behaviour of the aircraft from the perspective system under test (SUT).
This is a source of knowledge that is called ‘test knowledge’. Up to now, the different parts
of the test knowledge were analysed in isolation and set apart by the varying test script
languages. The challenge we set here was to aggregate and then use the test knowledge
over the boundaries of test script languages and test processes.
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For many supply chains, an exchange of test knowledge between test processes is
necessary to compare the test case semantics, even though they are often represented in
different test script languages.

Currently, an interoperable representation of test cases is created using state charts [6,7]
which translate test cases between test script languages. This approach enables the direct
exchange of test cases without the need to understand their content. The main shortcoming
is that the interoperability of test cases is only used for source-to-source compiling of test
cases and not to create a holistic view of the aircraft as a SUT. This test knowledge is only
available in the minds of experienced test engineers. However, it is crucial as input for test
automation [8–10]. A significant effort is spent in the creation of test cases whereby each
test case proves the correct functionality of a system function. An essential part of a test
case is the proper stimulation of the unit under test (UUT). It requires not only knowing
which signals are necessary for the stimulation of the UUT but also how the entire system
under test (SUT) needs to be stimulated. Without the correct stimulation of the SUT, testing
the UUT is impossible. In these addressed cases, the SUT can be, for example, the high-lift
system of an aeroplane or the cabin of an aeroplane. Accordingly, test case creation requires
profound system knowledge, which is obtained manually through specifications, system
requirements, and test cases. The number of test cases ranges from a couple of hundred
to many thousands, depending on the system. To achieve a more direct exchange of test
knowledge, search methods for the correct stimulation of the UUT/SUT are necessary;
thus, it is the key to countering the increase in test efforts.

The solution presented here enabled us to create a holistic view for the first time
automatically. We developed a knowledge graph taking the heterogeneous test cases as
input and gain test process-related search capabilities.

Knowledge graphs were introduced as “Knowledge Graph, which will help you
discover new information quickly and easily” by Google in 2012 [11], which was established
before in the scope of the Semantic Web. In doing so, the evolution of the Internet enables
the exchange of information instead of data. Information-driven services are in place to
offer added value. A central tool for modelling information for the purpose of information
modelling and information integration are ontologies [12]. In the scope of the Semantic Web,
ontologies have been heavily used to reinvent information provision. For that purpose, a
wide range of top-level and domain ontologies were developed. The original intention of
knowledge graphs, as well as the intention of this article, was to improve search capabilities
and enhance user experience. Soon after, high-quality, large-scale knowledge graphs were
developed. For example, DBpedia represents extracted content by Wikipedia [13].

The technology knowledge graph is flexible enough to map test cases and their con-
tained test knowledge into a graph. The approach presented here achieves the vision
of interoperability, defined as “the ability of two or more systems or components to ex-
change and use information” [14]. For that purpose, the authors focused on a paradigm
change: The content of the test cases shall be handled not as data but as information.
For that purpose, a suitable information model was needed, enabling the aggregation
and provision of test knowledge. Building on that, we delivered a facet and explorative
search of test knowledge in the supply chain’s test processes, enabling test case-relevant
search capabilities.

The remainder of this paper is structured as follows. Section 2 describes the conceptual
foundations of this article and the related work. Section 3 presents the concept, followed by
the description of one application scenario in Section 4. In Section 5, a short discussion is
given. Finally, Section 6 presents the conclusion. This work is based on preliminary work
related to the translation from test cases to Generic SCXML. The preliminary solution is
customised and applied in Step 1 whereby the approach has been introduced in [6,7]. In
addition, the state-of-the-art according to test script language is taken from preliminary
work [15].
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2. Background and Related Work
2.1. Article Relevant Definition

The article uses terms from the domains of testing and software development, which
are briefly introduced for this article. The relevant definitions are shown in Table 1.

Table 1. Definitions.

Definition Description

Block A block is a structural element used to group statements within a test case. Most of the time, a block describes a
test step in the test case.

State

A state describes the current state of a system in a state diagram or in test execution. An example of a state is the
off state when all of the aircraft’s systems are off. Hereby a state can be divided into two parts: micro-state and

macro-state. The micro-state defines all statements which shall be executed immediately. The macro-state
describes the result of the execution of the statements.

Statement A statement is a line within the source code of a test case that executes instructions. For example, assigning a
number to a variable is a statement.

Stimulus A stimulus is a statement that leads to a change of state. For example, the stimulus to turn on the light causes the
lamps to glow afterwards

Ramp A ramp is a repetitive stimulus in which a signal is increased at a predefined slope.

2.2. Knowledge Graph in the Scope of Test Knowledge

There are a couple of different definitions of knowledge graphs [16–18]. We apply
the definition by Hogan [19]: “Herein, we define a knowledge graph as a graph of data
intended to accumulate and convey knowledge of the real world, whose nodes represent
entities of interest and whose edges represent potentially different relations between these
entities.”. The developed graph for representing test cases defines the SUT and is described
by a varying number of test cases (i.e., nodes). It contains information about the stimuli
and correct behaviours defined for a specific requirement or functional aspect. This test
knowledge can be represented differently depending on the applied model. To be more
precise, the knowledge graph is defined as a Directed Edge-labelled Graph [16]. Each node
represents a real object, and the directed, labelled edges define the relations between states
and the properties of the edge. Each node and label can have a type to include taxonomies
as introduced in Heterogeneous Graphs [16]. If a real object needs to be described via a
property, the Property Graph [16] is applied.

Graphs can be modelled to describe or to visualise ontologies. They are commonly
used to model information independently from a specific data format. As discussed in
artificial intelligence (AI), ontologies are formal, partial specifications of an agreement over
the description of a domain [12], and consist of concepts and relations and their definitions,
properties, and constraints expressed by axioms [20]. Ontologies have been applied as part
of the Semantic Web. In doing so, ontologies exist on different levels, each with a specific
purpose. There are aims to cover basic concepts and properties in so-called top-level/
upper ontologies. Examples of top-level ontologies are e.g., basic formal ontology (BFO) or
descriptive ontology for linguistic or cognitive engineering (DOLCE).

On the contrary, domain ontology describes a specific domain and domain ontologies
are available in uncountable domains. In the scope of testing, there are no ontologies
describing the content of test cases. The domain ontologies for testing, such as STOWS [21]
or SWTO [22], describe the structure and the proceeding of a test process and not the content
of the test relevant documents such as requirements or test cases. There are approaches to
represent ontologies as a combination of Heterogeneous Graphs and Property Graph using
Neo4J as a graph database.

This article focuses on mapping test cases and their contained test knowledge into
a graph. For that purpose, the goal, the structure, the heterogeneity, and the information
to be homogenised are defined by test cases and their integration into test processes for
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the development of complex mechatronic systems. Querying information on graphs is a
mandatory feature to enable the development of information-driven services. The querying
capabilities depend on the underlying graph type. The common approach is to provide
a query language such as SPARQL, Cipher or Gremlin to query data. However, commer-
cial solutions are available for each graph type and query language that are improved
continuously and are outside the scope of this work.

2.3. Searchable Information inside a Test Case

The intended usage of knowledge graphs is to store the content of test cases and
share the contained test knowledge. Shareable test knowledge is, for example, the correct
stimulation of a unit under test (UUT), considering all dependencies to the system under
test (SUT). Moreover, the correct stimulation always needs to know how quickly the system
can be stimulated. This knowledge is acquired through trial and error in each new test
process and is therefore valuable for the exchange. Up to now, this test knowledge has been
gained manually by reading the system requirement document (SRD) and gained by test
cases from previous test campaigns. Based on the information sources, the test engineer
develops a basic understanding of the system and completes these by several failed tries
of stimulating the SUT. Due to the increasing complexity of aircraft, while relying on
similar system functions across the boundaries of individual product generations, there
is the possibility to aggregate test cases into a knowledge graph and offer the included
test knowledge.

The prerequisite of the motivated search capabilities is the interoperability of test
cases. The aim of interoperability is the capability to model the content of a test case
independently of the selected test script language and to integrate its content into another
test process. In doing so, the integration means translating the content of the original test
case into a graph. The interoperability of test cases shall focus on the aggregation to test
knowledge that is not possible yet, because test script languages are heterogenic. In the
following, the heterogeneity of test script languages is presented in detail. With this, the
shown heterogeneity needs to be harmonised to achieve interoperable test cases and enable
search capabilities.

The available test script languages have so far been based on imperative programming.
As a result, a test case consists of a set of statements that are executed sequentially. Although
test cases have a similar structure, the test script languages are heterogeneous in terms of
their syntax, semantics and provided functions. In the following section, the structure of
a minimalist test case is first described. Based on the minimalist test case, the reasons for
the different implementations of the same test case structure in the test script languages
are explained.

2.3.1. Structure of a Test Case

The following state of the art is preliminary work and has already been published [15].
The repetition is necessary to understand test case structure, content, and representation,
which is the baseline for the developed graph G in step 2, presented in Section 3.2.

A test case consists of a sequence of statements. The sequence aims to prove that the
SUT works according to the requirements. In the scope of testing mechatronic systems, it
means that the specified test data, the expected results and a description of the steps to be
tested are specified and mapped as a sequence of statements [23]. International Software
Testing Qualifications Board (ISTQB) [24] and the IEEE 829 [14] give a congruent definition
of the test case. According to this definition, a test case includes the following information:
the preconditions necessary for the execution, the set of input values (one input value per
parameter of the test object), the set of predicted results, and the expected post conditions.
Test cases are developed concerning a specific goal or test condition, such as executing a
specific program path or checking compliance with specific requirements [24].

Both definitions introduce the specified test data and the expected results as compo-
nents of a test case. The test data are fed in various ways and stimulate the SUT. Based
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on the stimulation, results are expected on how the SUT must behave according to the
requirement. The expected results are defined as a condition, and the condition check is
implemented using statements of the type of verdict. Examples of verdicts are the statement
expect in Check Case Definition Language (CCDL) (https://www.razorcat.com/files/de/
produkte/ccdl/Razorcat_Technical_Report_CCDL_Whitepaper_02.pdf, accessed on 5 Jan-
uary 2023) or result in Real-Time Testing (RTT) (https://www.dspace.com/de/gmb/home/
products/sw/test_automation_software/automated_test_execution_in_re.cfm, accessed
on 5 January 2023).

A mechatronic product is a network of distributed, event-discrete systems [1], which
is an information system that implements its control function using software [3]. Cor-
respondingly, test cases for testing mechatronic systems as information systems contain
statements for stimulating the SUT as well as verdicts. As part of a mechatronic product,
a mechatronic system behaves like a black box. Thus, it can only be stimulated via its
interfaces. In addition, the conditions for the verdicts can only be defined via signals that
are available via the interface. The integration of software and actuators means that the
stimulation of a signal is not executed immediately but requires time, depending on the
system. This time behaviour must be taken into account in the test cases. Statements for
controlling the runtime behaviour are provided for this.

The structure of a minimalist test case for testing safety-critical control functions is
shown in Figure 1. It contains the statements mentioned above and is defined for testing
mechatronic systems by [7]. In other common test cases, the failure state would be replaced
by a target state to check whether the desired function works under predefined conditions.

Figure 1. Basic steps of a test case.

As shown in Figure 1, a test case stimulates three consecutive states in the SUT. First,
the test case stimulates the environment [25]. The error is then stimulated, and the SUT
is finally observed. This proceeding of states is achieved by executing a sequence of
statements. The state-changing statements are attached to the arrows in the figure. In order
to check whether the SUT has reached a target state or whether it has waited long enough,
statements are listed within the state.

In addition to states and transitions, a real test case also includes test steps and test
bench-specific functions [6]. The minimalistic test case already contains different types of
statements that perform different tasks. Figure 2 shows the mapping of the basic structure
of a minimalist test case to the statement types of the test script languages.

It can be seen here that statements of the stimulus type are used to achieve the initial
state of the SUT, the error state and to reset the environment. The waiting within test case
execution is needed to wait for the reaction of the SUT. For that purpose, statements for
controlling the timing are used. Finally, the system’s response is evaluated using statements
of the type of verdicts.

https://www.razorcat.com/files/de/produkte/ccdl/Razorcat_Technical_Report_CCDL_Whitepaper_02.pdf
https://www.razorcat.com/files/de/produkte/ccdl/Razorcat_Technical_Report_CCDL_Whitepaper_02.pdf
https://www.dspace.com/de/gmb/home/products/sw/test_automation_software/automated_test_execution_in_re.cfm
https://www.dspace.com/de/gmb/home/products/sw/test_automation_software/automated_test_execution_in_re.cfm
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Figure 2. Mapping of test case steps to statement types.

The statement types listed above (statements for stimulation, statements for controlling
the timing, statements for verdicts) are necessary for providing the basic functionality of
a test case and are available in all test script languages. The most common languages
among them are for testing mechatronic systems (such as cars and aeroplanes): ASAM XIL
(https://www.asam.net/standards/detail/xil/, accessed on 5 January 2023), Testing and
Test Control Notation version 3 (TTCN-3) (http://www.ttcn-3.org/, accessed on 5 January
2023), CCDL, C (https://en.wikipedia.org/wiki/C_(programming_language), accessed
on 5 January 2023) or RTT, and Python (https://www.python.org/, accessed on 5 January
2023). The following differences between these languages are presented in detail to describe
the problem statement.

2.3.2. Structure of Test Script Languages

The available test script languages are imperative programming languages and can be
divided into the groups “safe” and “unsafe” [25]. A “safe” language prevents the language
from being misused. For this purpose, additional mechanisms such as type security of
the variables or unique access methods for data structures are added in order to avoid
inconsistency in the internal representation of the program execution. An example of such
an inconsistency would be when the beginning of two arrays in memory have overlapping
memory addresses and affect each other. In contrast, “unsafe” languages do not have these
restrictions. The programs can be checked statically (on compilation) as well as dynamically
with respect to the variables and their types at runtime (on runtime).

Apart from the two groups of test script languages, the typing, the programming
paradigm, and the execution modus have an essential impact on the syntax of a test script
language. Examples of the impact of the programming paradigm and type safety are shown
for CCDL, JAVA (https://www.java.com/en/, accessed on 5 January 2023) and Python in
Figure 3.

Figure 3. A similar test case in different test cases languages.

https://www.asam.net/standards/detail/xil/
http://www.ttcn-3.org/
https://en.wikipedia.org/wiki/C_(programming_language
https://www.python.org/
https://www.java.com/en/
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All three examples set the signal door_left_PS1 to the value 0, while the test cases’
syntax differs. The interoperability of two test cases from different test script languages
must overcome the presented heterogeneity related to typing, programming paradigm,
and execution modules. The benefit of the interoperability would be to gain two test cases
that can be executed on the supplier’s test bench or to aggregate the test cases within a
knowledge graph.

2.3.3. Heterogeneity in Language Complexity of Test Script Languages

The different test script languages are heterogeneous according to their range of
functions, which is reflected in their syntax. In the following, the heterogeneity is shown for
the example: ramp statement, which is an adapted version of a loop statement to stimulate
a signal over a specific duration.

The heterogeneity with respect to the semantics of the function ramp for the test
script languages CCDL and ASAM XIL API (https://www.asam.net/standards/detail/
xil/older/, accessed on 5 January 2023) is shown in Figure 4 below. In doing so, the
figure shows an intersection known from the set theory whereby the set elements are the
input parameters of a ramp. These two test script languages were selected as examples
because CCDL is primarily used in aviation, and ASAM XIL API is primarily used in
automotive applications.

Figure 4. The intersection of the input parameters for the ramp function in XIL and CCDL.

The first difference is the name of the statement. While the ramp statement is called
signal in XIL API, it is called ramp in CCDL. Different names for similar test process-specific
statements make it difficult to compare different test cases from different languages without
being an expert in each test script language. Apart from the name of the function, the
implementation in XIL and CCDL offers a similar subset of the functionality. Apart from
this, the language offers domain-specific features. In the case of CCDL, the ramp can be
implemented without any predefined slope. Without further transformations, this ramp
variant cannot be mapped to the XIL signal statement.

The example of a ramp statement, which is transferable to all other test process-specific
statements, shall demonstrate the heterogeneity. This heterogeneity needs to be harmonised
to gain applicable interoperable test cases.

https://www.asam.net/standards/detail/xil/older/
https://www.asam.net/standards/detail/xil/older/


Information 2023, 14, 45 8 of 31

2.4. Summary

In general, a knowledge graph is suitable to represent knowledge for a domain, which
is shown by the availability of upper and domain ontologies. The choice of the graph type
and query language determines which content can be stored and queried.

The targeted domain for aggregating, storing and querying test knowledge is the
test process in a supply chain. For this purpose, test cases need to be transferred into the
knowledge graph. The challenge here is that the test cases are heterogeneous in terms of
their syntax and semantics. Accordingly, a 1:1 transfer, i.e., a transfer of the sequence of
instructions, would also transfer the heterogeneity related to syntax and semantics of the
specific test script language. The result would be uploaded test cases in the knowledge
graph that would be similar according to their semantics but would have a different
sequence of nodes and edges from the graph’s perspective. The resulting heterogeneity
would prevent a suitable explorative search approach, which could be defined over more
than one test case. Thus, the aggregation of test cases requires complex pre-processing and
a graph scheme that focuses on the functionality of the test case and abstracts from the
actual syntax.

3. Concept of a Knowledge Graph for Test Knowledge

The goal is to store test knowledge in a knowledge graph and the subsequent provision
of the faceted and explorative search in the supply chain’s test processes. The developed
method is shown in Figure 5, which consists of three sequential steps, namely Step 1: Trans-
lation of the test case into a test model, Step 2: Import test models into a knowledge base
and Step 3: Provide test-relevant services. The method’s input is test cases implemented in
different test script languages, and the output is information offered by two search modes.
The faceted search enables the test engineer to narrow down search results related to SUT
signals and their value ranges. The explorative search takes a pattern as input and offers
the auto-completion of test cases.

Figure 5. Extraction and integration of test knowledge into the supply chain test processes.

The developed method transforms the data into knowledge. The transformation
process follows the layers of the DIK pyramid [26]. With this, the data are the content of
different test cases, the test model (output of step 1) is the interoperable representation
of the test cases, and the knowledge graph (output of step 2) is the search-optimised
representation of the test model. At this moment, information is “data that has been given
meaning by way of relational connection” [27]. The relational connections describe the
semantics of a test case and how a test engineer understands the content of a test case. In
the following section, the three steps are presented in detail.
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3.1. Step 1: Translation of the Test Case into a Test Model

The goal of the first step is to transform the content of test cases from different test script
languages into a test model, whereby the test model fulfils the property of interoperability
on the data/information level [28]. Despite a test case being already semi-structured and
the semantics being precise, the content of the test case is handled as data, transformed into
information, and stored in an interoperability model. The advantage is that the information
on how a SUT can be stimulated and how the SUT behaviour can be checked is captured,
which is highly relevant to the test engineer (see Section 2.3). Other semantics resulting
from the structure of the test script language used are not relevant to the semantics of the
test case. For example, the taxonomy of the classes and objects within a test case from
an object-oriented test script language is irrelevant to the stimulation of the SUT and will
be removed during information extraction. The reduction of the test case to its semantics
only contains the information on how the SUT is stimulated, how the SUT behaviour is
then checked and how the timing of the test case was planned. This makes a test case no
longer executable on an execution engine, but it makes it comparable across all test script
languages. Such an approach was first developed by Rasche et al. [6,7]; it is the preliminary
work of these authors and is extended here to the latest version of Generic SCXML [29].
The representation of a test case in SCXML differs significantly between the preliminary
work by Rasche et al. [6,7] and the latest version of Generic SCXML. Major differences are:

• The latest version of Generic SCXML introduced TASCXML commands to replace the
test automation function represented natively in SCXML states, including its complete
semantics;

• A test case’s overall structure is not compatible any longer with the outcome by Rasche
et al.;

• The meta-information has been completely revised and is not compatible with the
outcome by Rasche et al.

With this, the translation of a test case is similar to source-to-source compiling. While
the syntactic processing is based on parse trees, the semantic processing was specifically
processed in the direction of a state-based perspective. The translation process from a test
case to an SCXML model is shown in Figure 6:

Figure 6. Transformation Approach, adapted from [15].
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For each test script language, a specific lexer and parser are required. The definition
and creation of such tools are state of the art and work similarly for all test script languages.
The result of the execution of a parser is a parse tree, which models the test case structure
as a tree. This tree depends on the properties of the test script language according to, e.g.,
the programming pattern or the type safety (see Section 2.3).

The harmonisation step to achieve interoperability is located in the timeline generator.
The timeline generator is specific for a test script language and generates from the parse tree
a sequence of statements. Hereby, the statement sequence is a timeline that defines when
each statement should be triggered during a test case execution. The timeline does not
define how long the statement runs, but rather, it defines whether the statement is blocking
or non-blocking. Based on the timeline, the SCXML Generator first creates the overall test
case structure (StartUp, Logic, TearDown). This test case structure has been developed as
the typical structure for testing aircraft in the research project AGILE-VT [29]. Subsequently,
the timeline generator adds all statements chronologically. In doing so, blocking statements
are added as actions inside the predefined states. Parallel statements can be added by
creating a parallel state which would be the first child of the state logic. The outcome of
step 1 is a set of test cases from different test script languages in SCXML and, more precisely,
in the last Generic SCXML version.

3.2. Step 2: Import Test Models into a Knowledge Graph

The outcome of the first step is a set of test cases in SCXML, which are state charts and
are independent of their original test script languages. Therefore, interoperability on the
data/information layer is achieved for test cases. Thus, the prerequisite for aggregating test
cases in a knowledge graph is basically fulfilled. The aggregation needs a repository and a
database from a technical point of view. With this, a test case in SCXML can be uploaded
as a large binary object (BLOB) to structured query language (SQL) databases or natively
as a parseable extensible markup language (XML) document into a NoSQL database. The
weakness of a BLOB is that it works as a black box, and no information can be queried using
the database’s query language. Thus, an SQL database is no appropriate solution. The
query language of a NoSQL database focussing on XML uses XML Path Language (XPath)
or XQuery to some extent as query language. The drawbacks of using XPath (The findings
also apply to XQuery) for implementing a faceted and explorative search are presented
in the following. In doing so, XPath defines search queries over the XML tree structure.
The weakness of using the tree structure for querying specific elements in test cases, which
have the same semantics and are represented in SCXML, is that test cases have varying tree
structures. This problem is described in the following section, based on an abstract test case
in SCXML.

All test cases in an NoSQL database would have the same hierarchical structure defined
over this sequence of compound states: StartUp, Logic, and TearDown. An example of the
test case structure is given in Figure 7.

Figure 7. Basic Structure of a test case in SCXML.

This structure already allows for defining the same query for the top-level com-
pound states in all test cases, which is necessary to create facets and find generic patterns.
In the XPath notation, an example of querying the StartUP in all test cases would be
“scxml/state[@id =‘StartUP’]”. Within each of the compound states, there is no design pat-
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tern specified. The implication is that the sequence of XML elements within the compound
states differs between test cases. It means that the test engineer defines, for example, how
many states he would like to use for the stimulation of the aircraft. Figure 8 demonstrates
two possible design patterns of how the stimulation could look in an SCXML test case that
follows the naming convention of Generic SCXML.

Figure 8. Example of different design patterns for the same test case in CCDL.

Design pattern 1 is that only one signal is stimulated with one new value in each state.
Thus, the example for the design pattern 1 has two states {Logic_p0_c0_s0, Logic_p0_c1_s0}.

On the contrary, design pattern 2 recommends adding all statements to one state. Thus,
the example for design pattern 2 has one state {Logic_c0_p0_c0_s0}. Both design patterns
result in a completely different tree structure. More design patterns are available and
increase the structural heterogeneity. It is not a problem in the scope of the source-to-source
compiling but for implementing the intended querying method of step 3. For that purpose,
an additional interoperability challenge must be solved.

The states’ taxonomy is an XML tree, and it is the baseline of how XPath can query
information of an SCXML test case. To request specific information, XPath needs to
know the states’ taxonomy beforehand to define the correct query. The example above
was “scxml/state[@id =‘ StartUP’]“. The definition of all possible queries can be defined
based on grammar. Thus, the XPath query for an SCXML test case is always defined by
the following grammar, whereby the SCXML statement specific part is shortened to the
string statement:

grammar XPathQuery; (1)

query: (root compoundstates body*)|(SEPARATOR SEPARATOR body); (2)

root: SEPARATOR ROOT; (3)

ROOT: ‘scxml’; (4)

compoundstates: SEPARATOR ‘state [@id=\” ID ‘\’]’; (5)

ID: ‘StartUP’|‘Logic’|‘TearDown’; (6)

body: ((SEPARATOR’state [@id=\” NAME ‘\’] ’) | (SEPARATOR ‘parallel [@id=\” NAME‘\’] ’))+ ‘/onentry’ ‘state-ment’; (7)

NAME: [a-zA-Z0-9‘_’]+; (8)
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SEPARATOR : ‘/’; (9)

The grammar shows that the application of the nonterminal symbol (2, 4, 5) supports
the definition of the basic structure of a testcase in SCXML (see Figure 7) as an XPath query.
For example, the query /scxml/state[@id =‘StartUP’] can be constructed and already contains
an XML tree of deep 2. The nonterminal symbol (7) allows the iteration through all deeper
elements of the XML element tree inside an SCXML test case. An XPath query for the design
pattern1 from Figure 8 would be /scxml/state[@id =‘Logic’]/parallel[@id =‘Logic_p0’]/state[@id
=‘Logic_p0_c0’]/state[@id =‘Logic_p0_c0_s0’]. Thus, the element tree and the XML attribute
ID are mandatory parts of each search query. These elements are test case specific; therefore,
a query cannot find results from more than a test case. There is one exception, which is
the XPath operator //. It is defined as searching everywhere in the XML tree structure. It
would work for facets but not for the intended explorative search. If the user would like to
search for the stimulation of two signals, the state context would be needed starting from
the second statement. Consequently, aggregating test cases as SCXML models is not an
appreciated solution.

The paper aims to create a knowledge graph that includes all test cases and supports
an explorative search. The search enables querying of stimulation, conditions, timing, etc.,
in all test cases. This means that the knowledge graph shall focus on the test procedure,
including its functional point of view of a test case, instead of its structure. For that purpose,
different graph types can offer nodes, edges, labels, and properties. In the following section,
the representation of a test case as a graph is presented in detail.

3.2.1. Nodes and Labels

The research project AGILE VT [23] has identified the relevant set of test-specific
statements as TASCXML commands, shown in Table 2. As a result, the command set shall
enable the implementation of Hardware in the Loop (HIL) test cases in the automotive and
avionics domain that cover most of the basic statement types shown in Figure 2.

Table 2. TASCXML commands.

Id TASCXML Commando Type of Statement Description

1 <TASCXML:set> Stimulation Sets a signal to a specific value
2 <TASCXML:get> Stimulation Reads the current value of a signal
3 <TASCXML:result> Verdicts Logs a result (verdict) of the test case

4 <TASCXML:ramp> Stimulation Triggers a ramp that changes a signal for
a specified duration

5 <TASCXML:sine> Stimulation Generates a curve shape of a sine curve
6 <TASCXML:sawtooth> Stimulation Creates a waveform of a sawtooth
7 <TASCXML:pulse> Stimulation Creates a waveform of a pulse

8 <TASCXML:verifytolerance> Verdicts Verifies whether the value of a signal is
within a specific tolerance range

Each TASCXML command except for <TASCXML:get> shall be represented as a graph
node. The distinction between two TASCXML statements is implemented using labels. For
each type of TASCXML command, its own label is defined. Thus, the proposed graph imple-
ments seven labels, namely {‘SET′, ‘RESULT′, ‘RAMP′, ‘SINE′, ‘SAWTOOTH′, ‘PULSE′,
‘VERIFYTOLERANCE′}.

Apart from the TASCXML command set, a typical test case defines which statements
are executed in parallel, sequential and within a predefined state. To enable the grouping
of TASCXML commands to a given state, an additional graph node with the label {state}
is defined.

3.2.2. Edges and Labels

Edges connect two nodes in a graph. In the scope of a test case, an edge connects
two nodes whereby the node represents a state or a TASCXML command. The edge defines
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the timing between the nodes. For that purpose, an edge has a label which describes
whether the execution of this node is executed in parallel, sequential or should be delayed.
In the latter case, the property defining the duration is needed. The usage of this restricted
set of labels shall simplify and harmonise the structure of test cases as part of the graph. In
the following, the complete definition of graph G is given.

3.2.3. Graph Definition for Test Cases

We model the test case as a directed graph G = (V, E) in which nodes v1..i in V denotes
a state within the test case, i.e., a state of test execution. A state within the test case execution
has two parts. The first part covers the execution of the statements at the beginning of
the state as micro-states and the following part covers the result of the stimulation with
respect to the SUT as a macro-state. With this, a node can represent one micro-state or one
macro-state but not both. That means two connected nodes at least define a SCXML state,
which contains a TASCXML command and the resulting SUT state. The separation between
the micro and macro-states is implemented with node labels. Hereby, a set of micro-states,
which are TASCXML commands, are always connected to a macro-state. The semantic of a
macro-state is the representation of a new SUT state in the scope of a test case execution.
For example, the micro-state command to close the door and the result of the command’s
execution are already available in the macro-state. The needed information for a micro and
macro-state is represented inside the node. Each node vi is an ordered pair ({pi}, li) of a
set of properties in P and a label li in L1 where

L1 ={
‘SET′, ‘RESULT′, ‘RAMP′, ‘SINE′, ‘SAWTOOTH′, ‘PULSE′, ‘VERIFYTOLERANCE′

‘STATE′

}
(10)

Nodes with the label ‘STATE′ define a macro-state in which all connected TASCXML
commands shall be executed simultaneously. In doing so, the supported TASCXML com-
mands are defined by the labels as {‘SET’,‘RESULT’,‘RAMP’,‘SINE’,‘SAWTOOTH’,‘PULSE’,
‘VERIFYTOLERANCE’}. One property pi = (ni, zi) is themselves a pair with a string ni
assigning a name to the property as key and zi capturing the value of the property. The
type of the value covers the primitive data types that can be saved as string, number or
Boolean. The set of properties as P = {p0 . . . pn} defines the set of all relevant properties for
a node, respectively. An example of properties for the TASCXML command TASCXML:set
are p0 = {“variable”, “string”} and p1 = {“value”, “number”}. With these properties, the
command TASCXML:set know which value shall be assigned to the signal. A concrete
example is given in Figure 9.

Figure 9. Example for mapping the TASCXML command set to a graph node.
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There is an edge e in E from node v1 to node v2 either a) if there is a transition between
two defined states of test execution or b) if a TASCXML command is executed within the
same state of test execution. Each edge e in E comprises the start node v1, the end node v2,
a label lj and a property pj specifying the length of duration, i.e., E = (V, V, L2, P2). With
Z being integers, L2 and P2 are defined as

L2 ={
‘SIMPLE′, ‘PARRALLEL_STATEMENT′, ‘BLOCKING_STATEMENT′, ‘wait′

} (11)

P2 =
{(

‘duration′, Z
)}

(12)

3.2.4. Mapping of a Test Case in SCXML to Graph G

The defined graph G and the SCXML model from the first step represent test cases in
different formats and for different purposes. While a test case in SCXML is applied for the
source-to-source compiling, the developed graph G shall be used for aggregation of test
knowledge based on it to offer search and auto-completion functionality. With this, only a
subset of the SCXML test case content is required and defined as graph G.

The mapping of a test case from SCXML schema and its extension to Generic SCXML [29]
into a graph G is possible. For that purpose, traversing an SCXML test case and the execu-
tion of two functions, namely f and f2, are required. In the following, both functions are
presented in detail.

f is a non− injective function.
f : x− > v where x is an XML element of SCXML model and v is in V.

(13)

The variable x is defined as a snippet of the Generic SCXML XML schema definition
(XSD). It defines all possible SCXML models for a specific mapping to a specific v. The
snippet is always the definition of an XML element that contains the TASCXML command
within a Generic SCXML test case. Moreover, v defines the concrete node to a given
TASCXML command.

In the following section, the mapping from x to v is defined in Table 3, whereby the
mapping focuses on the XML elements as input in the traversing of the SCXML test case
and V from the graph. In doing so, all attributes of an XML element are mapped 1:1 as
properties P in the graph node V. A detailed listing of all attributes for each XML element
is not given.

Table 3. Mapping of an SCXML model to Graph G.

x v

<xsd:element name=“state” type=“scxml.state.type”/> v = {P,‘STATE’}

<xsd:element name=“set” type=“scxml.state.type”/> v = {P,‘SET’}

<xsd:element name=“result” type=“scxml.state.type”/> v = {P,‘RESULT’}

<xsd:element name=“ramp” type=“scxml.state.type”/> v = {P,‘RAMP’}

<xsd:element name=“sine” type=“scxml.state.type”/> v = {P,‘SINE’}

<xsd:element name=“sawtooth” type=“scxml.state.type”/> v = {P, ‘SAWTOOTH’}

<xsd:element name=“pulse” type=“scxml.state.type”/> v = {P, ‘PULSE’}

<xsd:element name=“verifytolerance” type=“scxml.state.type”/> v = {P,
‘VERIFYTOLERANCE’}

An example of mapping an SCXML element to graph node v is shown Figure 9.
The traversing of the SCXML test case needs not only a mapping of XML elements to

V of the graph but also a mapping of XML elements to E of a graph. Hereby, the mapping
is not defined from one XML element to a graph node; instead, a pattern described via
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a couple of XML elements is mapped to an E of the graph. For that purpose, there is the
non-injective function f2 required which is presented in the following in detail.

f2 : x− > e where x is a set of XML elements of SCXML model and e is in E. (14)

In the following, the mapping from x to e is defined in Table 4.

Table 4. Mapping of SCXML nodes to graph edges.

x e

e = ((P,‘STATE’), (P,‘STATE’), ‘SIMPLE’, P)

e = ((P,‘STATE’), (P, l ε
{‘SET’,‘RESULT’,‘RAMP’,‘SINE’,‘SAWTOOTH’,‘PULSE’,‘VERIFY-

TOLERANCE’}), ‘PARRALLEL_STATEMENT’, P)

e = (P, (‘STATE’), (P, ‘STATE’), ‘WAIT’, (‘duration’,Z))

An example of mapping a TASCXML command to an edge in graph G that uses the
label PARRALLEL_STATEMENT is shown in Figure 10.

3.3. Step 3: Provide Test-Relevant Services

The outcomes of step 1 and step 2 are test cases in graph G and the capability to
translate each test case from a test script language into graph G. The structure of graph G is
compatible with existing graph databases such as Neo4J, which guarantees that each graph
G can be uploaded to a graph database.

Querying test knowledge is essential to create the facets and to enable the explorative
search. The definition of the queries is possible via the provided query language of the
underlying graph database. The envisaged user is a test engineer unfamiliar with query
languages. Based on his experience, a test case is a sequence of blocks in which the SUT
is stimulated and afterwards checked. Hereby, a stimulus is a signal that he wants to
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stimulate on the SUT (Semantics). For the test engineer, a stimulus is defined by a signal
and a value. Instead, he would see a node in graph G defined by a label and properties
(Syntax), which is unfamiliar for a test engineer and impractical. An appropriate query
language needs to be built on the definition of statements and blocks instead of nodes and
edges. The challenge is that query languages for graphs use exact nodes and edges to define
queries. Thus, an abstraction of the natively provided query language is needed to close
the gap between the envisaged application scenario and the underlying technology stack.

Figure 10. Example for mapping the TASCXML: set to a graph edge.

3.3.1. Pattern Language as the Baseline for Explorative Search

The approach of this paper is to define a query language as a pattern language in
which the test engineer defines his/her queries the same way he would create test cases. A
query language has been developed for that purpose, and the grammar’s basic structure is
shown in the following:

grammar TestPatternReduced; (15)

compilationunit: startExpression statements? EOF; (16)

startExpression: ‘Pattern’ ENDCharacter; (17)

statements: (statement | block)+; (18)

statement: blockingStatement | expectExpression | waitExpression | waitExpressionUntil |
lambdaExpression;

(19)

blockingStatement: rampExpression | setExpression | verdictExpression; (20)

block: LBRACE blockingStatement + RBRACE; (21)

setExpression: SET qualifiedNameWithOptionalDot (value unit?) ENDCharacter; (22)

expectExpression: EXPECT logicalexpression comparison ENDCharacter; (23)

waitExpression: WAIT value unit? ENDCharacter; (24)

lambdaExpression: MULTIPLICATION qualifiedNameWithOptionalDot (value unit?)? ENDCharacter; ENDCharacter: ‘;’ (25)

SET: ‘set’; (26)

EXPECT: ‘expect’; (27)

WAIT: ‘wait’; (28)

The proposed pattern language defines a corresponding statement for each TASCXML
command (represented as V) of graph G. The labels and properties of the graph node V are
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mapped to a pattern statement. Following this proceeding, specific value assignments for a
signal via a set or a ramp can be easily implemented. An example is shown in Figure 11.

Figure 11. Query for a stimuli I.

It shows that the signal door_left_PS3 sensor is set to 1. In most common test cases,
the stimuli are not defined by a single statement but rather by a sequence of statements.

To support this feature, the user can also define a sequence of statements by adding
more statements to the pattern definition. In doing so, all statements are modelled as
micro-states. It means that the order of the statements is unimportant, and the assumption
is that all signals have the assigned value within SUT at the beginning of the following state.

An example is shown in Figure 12. The example also demonstrates a further important
feature of the explorative search. The user can add wildcards as a replacement for each
token of a statement. It means the test engineer can set the function, the signal, and the
value to a wildcard. Within the example, the user specifies all details for the left door and
adds the wildcards for the values for the positioning sensors 6 and 7 and the concrete
pausing of the test case.

Figure 12. Query for a stimuli II.

3.3.2. Mapping of a Pattern to a Graph Query

The developed pattern language (see Step 3) cannot be executed directly in a graph
database such as Neo4J, because the database uses CIPHER as query language. The user
defines his pattern in the pattern language, and the developed mapping transforms it into
a CYPHER query. In doing so, the mapping method translates each pattern statement into
a node whereby the keyword of the statement is mapped to a label, and all parameters also
being mapped as node parameters. An example of the mapping is shown in Figure 13.

Figure 13. Example for the mapping of a pattern to a CIPHER query.
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4. Evaluation of the Test Knowledge Graph
4.1. Application Scenario

The application scenario addresses the test process of an aircraft. More precisely, it
focuses on the cabin doors specified in the ATA chapter 52 [30]. The development of a cabin
is a special case of the overall development of an aircraft because the cabin is adaptable for
each airline. The customisation of the door results in a new cabin configuration that needs
to be tested as part of the certification process. For that purpose, test processes are carried
out in which the test cases slightly differ between the cabin configurations. Thus, many
redundant test activities are performed with the same cabin systems in focus and need a
similar system understanding.

The application scenario’s test cases follow the typical HIL test structure in which
the SUT is first stimulated, the target state is stimulated, and then the SUT reaction is
monitored. For this purpose, signals are stimulated and monitored at the SUT. HIL tests
are used to test mechatronic systems at the integration and system test level. It does not
matter whether it is a car, plane, train, or another complex mechatronic system because the
mechatronic system is tested as a black box. Although the selected application scenario
deals with the doors, it can be applied 1:1 to other HIL test processes. It means that the test
cases in other scenarios would not come from Python (as in the application scenario) but
from other test case languages for HIL tests. Accordingly, step 1 would be different, but
steps 2 and 3 would be the same.

4.2. Example of Look and Feel of the Pattern Search

The considered test scenario checks whether the doors behave correctly in ordinary
and emergency cases. This scenario has been selected because the cabin doors are similarly
constructed and integrated into the aircraft’s control systems. Thus, test cases for all doors
contain patterns and similar proceedings. There is no exact match between the test cases
because each door has unique signal names. Before the evaluation is presented, an example
of a door’s test case, which is fictive and not the real test case, and the results of steps 1–3
are given.

In the following fictive example, the stimulation of a door is represented by fictive
seven position sensors, which can take the values 1 (is close by) and 0 (is not close by). This
example is a fictive example and simplifies the signals and underlying systems. First, a test
case for the stimulation of a cabin door as a test case in CCDL is presented. Subsequently,
the outcome of the translation capabilities of steps 1 and 2 as a graph is presented in detail.
Finally, example queries for the explorative search are given.

4.2.1. Example of a Test Case as Graph G

The StartUP and the stimulation of such a scenario are shown as a CCDL test case in
Figure 14.

Figure 14. Fictive test case of a cabin door.
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The test case sets the position sensors 1–5 to the value 0 in the block’s initial condition.
It means that the door is open. Then, the stimulation of the UUT starts, and the door is
closed, but not lot latched and locked. Latched and locked would need to change the value
to more than the signal of door_left_PS1 sensor. The test case waits 5 s to ensure the door is
closed and the information is shared with all systems. Subsequently, the test case checks
whether the door is closed. For that purpose, the statement expect in Test Step 2 is used.
The representation of this CCDL test case as a graph is shown in Figures 15 and 16.

Figure 15. Test case as graph G I.

Figure 16. Test case as graph G II.

The graph for the test case starts on the right side with the node MDPIGraph which
is the root node of the graph. The data model from the SCXML test case is assigned
to the root node as well as the node for the StartUP (Initial Condition in CCDL). The
statements of the node for Initial Condition are connected via edges carrying the label
“PARALLEL_STATEMENT” as nodes. Each node has the label SET, and the signal name
and the value are assigned as properties (P). The selected node in Figure 15 defines that the
signal door_left_PS5, which is a positioning sensor, is set to 0. The following stimulation,
which is contained in Test Step 1 of the CCDL test case, is assigned to another node. For
that purpose, the node is connected with the edge defined by the label “SIMPLE”, shown
in Figure 16. This node has one node connected via the parallel edge and set the signal
door_left_PS1 sensor to 1. Subsequently, the wait is added via a wait edge. Finally, an
additional node is connected for the implementation of the expect. Hereby, the expect checks
whether the door is open using the door_left_PS1 sensor.

The cabin intercommunication data system (CIDS) controls the cabin systems. It
controls the, e.g., the slides/doors, water/waste, smoke indication, air conditioning, etc.
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The CIDS controls the doors and shares status information with other systems. The status
information of a door is implemented by sensors which can be monitored. The information
is applied to classify whether the door is latched, locked or closed. All doors implement
the same system states but are described slightly differently. The different signal names are
the mentioned differences. The cabin doors are integrated into the overall aircraft safety
mechanisms. Accordingly, there are rules on how the doors behave in the respective flight
phases. That means that test cases for cabin doors also need to stimulate the SUT in the
right way that the CIDS permits the execution of door commands such as opening. For that
purpose, a real test case would need to extend the stimulation phase to set the correct flight
phase and to define the environmental parameters such as flight altitude or airspeed.

4.2.2. Two Examples of the Explorative Search

First Scenario: Search for the complete stimulation
The first theoretical use case is that a test engineer has already created a test case for the

left door, and the test case has been uploaded to the graph database Neo4J. Subsequently,
another test engineer needs to create a cabin door test case and know that he has to set
the left door open in the StartUP of a test case. For that purpose, he needs to know the
corresponding signal name and the value. Thus, he searches for the signal in the System
Requirement Document (SRD) and finds out that the signal door_left_PS1 is a position
sensor to check whether the door is open or closed. He creates a test case, sets the sensor
to 0 in StartUP, and tries executing the test case in a HIL environment. The execution
shows that the left door keeps closed in the simulation model. To open the door, additional
signals need to be stimulated. In this case, he would need to reread the SRD to identify
all dependencies.

In this case, the test engineer could also use the explorative search. For that purpose,
he first defines a pattern containing only the stimulation of the door_left_POS1 signal. In
doing so, he selects in the user interface (UI) the SET statement and assign the value 0.
Subsequently, he/she adds the statement to the current pattern. The result that the Test
Advisor performs is shown in Figure 17.

Figure 17. Screenshot of http://testadvisor.eu (accessed on 5 January 2023) how to add a statement
to the pattern.

Subsequently, the test engineer would like to query this pattern. For that purpose, the
prototype translates the pattern into a CIPHER query. The corresponding query looks for a
node connected to the statement’s second node. The corresponding query is:

MATCH (s0:STATE)-[:PARALLEL_STATEMENT]->(x0:SET)
where x0.variable = ‘door_left_PS1’ and x0.value = ‘0’ WITH DISTINCT s0

RETURN DISTINCT s0.filename,s0.id AS list
(29)

http://testadvisor.eu
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The query results are a list of test cases containing the statement. Based on the selected
test case, the test engineer can define how many statements shall be autocompleted. In
the example, he decides on an autocompletion until the next wait statement and starts the
search. This is because stimulations are separated by wait statements to enable the SUT to
set the signals. The start node and the test case are known. The corresponding query is:

Match p = (s:STATE)-[*1..10]->(b)-[:WAIT]-> (c) where s.filename = ‘MDPIGraphV2’ And s.id =
‘startup_c0’ RETURN p

(30)

The result is the extended pattern which is shown as the screenshot in Figure 18.

Figure 18. Screenshot of http://testadvisor.eu (accessed on 5 January 2023) for the auto-completion
of the pattern with the scope wait/wait until.

Second Scenario: Search for the stimulation based on a requirement
The second theoretical use case is that a test engineer shall check that the door is

closeable related to a specific requirement. The signal name Verdictdoor_left_PS1 defines
the signal to check whether the door is closed. Based on this, the test engineer can define the
verdict statement (In CCDL, it was an expect statement) for the test case. The verdict needs
the correct stimulation beforehand as a part of a complete test case; thus, the explorative
search can search and autocomplete the test case. The scope of the auto-completion would
change from Wait/Wait until to the Previous wait/Wait until. All the steps would be similar
apart from the CIPHER query for the auto-completion. In this example, the CIPHER query
would be:

Match p = (s:STATE)<-[:SIMPLE *0..10]-(d)<-[:WAIT]-(b)<-[:SIMPLE]- (c)
where s.filename = ‘MDPIGraphV2’ And s.id = ‘logic_c0_c1_c0’ RETURN p

(31)

http://testadvisor.eu
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4.3. Evaluation
4.3.1. Verification of the Search Capabilities by Similarity Search

The evaluation focuses on steps 2 and 3 of the developed method, because the first
step has already been implemented and evaluated successfully [15]. The developed web
application, namely Test Advisor (http://testadvisor.eu, accessed on 5 January 2023), im-
plemented the upload of test cases in the graph database Neo4J and the provision of search
capabilities for test knowledge. Moreover it is available online as Supplementary Materials.

The prototype was tested in an avionics use case together with Airbus based on real
test cases in the scope of the research project AGILE-VT [29]. The test set contains test cases
in Python and the transformed test cases in Generic SCXML that are confidential and cannot
be published here. In addition, the defined pattern for the evaluation is also confidential
because it describes the internal design of an aircraft door. To enable the replication of
the pattern search of the above shown example, a fictive and abstracted version of the
test case for the left door is published within the web application http://testadvisor.eu.
Interested readers are welcome to request a user account from the first author and evaluate
the search capabilities.

To keep every step in the evaluation, despite the confidentiality of the test cases,
traceable and comprehensible, the complexity of the use case was chosen appropriately.
The evaluation case addresses the opening and closing of an aircraft door on the ground. A
fictive and abstracted version of the beginning of the left door test case is shown in Figure 14.
The prerequisites of the test set, the execution of the evaluation and the evaluation results
are preliminary work and have been published in [31]. The evaluation is still valid according
to the representation of a test case as a graph (for the stimulation) and the pattern search.
Since then, the methods for steps 1, 2 and 3 have been adapted to the current Generic
SCXML version and the support of the TASCXML statements. In the following, the results
are shown whereby more details related to the test set and the results are given compared
to [31]:

• All test cases are provided in Generic SCXML, which is a derivate of SCXML for test
cases. For that purpose, the original test cases have been translated from Python to
Generic SCXML using the step 1 solution;

• The test corpus includes test cases for different doors with the same stimuli and
checking the same behaviour. They only differ in specific signal names;

• The test cases for ordinary and emergency operations are similar apart from the emergency-
specific signal values.

The test bed contains the following test cases, which are shown in Table 5.
Based on the prerequisites, a snippet has been defined for the first door, which contains

TASCXML: set statements for the position sensors and is analogical to the first stimulus
contained in the StartUP state of the real Generic SCXML test case. It includes five contains
TASCXML: set and a wait statement. The snippet’s content describes the initial state of
an ordinary door test case. The intention of the snippet is comparable to the example of
the initial condition in Figure 14. The real applied test cases use different signal names,
implement more logic and include more TASCXML:set statements for the stimulation of
the SUT, but the principle of the stimulation is comparable. In addition, no wildcards have
been used in the snippet. Subsequently, the snippet has been searched in the knowledge
graph stored in Neo4J. The outcome of a search is a set of results. All the results have the
same similarity for each result, the name of the test case and locations inside the test case
is given.

http://testadvisor.eu
http://testadvisor.eu
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Table 5. Applied test cases as input for the knowledge graph.

Test Case Length in Python Lines
Length in
SCXML

Lines

Length as
Complete

Pattern Lines

Left Door 1, ordinary 58 lines but importing 7 libraries (all libraries have 15881 lines) 18,434 Unknown

Left Door 1, emergency 59 lines but importing 7 libraries (all libraries have 15881 lines) 20,520 1001

Right Door 1, ordinary 58 lines but importing 7 libraries (all libraries have 15881 lines) 18,434 Unknown

Right Door 1, emergency 59 lines but importing 7 libraries (all libraries have 15881 lines) 20,520 Unknown

Left Door 2, ordinary 58 lines but importing 7 libraries (all libraries have 15881 lines) 18,434 Unknown

Left Door 2, emergency 59 lines but importing 7 libraries (all libraries have 15881 lines) 20,520 Unknown

Right Door 2, ordinary 58 lines but importing 7 libraries (all libraries have 15881 lines) 18,434 Unknown

Right Door 2, emergency 59 lines but importing 7 libraries (all libraries have 15881 lines) 20,520 Unknown

Left Door 3, ordinary 58 lines but importing 7 libraries (all libraries have 15881 lines) 18,434 Unknown

Left Door 3, emergency 59 lines but importing 7 libraries (all libraries have 15881 lines) 20,520 Unknown

Right Door 3, ordinary 58 lines but importing 7 libraries (all libraries have 15881 lines) 18,434 Unknown

Right Door 3, emergency 59 lines but importing 7 libraries (all libraries have 15881 lines) 20,520 Unknown

Left Door 4, ordinary 58 lines but importing 7 libraries (all libraries have 15881 lines) 18,434 Unknown

Left Door 4, emergency 59 lines but importing 7 libraries (all libraries have 15881 lines) 20,520 Unknown

Right Door 4, ordinary 58 lines but importing 7 libraries (all libraries have 15881 lines) 18,434 Unknown

Right Door 4, emergency 59 lines but importing 7 libraries (all libraries have 15881 lines) 20,520 Unknown

The similarity is defined based on the match between the test case and the original
pattern. If the pattern is an exact match, no wildcards need to be added, and the similarity
is 100%. If there is no match to the original pattern, the pattern is manipulated, and one
wildcard is added. The wildcard replaces the value of a statement. If there is still no
match, another value is replaced by a wildcard. If all values have been replaced with
wildcards iteratively and there is still no match, then the variables are replaced iteratively
by wildcards. If there is still no match, the type of the statement is replaced iteratively by
wildcards. Finally, there is a match if wildcards have replaced all tokens of the statements.
The number of added wildcards determines the similarity of the found pattern. For that
purpose, the (tokens’ number of statements -wildcards) are divided by the tokens’ number
of statements to obtain a percentage value. The replacement order in which a wildcard
shall replace parts of a pattern can be configured.

The recursive adaption of pattern results exactly in a search result in which all found
test cases have the same similarity. No further criteria are defined to specify the relevance
or enable the prioritisation of the test cases within the search results. Moreover, the
evaluation does not cover whether the found test cases, which are correct according to
the pattern/Cypher query, make sense for the user. The evaluation of whether the user
expectation is met (such as mean average precision (mAP)) is not part of the article.

The outcome of the above-mentioned evaluation scenario was that the snippet (compa-
rable to the Initial condition of Figure 14) was found in the first test step in all door-relevant
test cases:

• The match was 100% for the first door test case. The result returned the exact test case
name and the state id of the state in which the pattern was contained;

• The similarity was lower than 100% for the other test cases. The lower similarity
value resulted from the different signal names for the other doors. If the user selects
a replacement order as described above, the similarity is 33,3% for test cases of the
same operational mode. In addition, if the user selects the replacement order to first
substitute the signal names with wildcards, the similarity is 66,6% having the same
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operational mode. The result returned a list of the other 14 test cases defining the test
case name and the state id where the pattern starts;

• The match between both variants of the first test case (emergency, ordinary opera-
tion) was also lower than 100% because both test cases differ in the signals for the
emergency operation. To evaluate this capability, the test case of the first left door
for the operational modus ordinary has been translated to a pattern and has been
searched inside the Neo4J database. The pattern had a length of 1001 statements, and
the calculated similarity to the emergency test case of the first left door was 96.81%;

• The right region of the pattern was found in every test case.

The evaluation demonstrated that test cases are discoverable based on a snippet in
a knowledge graph, whereby the validated length of the snippet can range up to 1001
statements, including wildcards. Similar results are obtained if the user defines his pattern
based on set, verdicts or waits. Thus, the content of a test case is accessible and explorable
by its meaning instead of by searching for keywords in the test case syntax.

The quality of the presented pattern search could not be compared with other solutions.
The reason is that the authors are unaware of any solutions that can aggregate test cases
from different test script languages in the scope of HIL tests, apply them as one data source
and search within this data source. Thus, the authors are not aware of any solution that
allows a pattern search beyond the limits of a test script language.

Concerning the pattern search within the boundaries of a test script language, some
solutions can search the syntax using regular expressions or NLP approaches. These
solutions are not applicable for two reasons:

1. The original test case is implemented in Python and uses Python libraries to enfold
its capabilities. Any string-matching method can only work on the syntax level and
could find, for example, the set statement in three different files: At least one file for
the implementation, one file of concrete usage and one for the specific configuration
of the signal. All three locations define one statement of a pattern. The question is also
what should be returned as a search result. Subsequently, if the pattern is extended to
two statements, the string-matching method is not applicable anymore. To enable any
search for more than 1 statement, the test case and the libraries have to be merged
into one single file already contained in step 1 of the solution;

2. The definition of a pattern on the syntax level must address a lot of variants because
the syntax differs between the test cases while having the same semantics. Moreover,
one particular detail of test cases increases the complexity of the supported variants. It
should be noted that the executed TASCXML commands are described within Python
or within an SCXML state or test script in a sequence, but the semantics here are a
set. This means that the order of the TASCXML commands is irrelevant, and this fact
should also be considered for regular expressions. This means two different sequences
of statements are semantically similar if they include the same set of TASCXML
commands. To do this, the individual variations would have to be linked with the or
operator, which makes the regular expressions very long and not efficient. Moreover,
the built-in search functions in development environments focus on the programming
language’s syntax, not semantics, and are, therefore, not applicable. In summary,
no solutions are known which enable the search over semantics in test cases from
multiple test script languages.

4.3.2. Validation of the Search Capabilities by a Questionnaire

The goal of the validation is to ensure that the developed pattern search meets the
operational needs of test engineers. For that purpose, this type of evaluation needs to be
performed by a questionnaire. The questionnaire focuses on the presented search scenarios,
namely {First Scenario: Search for the complete stimulation and Second Scenario: Search
for the stimulation based on a requirement}.

For each scenario, the user needs to use the online version of the demonstrator (https:
//testadvisor.eu, accessed on 5 January 2023) to try out the search. After a user has

https://testadvisor.eu
https://testadvisor.eu
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executed a scenario, the user must fill out the related questionnaire’s section. With this, the
questionnaire explores whether the search scenario is applicable to the developed pattern
search and how useful the search results are. For that purpose, the user must answer four
questions, namely {Could you find the complete stimulus related to the stimulation of
<search query>?, Could you use the search result to implement your own stimulus in a
test case in your test case language?, How complete is the information for the creation of a
similar test case?, Could you find similar results with your existing search methods?}.

Finally, the user needs to answer whether he is familiar with the creation of test cases
for HIL test processes. The questionnaire is online (https://forms.gle/kJkiAFL2mJUVeaCt5,
accessed on 5 January 2023) available, and all interested users are welcome to try out the
application scenarios and fill out the questionnaire. In the scope of the linked research
projects and corresponding target audience, this type of evaluation has not been performed,
and it is no longer feasible. This means that there are no validation results available. To
reach a validation, the goal is to perform an open validation based on the two application
scenarios using the example data and an ongoing evaluation by the questionnaire. The
questionnaire is shown as screenshots in Figures 19–21.

Figure 19. Page one from the questionnaire.

https://forms.gle/kJkiAFL2mJUVeaCt5
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Figure 20. Page two from the questionnaire.
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Figure 21. Page three from the questionnaire.

5. Discussions
5.1. Challenges and Findings

The test processes are heterogeneous in a supply chain. The heterogeneity is given
because the test processes within a supply chain test different systems on different test
levels and need to fulfil different system element requirements. The heterogeneity becomes
a challenge as soon as test knowledge shall be exchanged over the boundaries of test
processes, considering the different test script languages.

The need for the aggregation of test cases into test knowledge is there. The developed
method enables the extraction of test knowledge from the test case’s syntax of different test
script languages (data view) into a knowledge graph (as information view). The semantic
uplifting contains information of stimuli, verdicts, and control of timing. This information
content covers the functional parts of a test case. For that purpose, the knowledge graph’s
model G for test knowledge was specified, and the required transformation capabilities
were implemented. Thus, aggregating test knowledge populated from test cases is feasible
and achieves the ATHENA interoperability level data/information. A query language was
developed so that the knowledge graph does not become another data sink in product
lifecycle management. This query language was optimised for the facetted and explorative
search. In addition, the query language was tailored to the test engineer so that he could
use it directly with his skills.

The evaluation demonstrated that test cases provided in SCXML could be transformed
and imported to the graph database Neo4J, whereby the functional aspects of a test case
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are preserved. The applicability of SCXML as an interoperability model for test cases was
confirmed and developed by Rasche et al. [7]. In addition, the evaluation demonstrated
that the test knowledge could be defined and searched over all uploaded cabin door-related
test cases. With this, all test processes that focus on HIL-based test processes are applicable.

5.2. Alignment with Existing Studies

The application scenario of a knowledge graph is by Hogan [19] to “define a knowledge
graph as a graph of data intended to accumulate and convey knowledge of the real world,
whose nodes represent entities of interest and whose edges represent potentially different
relations between these entities”. The paper addresses the test knowledge contained in test
cases as the real-world knowledge that shall be formalised. The real entities are the signals
of a complex mechatronic system that can be stimulated or checked. Moreover, the edges
define the relations between the signals related to their timing. With this, the sequential
and parallel timing of signals can be modelled. Thus, the application domain of testing fits
Hogan’s expected application scenario and definition.

The required graph model for the formulation of the test knowledge uses the labels of
a directed edge-labelled graphs [19] and the properties of a property graphs [19]. These
graph types are supported by common graph databases such as Neo4J, and ensure the
transferability of the research results for ongoing research and commercialisation.

The selected interoperability approach for test cases as part of step 1 achieves the
interoperability on the ATHENA interoperability level data/information. For that purpose,
SCXML [6,7] has been selected as an interoperability model for test cases. With this,
test cases in SCXML are the input for the import of test cases into the knowledge graph.
The continuous development of SCXML as an interoperability model will increase the
amount of supported test script languages. Thus, the applicability of the facetted and
explorative search will continue to grow in the heterogeneous test processes, and benefits
from a growing amount of translation approaches for translating test cases into SCXML.
The presented method is still applicable if SCXML cannot be established as the standard
interoperability model of test cases. SCXML uses state charts as the underlying technology.
Most of the test models of the application domain of model-based testing use state charts or
comparable models to represent test cases [8,10]. The transformation of these test models
into SCXML is possible because there are available generic models to model transformation
solutions, such as OPM modelling tool [32] or transformation languages, such as query
view transformation (MOF QVT).

5.3. Implications for Practice

The article’s aim was to aggregate test knowledge into a knowledge graph. Initially,
data sources are filled with test cases from different test script languages and spread over
the supply chain test processes. These data sources already contain countless test cases
from different aircraft types ranging from A220 to A380 and corresponding variants. While
the used test case script languages have changed over time, the basics of the flight dynamics
and the control systems of an aircraft have not changed. This means that test knowledge
for joint usual flight manoeuvres, including the right stimulus and the expected behaviour,
already exists, and the developed search method can make it searchable and applicable. In
doing so, despite the heterogeneity of test script languages, the developed method enables
the aggregation of test cases and feeds test knowledge for information-driven services. The
implemented information-driven service provides a search offering facetted and explorative
search modus. A graph model, the integration into Neo4J and a test engineer-friendly
query language were developed for that purpose.

Concerning the application of the proposed solution in practice, the solution is applica-
ble within the supply chain’s test processes independently of the used test script language.
The benefits are that test knowledge can be added to the holistic view and can be used
directly in the design, specification, and implementation of test cases. The added value for
the daily business of a test engineer is presented as an example in the following.
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After several test campaigns for his product family, an experienced test engineer
acquires the test knowledge that is already part of the knowledge graph G. In this way,
he can, for example, recap all dependent signals for a given signal that gains a valid
stimulation. Until now, young test engineers used experienced test engineers as a source of
knowledge. The developed approach reduces this dependency. Young colleagues can now
access this knowledge from the knowledge base instead of the experienced test engineer
and use it directly for their test campaigns by making explorative search queries. The
described use case is just an example, and a couple of more use cases according to the
optimisation within HIL test processes are possible.

5.4. Limitations and Future Research

The developed method requires step 1 as the precondition for the aggregation (step 2)
and searches capabilities (step 3). As long as the test cases from a given domain can be
translated to SCXML, they can also be represented as a graph. The limitation results from
the coverage of the translatable functional aspects of the test case, according to SCXML. If
the definition of the TASCXML commands changes, graph G, including the transformation
functions f and f2, must also be adjusted. Test cases written in Excel sheets or natural
language are manual tests and cannot be imported into the presented graph G using steps 1
and 2. For that purpose, a preliminary step 0 using natural language processing (NLP) is
necessary to translate the test cases into a test script language. Apart from the technical
limitation, the intellectual property right (IPR) and right of use must be considered. The
OEM and all suppliers develop test cases in different test script languages, and only the
aggregation of all test cases as a knowledge graph would achieve the product’s complete
picture. The challenge is that the IPR of each uploaded test case, independent of its
representation form, needs to be considered. This means that the knowledge graph must
consider a set of IPRs and needs to implement an appropriate rights and roles concept.
These circumstances largely determine the extent to which the developed method can be
used in the operative business of a supply chain.

Future work shall focus on a more detailed evaluation of whether the pattern search
works correctly from the user’s perspective. Even though the derived CIPHER queries
always find all test cases, the user’s point of view is missing. With this, a test case could
be found by the CIPHER query, but the test case makes no sense to the user’s needs. To
evaluate potential discrepancies, metrics such as mean average precision (mAP) can be
applied. For that purpose, a public test scenario in combination with a public questionnaire
could identify the needed recall and precision values. For that purpose, the test scenario
and the questionnaire are online, and test users are needed.

A second direction of future work is related to implicit patterns. A populated graph
database does not only support the search for explicit patterns. Implicit patterns, i.e., pat-
terns the test engineer is unaware of, are valuable. Every implicit pattern found can be used
to build up test cases modularly, making them more sustainable. Future work should focus
on the modularisation of test cases. The aim is to research which sequences of statements
are repeated in the graph. Such repetitive sequences are suitable for modularising a test
case by introducing macro functions. For this, the search would have to be supplemented
with a new mode that can search for isomorphic subgraphs.

A populated graph database describes the aircraft behaviour entirely as a system
under test. This test knowledge can also be applied to train supervised learning algorithms.
Potential use cases are the calibration of simulation models against operational data from
the airline fleet or the training of surrogate models as replacements for simulation models.
The proper selection of stimuli and expected behaviour for the training and verification
data is essential for both use cases. The knowledge graph can be used to generate the input
data for that purpose.
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6. Conclusions

The presented approach enables the semantic uplifting of test cases from several
different test script languages into a single knowledge graph. By doing so, we created
a joint understanding and a holistic view of the mechatronic system as a system under
test. So far, this test knowledge has existed only in the minds of experienced test engineers
with no digital knowledge graph and no automated search capabilities. We developed a
query language that enables a search for stimulation, verdicts, and timing within many test
cases. The representation of test cases as knowledge graphs and the intended querying
capabilities were successfully tested on cabin door test cases of an aircraft.

Supplementary Materials: The search and auto completion tool is available at: http://testadvisor.eu/.
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