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Abstract: A time series is a sequence of time-ordered data, and it is generally used to describe how
a phenomenon evolves over time. Time series forecasting, estimating future values of time series,
allows the implementation of decision-making strategies. Deep learning, the currently leading field
of machine learning, applied to time series forecasting can cope with complex and high-dimensional
time series that cannot be usually handled by other machine learning techniques. The aim of the
work is to provide a review of state-of-the-art deep learning architectures for time series forecasting,
underline recent advances and open problems, and also pay attention to benchmark data sets.
Moreover, the work presents a clear distinction between deep learning architectures that are suitable
for short-term and long-term forecasting. With respect to existing literature, the major advantage
of the work consists in describing the most recent architectures for time series forecasting, such as
Graph Neural Networks, Deep Gaussian Processes, Generative Adversarial Networks, Diffusion
Models, and Transformers.

Keywords: short-term forecasting; long-term forecasting; recurrent neural networks; temporal
convolutional neural networks; graph neural networks; deep gaussian processes; transformers; time
series benchmarking; generative adversarial networks; diffusion models

1. Introduction

A time series is a sequence of data enumerated in time order. Time series are used
to study how certain measures, e.g., air pollution data [1], ozone concentration [2], plant
growth [3], sunspots [4], Dow Jones and Nasdaq indices [5], and electricity consumption [6],
evolve over time. Time series forecasting estimates values that a time series takes in the
future, allowing the implementation of decision-making strategies, e.g., abandonment of
fossil fuels to reduce the surface temperature of the Earth. Specifically, time series fore-
casting is very relevant for the energy domain (e.g., electricity load demand [7,8], solar and
wind power estimation [9,10]), meteorology (e.g., prediction of wind speed [11], tempera-
ture [12,13], humidity [12], precipitation [13,14]), air pollution monitoring (e.g., prediction
of PM2.5, PM10, NO2, O3, SO2, and CO2 concentrations [12,15,16]), the finance domain
(e.g., stock market index and shares prediction [17,18], the stock price [19,20], exchange
rate [21,22]), health (e.g., prediction of infective diseases diffusion [23], diabetes mellitus [24],
blood glucose concentration [25], and cancer growth [26]), traffic (e.g., traffic speed and flow
prediction [27–30]), and industrial production (e.g., petroleum production [31], remaining life
prediction [23,32,33], industrial processes [34], fuel cells durability [35], engine faults [36]).
Deep learning algorithms are currently the leading methods in machine learning due to
their successful application to many computer science domains (e.g., computer vision, natural
language processing, speech recognition). In recent years, there has been a growth of interest in
the application of deep learning to time series forecasting, due to deep learning’s capability
to grasp the nonlinear relations among input data (i.e., time series samples). To the best
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of our knowledge, there are several reviews on deep learning for time series forecasting
(e.g., [37–43]), but they have the following major shortcomings: they lack a description of
Transformer and its variants; they do not provide a clear distinction between models for
short-term and long-term forecasting, there are no sections on short-term and long-term
forecasting benchmarks; they do not cover the most recent deep learning strategies for
short-term forecasting (e.g., Graph Neural Networks, Deep Gaussian Processes, Generative
Adversarial Networks, and Diffusion Models). The aim of this work is to provide a comprehen-
sive survey of recent deep learning approaches for time series forecasting, underlining the
advances and the open problems for each reviewed deep learning architecture. Specifically,
the survey focuses on works about machine learning applied to time series forecasting that
are not older than 2016, for the sake of length. The paper is organised in the following
sections: in Section 2, the foundations of deterministic time series are introduced; Section 3
describes deep learning architectures for short-term forecasting, i.e., Convolutional Neural
Networks, Temporal Convolutional Networks, Recurrent Neural Networks (RNNs), Graph Neural
Networks, Deep Gaussian Processes, Generative Adversarial Networks, and Diffusion Models;
Section 4 discusses long-term forecasting architectures, i.e., the Transformer architecture
and its time series-based variants; Section 5 reviews other heterogeneous architectures for
both short-term and long-term forecasting; benchmarking for short-term and long-term
time series forecasting is presented in Section 6; in Section 7, some conclusions are drawn
and future possible developments are discussed; finally, in the appendix are reported the
main mathematical notation used in the work and a description of the main diffusion
model foundations.

2. Deterministic Time Series

A time series is called a univariate time series if all its samples are scalar; otherwise, if all
samples are vectors, it is called a multivariate time series. A time series is defined as stationary
when the dynamical process that generated it does not change over time, otherwise, it is
non-stationary. A deterministic stationary time series xt, with t = 1, . . . , L, can be described by
an autoregressive model as follows:

xt+p = f (xt−1, . . . , xt−q) + εt+p ∀p ∈ [0, P] (1)

where f (·) and q are called skeleton and model order of time series, i.e., how many past
samples are required to model the time series adequately, respectively, and εt+p represents
an indeterminable part originated either from unmodeled dynamics of the process or from
real noise. P defines the prediction length, i.e., how many future samples should be predicted.
Figure 1 gives a graphical representation of an autoregressive model.

...X

f +

X X X0 t-2 t-1 t

ε

...X XX X X0 t-2 t-1 t t+1

Figure 1. An example of an autoregressive model for forecasting based on deterministic stationary
time series. In the figure, the model order is q = 2 and the prediction length is P = 0 (i.e., it is a
one-step ahead forecasting problem).
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If P = 0, the autoregressive model defines the so-called one-step ahead forecasting, other-
wise, a prediction length P > 0 specifies a multi-step ahead forecasting problem. Moreover,
multi-step ahead forecasting can be further divided into short-term and long-term forecasting.
In the literature, the typical threshold value of prediction length P between short-term and
long-term forecasting ranges between 2 and 48 [44]. Finally, for the sake of clarity, in this
work, one-step ahead forecasting is included in short-term forecasting.

3. Deep Learning Models for Short-Term Forecasting

In short-term forecasting, the skeleton of time series can be approximated by the
following deep learning models, which are described below. The section is organised as
follows. Firstly, Convolutional Neural Networks (Section 3.1), and Temporal Convolutional
Networks (Section 3.1.2) are introduced. Furthermore, Recurrent Neural Networks (Section 3.2)
are described, including Elman RNNs (Section 3.2.1), Echo State Networks (Section 3.2.3), Long
Short-Term Memory (Section 3.2.4), and Gated Recurrent Units (Section 3.2.5). Successively,
hybrids and variants (Section 3.3) of the aforementioned architectures are briefly reviewed.
Moreover, Graph Neural Networks (Section 3.4), Deep Gaussian Processes (Section 3.5), and
generative models (Section 3.6), i.e., Generative Adversarial Networks (Section 3.6.1) and
Diffusion Models (Section 3.6.3), are discussed. Finally, for each reviewed model, drawbacks
and limitations are discussed in proper sections.

3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [45], as shown in Figure 2, have a deep archi-
tecture generally formed by convolution, pooling, and fully connected layers. CNNs have
three main peculiarities: local connectivity, shared weights and translation equivariance. Local
connectivity resides in each CNN neuron being connected only to its exclusive input region,
the so-called receptive field. Besides, the neurons of a given layer share the same weight
matrix. Translation equivariance is the ability of CNNs to detect certain patterns, regardless
of the position they have in the input image. 1D convolution (see Figure 3) of an input
sequence X = [x1, . . . , xL] with a given kernel w with size q is defined as:

y(t) = (w ∗ X )(t) =
q/2

∑
a=−q/2

w(a)X (t− a) ∀t ∈ [1, . . . , L] (2)

It is worthwhile to remark that in the autoregressive approach, the kernel size q corresponds
to the model order, generally fixed using model selection techniques (e.g., cross-validation) [46].
Moreover, CNN can stack different convolutional layers in order to transform the input
data (i.e., the past time series values) into a more suitable higher-level representation for
the forecasting task. CNN time series forecasting applications are described in Table 1.

Figure 2. An example of Convolutional Neural Network applied to time series forecasting. The red,
the blue and the green boxes represent CNN’s convolutional layers.
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. . . xt-1 xt xt+1 xt+2 . . .

. . . yt yt+1 . . .

Input Sequence

Output Sequence

Kernel (size=3)

Input Length

Output Length

Figure 3. Example of 1D convolution using a kernel with size k = 3. The scalar product is denoted by
•. The yellow boxes denote the learned kernel.

Table 1. Recent applications on time series forecasting using Convolutional Neural Networks.

Ref. Year Application

[47] 2017 ETFs prices
[48] 2018 Electricity consumption
[10] 2018 Solar power and electricity load
[6] 2018 Electricity consumption
[7] 2018 Electricity price

[49] 2019 Electricity price and load forecasting
[50] 2019 Building-level load
[12] 2023 CO2/Temperature/Humidity

3.1.1. Shortcomings of Convolutional Neural Networks

The major drawback of CNNs for time series forecasting is the use of Euclidean ker-
nels [51], since only a continuous and commonly short time series subsequence is considered
at a time by an Euclidean kernel. However, in time series forecasting tasks it may be use-
ful to extract representative features by analysing non-contiguous and farther time series
samples in the past. This limitation is overcome by Temporal Convolutional Networks (see
Section 3.1.2), with the use of causal and dilated convolutions, and by Graph Neural Networks
(see Section 3.4), with a properly designed adjacency matrix.

3.1.2. Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) were proposed for action segmentation and
detection by Lea et al. [52]. In a nutshell, a TCN is composed of cascaded 1D convolutional
layers that allow mapping arbitrarily long inputs onto output sequences of the same length.
In contrast to traditional CNNs, TCNs perform causal and dilated convolutions. Unlike 1D
convolution (see Equation (2)), in causal 1D convolution (see Figure 4) the output element
at time t is yielded by the convolution between the kernel and past input elements only,
namely [xt−1, xt−2, . . . , xt−q], where q is the kernel size that corresponds to the model order
in an autoregressive approach (see Section 3.1). In detail, causal 1D convolution is defined
as follows:

y(t) = (w ∗ X )(t) =
q

∑
a=1

w(a)X (t− a) ∀t ∈ [1, . . . , L] (3)

A dilated 1D convolution (see Figure 5) differs from a 1D convolution due to the in-
troduction of a dilation factor d. The dilation, applied to convolution, is equivalent to
considering a fixed step between two adjacent kernel elements. In particular, dilated causal
1D convolution can be defined as:

y(t) = (w ∗ X )(t) =
q

∑
a=1

w(a)X (t− d · a) ∀t ∈ [1, . . . , L] (4)
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When d = 1, a dilated 1D convolution is reduced to a 1D convolution. Dilated convolutions
allow the networks to have a large receptive field, i.e., to capture information into the far
past, by a logarithmic growth of the number g of convolutional layers, as stated in:

g =

⌈
logb

(
(n− 1)(b− 1)

(q− 1)
+ 1
)⌉

(5)

where b is the logarithmic base of the dilation factor di for the i-th convolutional layer (namely,
di = bi). TCN time series forecasting applications are reported in Table 2.

Zero Padding Input Length

y1 y2

0 x1 x20

. . .

. . . xL-2 xL-1 xL

yL Output Sequence

Input Sequence

Figure 4. Causal 1D convolution with a kernel of size q = 3. Zero padding elements are added at the
beginning of the input sequence in order to have an output sequence with the same length as the
input sequence.

0

ConvLayer0
(d0=20=1)

ConvLayer1
(d1=21=2)

ConvLayer2
(d2=22=4)

Zero
Padding

Input Sequence

Output Sequence

Figure 5. Example of a dilated causal 1D convolution with three layers using a dilation base b = 2
and a kernel size q = 3. Zero padding is used to preserve the input sequence length.

Table 2. Time series forecasting applications using Temporal Convolutional Networks.

Ref. Year Application

[53] 2018 Stock market
[15] 2019 Beijing PM2.5
[30] 2019 Traffic
[54] 2020 National electric demand and power demand
[9] 2020 Wind power generation

[55] 2020 Weather
[11] 2022 Wind speed

TCNs share with CNNs most shortcomings (see Section 3.1.1), with the only exception
of the Euclidean kernel.
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3.2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [45] aim to explore the relations between the current
time series samples and the past ones. An RNN processes one time series sample at a time
to approximate the skeleton f (·) and determine the model order q implicitly. While in
Equation (1) the model order q is assumed to be constant, RNNs exhibit a dynamic temporal
behaviour, as they do not require a fixed model order q and they auto-determine how far
back to look in the past. An RNN is composed of recurrent layers, which process one
input sample at a time. The earliest RNN applications for time series forecasting [56,57] are
replaced by more specific and sophisticated recurrent architectures, that is, Elman Recurrent
Neural Networks [58], Echo State Networks [59], Long Short-Term Memory Networks [60], and
Gated Recurrent Units [61].

3.2.1. Elman Recurrent Neural Networks

Elman [58], Williams-Zipser [62], and Jordan [63] RNNs are the earliest Recurrent Neural
Networks properly designed to handle temporal patterns in time series. In particular, Elman
RNN (ERNN) uses a recurrent layer, which yields an output~ht that depends on the current
sample ~xt and the previous output~ht−1 by a function g(·) and a generic set of time-shared
parameters ω, as described:

~ht = gω(~xt,~ht−1) (6)

where~ht−1 is produced by the same recurrent layer, i.e.,:

~ht−1 = gω(~xt−1,~ht−2) (7)

and so on. The basic recurrent layer, often called a vanilla cell, works like a fully connected
layer with a fixed number of units, jointly applied to the current input ~xt and the last
output~ht−1:

~ht = g
(

V~xt + W~ht−1 +~b
)

(8)

In this case, the set of parameters of a recurrent layer is ω = {V, W,~b}, where V is the
input-recurrent weight matrix, W is the recurrent-recurrent weight matrix, and~b is the bias
vector. In Equation (8), g(·) is a nonlinear activation function, usually a hyperbolic tangent.
ERNN time series forecasting applications are summarised in Table 3.

Table 3. Elman RNN applications for time series forecasting.

Ref. Year Application

[64] 2017 Electricity load
[65] 2018 Electricity load
[66] 2018 Energy consumption
[14] 2019 Monthly precipitation
[16] 2021 Air Quality Index

3.2.2. Shortcomings of Recurrent Neural Networks

Recurrent neural networks based on the vanilla cell suffer from unstable training,
which prevents the network from grasping long-term dependencies. Recurrent networks,
like most neural networks, are trained by gradient descent [67], and backpropagation [67]
(Backpropagation is denoted Backpropagation Through Time (BPTT), when applied to re-
current neural networks) is used to compute the gradient of the loss function w.r.t. the
network’s weights. When back-propagation is applied to deep networks, the problems of
vanishing or exploding gradients [45] may arise. As the error gradient is back-propagated,
some of its components might either get very small, giving a negligible contribution to
the corresponding weight update, or very large, leading, in this way, to unstable training.
Over the years, several approaches have been proposed to cope with unstable gradients.
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Among the most successful approaches are reservoir computing methods, e.g., Echo State Net-
works [59] (see Section 3.2.3), and gated cells, e.g., Long Short-Term Memory (LSTM) cells [60]
and Gated Recurrent Units (GRU) [61]. A gated cell controls how much input information
flows through the layer and prevents derivatives from vanishing or getting large.

3.2.3. Echo State Networks

Echo State Networks (ESNs) were suggested by H. Jaeger [59] in 2001 as a variant of
ERNNs. ESNs are really effective in dealing with chaotic multivariate time series [68]. In addi-
tion, these networks mitigate the unstable gradient problem and are more computationally
efficient due to the use of fixed, random weight matrices for the recurrent layers. Based on
the vanilla cell of ERNNs (see Equation (8)), ESNs avoid backpropagation on the recurrent
layer by setting V and W as fixed (i.e., non-trainable) random matrices. Furthermore, a
given sparsity level is considered in matrix W. Although random matrices are an advantage
of ENSs to mitigate the unstable gradient problem, they, at the same time, represent a major
ESNs shortcoming since they make particularly difficult the application of common inter-
pretability approaches, e.g., gradient-based approaches [69,70]. ESN time series forecasting
applications are described in Table 4.

Table 4. ESN applications on time series forecasting.

Ref. Year Application

[71] 2017 Fuel cell voltage ageing
[32] 2017 Health of automotive batteries
[72] 2017 Slugging flow phenomenon
[13] 2017 Temperature/Rainfall
[73] 2018 Lorenz/Rossler/Sunspot-Runoff
[34] 2019 Industrial processes
[35] 2019 Fuel cell durability
[74] 2019 Photovoltaic voltage
[75] 2020 Electricity load
[76] 2020 Electricity load
[77] 2020 Energy consumption/Wind power generation
[78] 2020 Temperature of exhaust gas
[36] 2020 Faults in airplane engines
[79] 2020 Multiple time series
[25] 2020 Blood glucose concentration
[80] 2021 Multiple time series
[81] 2021 Electrical load
[16] 2021 Air Quality Index
[82] 2022 Chaotic time series

3.2.4. Long Short-Term Memory

Long Short-Term Memory (LSTM) Networks [60] were originally proposed for natural
language modelling. The LSTM cell (see Figure 6) uses three gating mechanisms: input, forget
and output gates. Firstly, the input of LSTM layers, which is composed of the current input
~xt and the output~ht−1 from the last time step are is combined into the current input vector
~it as follows:

~it = γ(Wi~xt + Ui~ht−1 +~bi) (9)

where γ(·) can be any sigmoidal function (e.g., logistic or hyperbolic tangent ones) and
{Wi, Ui,~bi} is a set of parameters. Furthermore, the three gates are computed as:

~gt = σ(Wg~xt + Ug~ht−1 +~bg) (10)

~ft = σ(W f~xt + U f~ht−1 +~b f ) (11)
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~ot = σ(Wo~xt + Uo~ht−1 +~bo) (12)

where σ(·) is the logistic function, ~gt, ~ft,~ot are the input, forget, and output gates, respec-
tively, and {Wg, Ug,~bg}, {W f , U f ,~b f }, {Wo, Uo,~bo} are the respective sets of parameters.
Furthermore, the LSTM’s inner state ~ct is updated by a linear combination of~it and the
previous inner state~ct−1:

~ct = ~gt � ~it + ~ft �~ct−1 (13)

where � is the element-wise product. Finally, the output~ht of a LSTM layer is defined as:

~ht =~ot � tanh(~ct) (14)

Input

Output Gate

Input Gate

Forget Gate

xt
ht-1

tanh

ht

it

gt

ft

ot

ct

ct-1
xt
ht-1
xt
ht-1
xt
ht-1

Figure 6. Long-Short Term Memory cell architecture.

LSTM time series forecasting applications are described in Table 5.

Table 5. LSTM applications on time series forecasting.

Ref. Year Application

[17] 2016 Stock market
[83] 2016 Electricity load
[84] 2016 Traffic flow
[19] 2017 Stock prices

[85,86] 2017 Stock market
[87] 2017 Electricity load
[88] 2017 Air quality
[26] 2018 Forecasting Cancer Growth

[89,90] 2018 Stock market
[20] 2018 Stock prices
[7] 2018 Electricity price

[24] 2018 Diabetes mellitus
[91] 2018 Rainfall-runoff modelling
[92] 2018 Predicting water table depth

[93,94] 2018 Electricity load
[33] 2018 Life prediction of batteries
[10] 2018 Solar power and electricity load
[95] 2018 Solar intensity
[96] 2018 Air quality
[97] 2019 UCI data sets
[98] 2019 Building load
[31] 2019 Petroleum production
[14] 2019 Monthly precipitation
[99] 2019 Weather forecasting
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Table 5. Cont.

Ref. Year Application

[18] 2020 Stock market
[100] 2020 COVID-19
[79] 2020 Multiple time series
[101] 2021 Weather/Air Quality/Clinical data
[16] 2021 Air Quality Index
[102] 2022 Financial markets
[12] 2023 CO2/Temperature/Humidity

3.2.5. Gated Recurrent Units

RNNs based on Gated Recurrent Units (GRUs) [61] were introduced for Statistical
Machine Translation. A GRU layer, as shown in Figure 7, uses two gating mechanisms:
an update and a reset gate. Both the reset and the update gate depend on ~xt and ~ht−1.
Analogously to LSTM, the reset gate~rt and the update gate ~ut are computed as:

~rt = σ
(

Wr~xt + Ur~ht−1 +~br

)
(15)

~ut = σ
(

Wu~xt + Uu~ht−1 +~bu

)
(16)

where σ(·) is the logistic function and the rest of the parameters have the same meaning as
the LSTM (see Section 3.2.4). Furthermore, an intermediate output~h′t is given by:

~h′t = tanh
(

W~xt + U(~rt �~ht−1) +~b
)

(17)

where {W, V,~b} is an additional set of parameters and � is the element-wise product.
Finally, the output ~ht of the GRU layer is given by the sum of ~h′t and ~ht−1, weighted
element-wise by the update gate:

~ht = ~ut �~ht−1 + (~e− ~ut)�~h′t (18)

where~e is a column vector whose elements are all equal to 1. GRU time series forecasting
applications are described in Table 6.

Update Gate

xt

ht-1
Reset Gate

ht-1

tanh

xt

ht-1

ht

ut

rt
h't

e-ut
ut

e

Figure 7. Architecture of a GRU cell. The column vector~e is composed of elements that are all equal to 1.
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Table 6. Applications on time series forecasting using GRU-based Recurrent Neural Networks.

Ref. Year Application

[84] 2016 Traffic flow
[8] 2017 Electricity load

[103] 2018 Photovoltaic forecasting
[7] 2018 Electricity price
[24] 2018 Diabetes mellitus
[97] 2019 UCI data sets
[79] 2020 Multiple time series

[104] 2021 Air quality/Stock prices/Household electric power

3.2.6. Shortcomings of LSTMs and GRUs

It has to be remarked that, even if training is stable, it can be hard for recurrent
networks to learn dependencies between distant sequence samples. For instance, a recurrent
network that generates an output sequence starting from an input sequence is shown in
Figure 8.

x19 x20 x21

Recurrent
Layer

Recurrent
Layer

Recurrent
Layer

h19 h20 h21

OUT Layer OUT Layer OUT Layer

y19 y20 y21

x59 x60 x61

Recurrent
Layer

Recurrent
Layer

Recurrent
Layer

h59 h60 h61

OUT Layer OUT Layer OUT Layer

y59 y60 y61

.    .    . .    .    . .    .    .

Figure 8. The red path in the recurrent model denotes the flow that information about an input
sample (x20) must follow before reaching an output layer (y60) that might require it.

Supposing that the output element at position t = 60 has a strong dependency on the
input at position t = 20, information about the input sample x20 is useful to predict the
output sample y60. The output sample yt is predicted starting from ht, a lossy summary
of the past inputs yielded by the recurrent layer; hence, the only way for the output layer
to know about x20 is through h60. The recurrent layer first captures information about
x20 through h20, which has to pass by many steps and then aggregate information about
many other input elements, before achieving h60. There is no guarantee that after so many
recurrent steps, adequate information about x20 is preserved into h60. In fact, h60 may just
contain information about the most recent samples and have no information about x20 at all.
The short-term memory of recurrent networks is one of their major drawbacks and one of
the main reasons why attention mechanisms and Transformers were originally introduced
in deep learning (see Section 4.1).

3.3. Hybrids and Variants of Deep Neural Networks

In recent years, specific deep neural networks have been proposed as hybrids or variants
of the aforementioned architectures. Hybrid models combine multiple statistical or machine
learning methods to improve the robustness and accuracy of forecasting. Towards the same
goal are the works that propose variants of deep neural architectures properly adapted
for time series forecasting tasks. Hybrids and variants of deep neural networks share the
same limitations as the models they are based on. The most successful approaches are
summarised in Table 7.
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Table 7. Applications in time series forecasting using variants and hybrids of common deep neural
networks. The symbol ‘+’ denotes a combination of multiple models or methodologies. GARCH and
ANN acronym stand for Generalized AutoRegressive Conditional Heteroskedasticity [105] and Artificial
Neural Networks, respectively.

Ref. Year Architecture Application

[106] 2016 Autoencoder + LSTM Solar power
[107] 2017 Autoencoder + LSTM Stock prices
[108] 2017 CNN + LSTM Stock prices
[109] 2018 CNN + LSTM Electricity prices
[110] 2018 CNN + LSTM Electricity load
[111] 2018 CNN + LSTM Wind speed

[112] 2018 LSTM + Attention mechanism
(see Section 4.1.1) Stock market

[113] 2018 LSTM + GRU Stock prices
[114] 2018 GARCH + LSTM Stock prices
[115] 2018 GRU variant Traffic forecasting
[116] 2018 CNN + LSTM PM2.5 concentration
[117] 2018 ANN + LSTM + CNN PM2.5 concentration

[118] 2019 LSTM + Attention mechanism
(see Section 4.1.1) Online Sales/Electricity prices

[119] 2019 LSTM + Attention mechanism
(see Section 4.1.1) Solar generation

[120] 2019 LSTM + Attention mechanism
(see Section 4.1.1) Electricity load

[27] 2019 CNN + Attention mechanism
(see Section 4.1.1) Traffic/Stock market

[121] 2020 CNN + LSTM Stock market/Temperature
[122] 2020 LSTM + Fuzzy Logic COVID-19
[23] 2020 TCN + Attention Remaining Useful Life

[123] 2023 TCN + LSTM/GRU Chaotic Time Series/ECG

3.4. Graph Neural Networks

A recent promising research direction in multivariate time series forecasting is the
application of Graph Neural Networks (GNNs) [124,125]. The original domain of GNNs is
the handling of spatial dependencies among entities in a graph-modelled problem. In detail,
GNNs can be used to generate representations of such entities that depend on the structure
of the graph and on any additional information. A graph G ′ is formally defined as a tuple
G ′ = [V , E ], where V denotes the set of nodes and E is the set of edges, the connections
between the nodes of the graph, represented, in this case, with an adjacency matrix. The
definition of this matrix is based on a metric function that can be either a priori fixed or
learned during the training process [125]. The basic idea of a GNN can be summarised
by the use of three main operators: aggregate, combine, and readout. The k-th GNN layer
performs the aggregate and combines operators. The former consists of agglomerating,
for each graph node v ∈ V , information from its neighbourhood N(v) as defined by the
adjacency matrix:

~hk
N(v) = aggregate(~hk−1

u : u ∈ N(v)) ∀k > 1 (19)

where~hk−1
u is the feature vector of the u-th neighbouring node of v, yielded by the previ-

ous GNN layer k− 1, and~hk
N(v) is the aggregated information. The latter combines the

aggregated information~hk
N(v) with the feature vector~hk−1

v of the current node v:

~hk
v = combine(~hk−1

v ,~hk
N(v)) ∀k > 1. (20)
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When k = 1 the aggregate operator is not defined, whereas the combine operator reduces to:

~h1
v = ~xv, (21)

where ~xv represents the input feature vector associated to the v-th node. Furthermore, the
readout operator is applied on the output of the last GNN layer K in order to obtain a final
vector~hG representing the whole graph G ′ = [V , E ]:

~hG = readout(~hKv : v ∈ V) (22)

In the case of multivariate time series forecasting, GNNs have been successfully applied as
feature selection mechanisms. It is important to remark that GNNs could also be applied to
spatio-temporal time series forecasting which is not the object of the survey. GNN time series
forecasting applications are described in Table 8.

Table 8. GNN applications on time series forecasting.

Ref. Year Application

[28] 2020 Traffic/Electricity load/Exchange rate
[29] 2021 Solar energy/Traffic/Electricity load/Exchange rate

[126] 2022 Stock market
[127] 2022 PM2.5/Traffic/Wind speed
[128] 2022 Stock market
[129] 2022 Electricity load/Solar energy/Traffic
[21] 2022 Solar energy/Wind power generation/Electricity load/Exchange rate

[130] 2022 Solar energy/Traffic/Electricity load/Exchange rate
[22] 2023 Solar energy/Traffic/Electricity load/Exchange rate

3.5. Deep Gaussian Processes

Let D = (~x1, ~x2, . . . , ~xn) be a data set and Y = (~y1, ~y2, . . . , ~yn) the target output, a
Gaussian Process [131] is a Bayesian model composed of a collection of random variables,
any finite number of which have a joint Gaussian distribution, and it is fully defined
by a mean function m(~xi) and covariance function k(~xi, ~xj), which is usually a Mercer
kernel [131,132]. The analytical solution of a Gaussian Process entails computing the inverse
of the covariance matrix of observations, which has a computational complexity of O(n3).
A common approach for coping with this computational drawback is the use of Sparse
Gaussian Process [133]. This method consists of considering a reduced set of m (m � n)
training samples, the so-called inducing variables, reducing, in this way, the complexity to
O(nm2). A sequence of Gaussian Processes defines a Bayesian model called Deep Gaussian
Process (DGP) [134]. As shown in Figure 9, in DGPs the output of the single Gaussian
Process located at the previous layer is fed as an input to the Gaussian Process located at
the next layer. Unlike the rest of the deep learning techniques, Deep Gaussian Processes
can estimate not only the value of future time series samples but also provide a confidence
interval of the predictive time series value representing, in this way, the uncertainty of the
model. DGP time series forecasting applications are described in detail in Table 9.

Table 9. DGP applications on time series forecasting.

Ref. Year Application

[135] 2017 Crop Yield forecasting
[136] 2020 Crop Yield forecasting
[137] 2022 Electricity load
[138] 2023 Car-hailing demand
[139] 2023 Ozone concentration forecasting
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Figure 9. Deep Gaussian Processes. In the figure X , Y represent the data set and the desired output,
respectively, f (i) is the latent function to be estimated and mi, ki represent the mean and covariance
function of i-th layer.

3.6. Generative Models

Among the latest trends in deep learning research, there are the so-called generative
models, specifically Generative Adversarial Networks (GANs) and Diffusion Models (DMs).
Both families are popular for their groundbreaking capabilities in generating synthetic
images. These successes encouraged researchers to apply GANs and DMs to sequential
data as well, including time series. As generative models, both methodologies have been
used for time series generation tasks. However, it can adapt them for other time series-related
tasks as well, specifically time series forecasting. Sections 3.6.1 and 3.6.2 provide an overview
of GANs and their usage for time series forecasting, respectively; Sections 3.6.3 and 3.6.4
discuss diffusion models and their applications to time series forecasting, respectively.

3.6.1. Generative Adversarial Networks

A GAN [140] is composed of two separate artificial neural networks: a generator
network G that generates synthetic data, with the same distribution of the input ones, and
a discriminator network D that classifies input data as either real or synthetic. G and D are
trained with an adversarial training approach. G takes random noise as input and it has
to transform the noise into a synthetic data sample following the same distribution of the
real data. D receives both real and generated samples and it estimates the probability that
any given data sample comes from the real data rather than from the generator. The two
networks are trained jointly with a minimax two-player game [140], i.e., the discriminator
is trained to maximise the correct classification ratio for both real and generated samples.
Whereas, the generator has the goal to trick the discriminator into misclassifying generated
samples by minimising the correct classification ratio. This training procedure is expressed
by the objective function:

min
G

max
D

V(D, G) = E~x∼px(~x)[log D(~x)] +E~z∼pz(~z)[log(1− D(G(~z)))]. (23)

where, ~x is a real data point, sampled from the real data distribution px(~x); ~z is a noise
vector, sampled from a distribution pz(~z), a priori fixed; D(~x) is the probability distribution
estimated by the discriminator; G(~z) is the sample produced by the generator, starting from
the noise~z. GANs can be implemented by any neural architecture for the generator and
the discriminator. For instance, G and D can be implemented by MLPs [67], as originally
proposed in [140], CNNs (see Section 3.1), with some architectural constraints to stabilise
the training procedure [141], or LSTM (see Section 3.2.4) networks [142].
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3.6.2. Generative Adversarial Networks in Time Series Forecasting

In literature, there are two main approaches for using GANs in time series forecast-
ing: as data augmentation or as an end-to-end forecasting model. In the former case, GANs
generate synthetic time series in a given domain (e.g., financial or health-related time
series) in order to augment the original small data set. The augmented data set, with
both real and generated time series, is then used to train a traditional forecasting model,
e.g., a model based on an LSTM network. In the latter case, the forecasting model is a
GAN itself, and it generates future samples starting from previous ones and, eventually,
other exogenous inputs (In time series forecasting, a variable is said to be exogenous if it
is not a time series sample, but it can still affect the time series samples. For instance,
temperature may be an exogenous variable in rainfall time series forecasting) [143]. For
example, in [144] a GAN is firstly used to augment a building energy consumption data set
and then, an ensemble of five traditional predictive models is trained on such augmented
data set. In particular, to augment the data set, Conditional GANs (CGANs) [145] and
Information Maximising GANs (InfoGANs) [146] are compared with each other. Similarly,
in [147] COVID-19 epidemic data is generated by a custom GAN with an LSTM generator
and an MLP discriminator. Furthermore, a Transformer is used to make a forecasting model
trained on the GAN-augmented data set. Moreover, some GAN-based models have been
specifically developed for time series generation, e.g., QuantGAN [148], for financial time
series with long-term time dependencies, SynSigGAN [149], for continuous biomedical
signals, Recurrent Conditional GANs (RCGANs) [150], for medical data, TimeGAN [151], a
framework for domain-agnostic time series generation, Conditional Sig-Wasserstein GAN
(Sig-WCGAN) [152], and TTS-GAN [153], entirely based on Transformers. Some of the
aforementioned GANs, e.g., RCGAN, TimeGAN, Sig-WCGAN, are conditional GANs [145],
i.e, time series are not generated from only random noise but also conditioned on the real
time series and/or related information, e.g., exogenous inputs, for improving generated
time series quality. The use of conditional GANs is popular for end-to-end forecasting,
where the generated time series window, typically in the short-term future, is often con-
ditioned on previous samples and on other exogenous inputs (see [154–158]). Table 10
collects some works on GAN applications for time series forecasting.

Table 10. GAN applications on time series forecasting.

Ref. Year Application

[159] 2018 Stock market
[160] 2019 Traffic forecasting
[154] 2019 Lorenz/Mackey-Glass/Internet Traffic data
[161] 2019 Medicine expenditure
[162] 2019 Electricity load
[163] 2020 Stock price
[164] 2020 Long-term benchmark data sets (see Section 6.2)
[165] 2020 Soil temperature
[166] 2021 Stock market/Energy production/EEG/Air quality
[156] 2021 Internet Traffic data
[167] 2021 Store Item Demand/Internet Traffic/Meteorological data
[168] 2021 Wind power/Solar power
[144] 2021 Energy consumption
[169] 2021 Electricity load
[170] 2022 Trajectories forecasting

[147,155] 2022 COVID-19
[157,158] 2022 Photovoltaic power

[171] 2022 Building power demand
[172] 2023 Financial time series
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3.6.3. Diffusion Models

A new family of generative architectures are the diffusion models. They have been
showing cutting-edge performance in generating samples that reflect the observed data
in different domains, e.g., image generation, video generation, and text synthesis. Three
key formulations are used to develop diffusion-based approaches for short-term time
series applications: denoising diffusion probabilistic models (DDPMs) [173,174], score-
based generative models (SGMs) [175], and stochastic differential equations (SDEs) [176].
Diffusion models aim to approximate a generative process G that generates new samples
drawn from an underlying distribution q(x), given some observed data x from the same
distribution. To approximate G, in the forward process, a progressive injection of Gaussian
noises on the observed data is performed by the majority of diffusion models. Furthermore,
a reverse process is applied, by a learnable transition kernel, to reconstruct the original
data. Most diffusion models assume that, after a finite number of noise injection steps, q(x)
distribution of the observed data will become a Gaussian distribution. Therefore, the goal
of diffusion models is to find the probabilistic process P that approximates q(x) distribution
of original data from the Gaussian distribution. In this manner, any sample of Gaussian
distribution can be transformed by P into a new sample of q(x) distribution of observed
data x. The principle of diffusion models is to progressively perturb the observed data x
with a random noise by a forward diffusion process F before recovering the original data
using a backward reverse diffusion process B. A deep neural network is used in the B process
to approximate the amount of noise that must be removed in the denoising steps to recover
the original data. For the sake of readability, the theoretical foundations of diffusion models
and their main architectures are omitted in the section and moved in Appendix B, whereas
the diffusion models for short-term time series forecasting are described in the following
subsection.

3.6.4. Diffusion Models in Short-Term Time Series Forecasting

In recent years, several diffusion-based approaches for time series forecasting have
been proposed. They are based on the three predominant methods of diffusion model
described in Appendix B. The first prominent diffusion model architecture for time series
forecasting is TimeGrad [177], which is a DDPM variant. The forward process of TimeGrad
injects noises into data at each predictive sample, and then denoises gradually through the
backward process conditioned on previous time series samples. For encoding the previous
time series samples, TimeGrad uses an RNN architecture, e.g., LSTM (see Section 3.2.4) or
GRU (see Section 3.2.5), The objective function of TimeGrad is represented by a negative
log-likelihood, denoted as:

T

∑
t=t0

− log pθ(x0
t |ht−1), (24)

where [t0, T] is the prediction length. The Equation (24) can be reformulated considering the
lower bound:

Ek,x0
t ,ε[δ(k)||ε − εθ(

√
ãkx0

t +
√

1− ãkε, ht−1, k)||2]. (25)

The parameters θ are estimated during the training, minimising the negative log-likelihood
objective function with a stochastic sampling. Furthermore, future time series samples are
generated with a step-by-step procedure. The observation for the next samples at time
T + 1 is predicted in a similar way as DDPM (see Appendix B). Similarly, the ScoreGrad
model [178], based on the same target distribution of TimeGrad, defines a continuous
diffusion process using SDEs (see Appendix B). ScoreGrad consists of two modules: the
former is a feature extraction module (e.g., an RNN) almost identical to TimeGrad, or an
attention-based network, e.g., Transformer (see Section 4.1), for computing the hidden state
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ht of previous time samples, the latter is a conditional SDE-based score-matching module.
The objective function of ScoreGrad is computed as follows:

T

∑
t=t0

Lt(θ), (26)

with Lt(θ) being:

Ek,x0
t ,xk

t
[δ(k)||sθ(xk

t , ht, k) − ∇xk
t

log qok(xt|x0
t )||2]. (27)

It is worthwhile to remark that, in Equation (27), the general formulation of SDEs has been
used for the sake of simplicity. Recently, time series research has paid attention to avoiding
model overfitting phenomena in the forecasting of short time series. D3VAE [179], tries to
address the problem of short time series, applying a coupled diffusion process for time series
data augmentation, and then it performs a bidirectional autoencoder (BVAE), as a score model.
Moreover, D3VAE takes into account the decoupling of latent variables by reducing total
correlation to improve prediction interpretability and stability. Furthermore, the objective
function of D3VAE includes the mean square error (MSE), which highlights the requirement
of supervision, among the forecast and current samples in the prediction window. Unlike
TimeGrad, D3VAE injects noises separately into the previous samples (context) x0

1:t0−1 and
the prediction window x0

t0 :T by the coupled diffusion process:

xk
1:t0−1 =

√
ãkx0

1:t0−1 +
√

1− ãkε, (28)

xk
t0 :T =

√
ã′kx0

t0 :T +
√

1− ã′kε, (29)

where ε indicates the standard Gaussian noise. Short time series forecasting benefits the
simultaneous improvement of the context and prediction window provided by the diffusion
process. The B process is made up of two steps. The former forecasts xk

t0 :T with a BVAE
model, considering the context xk

1:t0−1. The latter denoises the output x̃k
t0 :T of BVAE with a

denoising score matching module, as follows:

xk
t0 :T ← x̃k

t0 :T − σ2
0∇x̃k

t0:T
E(x̃k

t0 :T ; e), (30)

where E(x̃k
t0 :T ; e) is the energy function. The objective function of D3VAE is composed of

four losses, that can be written as follows:

λ1DKL(q(xk
t0 :T ||pθ(x̃k

t0 :T)) + λ2LDSM + λ3LTC + LMSE, (31)

where λ1, λ2, λ3 are the regularisation parameters of divergence between target distribution and
distribution of prediction window, denoising score matching objective, and total correlation among
latent variables, respectively. Diffusion models for time series forecasting are summarised in
Table 11.

Table 11. Recent diffusion models for time series forecasting.

Ref. Year Model

[177] 2021 TimeGrad
[178] 2021 ScoreGrad
[180] 2022 DSPD
[179] 2022 D3VAE

4. Deep Learning Models for Long-Term Forecasting

In long-term forecasting, the skeleton of a time series can be approximated by using
the Transfomer architecture. Firstly, the original Transformer architecture (Section 4.1) is
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described and attention mechanisms are presented (Sections 4.1.1 and 4.1.2). Furthermore,
the main limitations of Transformers are discussed (Section 4.1.3) and variants of Transformer,
properly designed to cope with long-term time series forecasting tasks, e.g., Informer,
Autoformer, FEDFormer and Crossformer, are presented (Section 4.1.4).

4.1. Transformers

The Transformer [181] is a deep-learning architecture borrowed from Natural Lan-
guage Processing. It can be described as: “a model architecture eschewing recurrence and relying
entirely on attention mechanisms to draw global dependencies between input and output” [181].
The Transformer architecture was proposed to overcome the main drawbacks of recurrent
models (see Sections 3.2.2 and 3.2.6) with sequence modelling tasks:

1. The output state ht of a recurrent layer at time t depends on the state ht−1, produced
at the previous time step. This inherent sequential nature prohibits the intra-sequence
parallelism of recurrent networks.

2. Recurrent networks cannot generally learn relationships between sequences of distant
samples, since information must first pass through all data samples in between (see
Figure 8).

The standard Transformer follows a general encoder-decoder architecture for sequence-
to-sequence transduction, as shown in Figure 10.

In time series forecasting, the Transformer’s input is a time-ordered sequence of past
samplesX = [~x1,~x2, . . . ,~xL] where L is the sequence length and~xi ∈ Rd is the i-th sample of a
d-dimensional multivariate time series. Due to the use of attention mechanisms, Transformers
make no assumption on any intrinsic temporal or spatial ordering of input elements, namely
inputs are seen as a set of samples rather than ordered sequences of samples. If there is a
relevant input ordering for the modelling task, e.g., time series forecasting, the ordering
should be encoded in the input embedding. In Transformers, this is commonly achieved by
summing a positional embedding Epos to the main sample embedding F(X ) [181]:

input = F(X ) + Epos (32)

where the matrix (Differently from what appears in some machine learning papers, the
more precise tensor product notation is used in the whole work for representing matrices)
F(X ) ∈ RL ⊗RD represents a projection of the input sequence in a higher D-dimensional
space (D > d). In time series forecasting, a 1D convolutional layer is commonly used
with D learned kernels, as described in Section 3.1, in order to extract a D-dimensional
representation for each sample in X [181–184]. Epos can either be a learned embedding or
a fixed embedding. A naive solution, yet effective, consists of using a sinusoidal position
encoding [181]. However, in time series forecasting, other positional embeddings can be
used as well, e.g., temporal-based embeddings [182–184]. The encoder and the decoder can
have two different separated embeddings, or they can share the same embedding if input
and output samples belong to the same set. In time series forecasting, the encoder input is
the complete sequence of past samples X , while the decoder input is commonly composed
of the most recent part of X (e.g., the second half of X , i.e., [~xL/2,~xL/2+1, . . . ,~xL]) and a
zero-vector whose length is equal to prediction length P, see Equation (1). The encoder
and decoder are composed of Ne and Nd stacked layers, respectively (see Figure 10). The
output of a layer is the input for the next layer. Each encoder layer has two sublayers: a
self-attention layer, that relates each input sample with the rest of the samples, and a shallow
feed-forward dense layer, shared along the sequence axis, that works as a nonlinear projection
layer. To foster gradient propagation and training, each sublayer’s input is added to its own
output with a residual connection [185], and layer normalization [186] is used to normalise
the samples of the resulting sequence into a normal distribution with a learned mean and
standard deviation. Each decoder layer follows the same overall structure of a generic
encoder layer, but it has one additional sublayer. The first sublayer implements a particular
kind of self-attention mechanism, the so-called causal (or masked) self-attention [181]. It works
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similarly to the encoder layer’s self-attention, as each input sample is related to the others
in the decoder’s input sequence, but it also uses masking to prevent future samples from
being considered when the processing of the current sample occurs. Furthermore, the
output of the causal self-attention sublayer is related to the encoder’s hidden representation
(that is, the output of the final encoder layer) by a cross-attention layer. As in encoder layers,
a Multi-Layer Perceptron [67] with one hidden layer is used for projecting nonlinearly the
output of cross-attention. Moreover, each sublayer is wrapped by a residual connection
followed by layer normalization. Finally, the output of the last decoder layer is fed to a final
prediction layer.

xi,1 xi,2 xi,3 xi,L1
Encoder Input

Sequence

D-dimensional
Embedding Module

+Positional
Encoding

Ne
Encoder
Layers

Self-Attention

Add & Norm

Feed-Forward

Add & Norm

xi,1 xi,2 xi,3 xi,L2
Decoder Input

Sequence

D-dimensional
Embedding Module

+Positional
Encoding

Nd
Decoder
Layers

Causal
Self-Attention

Add & Norm

Feed-Forward

Add & Norm

Cross-Attention

Add & Norm

Dense Layer
softmax

Output Probabilities

K V Q K V Q

K V Q

Figure 10. Transformer architecture. On the left side, the encoder processes an input sequence,
producing a hidden representation. On the right side, the decoder uses the encoder’s output to generate
the output sequence. The decoder works in an autoregressive way, consuming past generated samples
as additional inputs to generate the next output sample.

4.1.1. Attention Mechanisms

The most important computational blocks of a Transformer are attention mechanisms,
that allow the model to focus its attention on specific parts of the input, depending on
the information being processed. Among various definitions of attention, Transformers
adopt the so-called scaled dot-product attention, which is very similar to multiplicative at-
tention [187]. Attention mechanisms operate on the following elements: a set of queries
Q ∈ RM ⊗RDk that represents the information being processed by the model, and sets of
keys K ∈ RN ⊗RDk and values V ∈ RN ⊗RDv , where Dk and Dv denote the dimension of
space where queries, keys and values are projected. Moreover, N denotes the cardinality of
both keys and values, while M is the cardinality of the input queries. The output Y for all
queries is computed as follows:

Y = Attention(K, V, Q) = softmax

(
QK>√

Dk

)
V (33)

The attention output Y ∈ RM ⊗RDv is a matrix whose i-th row contains the output vector
for the i-th query. Note that the softmax in Equation (33) is applied row-wise to its input
matrix. Where do these queries, keys and values come from? First of all, keys and values are often
the same vectors, i.e., a value vector coincides with its key. Furthermore, as described in
Section 4.1, the Transformer performs attention in two ways, self-attention and cross-attention.
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In self-attention, queries and values are the same vectors; in cross-attention queries come
from the previous decoder sublayer, while key and value vectors are given by the encoder’s
hidden representation.

4.1.2. Multi-Head Attention

Multi-Head Attention (MHA) is a more advanced version of the aforementioned scaled
dot-product attention. As discussed in [181], the scaled dot-product attention permits a
network to attend over a sequence. However, often there are multiple different aspects a
sequence element wants to attend to, and a single weighted average is not an adequate
option for it. This motivates the extension of the scaled dot-product attention to MHA,
which allows the model to jointly attend to information from diverse representation sub-
spaces, as shown in Figure 11.

MatMul

Scaling

Masking
(only for causal self-attention)

Softmax

MatMul

KQ V

Y

(a) Scaled dot-product attention.

KQ V

Project Project Project

Scaled Dot-Product Attention

Concatenation

Project

Y

H
Attention
Heads

(b) Multi-Head Attention with H heads.
Figure 11. Comparison of a single scaled dot-product attention (a) and multi-head attention with H
attention heads (b).

In MHA, keys, values and queries are linearly projected H separate times, by three
learned projection matrices, onto spaces of dimensions Dk, Dv and Dk respectively. Fur-
thermore, a scaled dot-product attention is applied to each of these projections and the
results are concatenated together and re-projected onto the previous layer space. Each
projection-attention pair defines a so-called attention head hi. For the sake of simplicity,
keys, values and queries are assumed to have the same dimension D. Each attention head
hi has three learned matrices: WK

i ∈ RD ⊗ RDk , WV
i ∈ RD ⊗ RDv and WQ

i ∈ RD ⊗ RDk ,
used to project keys, values and queries, respectively. Each attention head applies a scaled
dot-product attention (see Equation (33)) to the projected keys, values and queries (see
Section 4.1.1):

hi = Attention(KWK
i , VWV

i , QWQ
i ) ∀i ∈ [1, H] (34)

Finally, the attention output Y is given by:

Y = MHA(K, V, Q) = Concatenate(h1, h2, . . . , hH)Wo (35)

where the outputs hi from all attention heads are concatenated into a single RM ⊗RHDv

matrix and then re-projected linearly to the original D-dimensional space via an additional
projection matrix Wo ∈ RHDv ⊗RD.

4.1.3. Shortcomings of Transformers

There are three main shortcomings of Transformers. Firstly, Transformers are locally-
agnostic, that is, the scaled dot-product of the attention mechanism (see Equation (33)) is
insensitive to the local context, which can make the model prone to anomalies in time
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series forecasting [188]. Furthermore, Transformers suffer of memory bottleneck, i.e., Trans-
formers’ space complexity is O(L2) with sequence length L [188]. Similarly, Transformers
also have the same time complexity, limiting their application to the long-term forecast-
ing. These shortcomings are faced by some of the Transformer variants described in the
following section.

4.1.4. Transformer Variants for Time Series Forecasting

In recent years, many variants of the naive Transformer [181], specific for time series
forecasting, have been proposed. Key innovations that these variants suggest concern the
embedding layer, attention mechanisms and even the encoder-decoder structure. Most
of the literature focused on the design of alternative attention mechanisms that are more
suitable for time series forecasting tasks. One of the first such works is the LogTrans [188],
which handles two limitations of the traditional Transformer: locally-agnostic and memory
bottleneck (see Section 4.1.3). The former limitation is tackled using causal convolutions
(see Section 3.1.2) to generate keys and queries in the self-attention module. For the
latter, a log-sparse mask is considered in order to reduce the computational complexity (see
Section 4.1.3) of multi-head attention. Inspired by the idea of LogTrans, another variant, the
Informer [182], defines a new sparse measure to characterise a subset of the most informative
queries before applying attention. In addition, this strategy also allows for the reduction of
the computational complexity of attention mechanisms. Unlike LogTrans and Informer, the
Autoformer [183] replaces the standard scaled dot-product attention with an autocorrelation
mechanism. Additionally, a decomposition module is employed to break down the time series
into trend and seasonal components, assuming implicitly that they exist and are additive.
The autocorrelation mechanism measures the time-delay similarity between input signals
and aggregates the top-k similar sub-series to produce the output. The FEDformer [184],
based on the work of Linformer [189], applies attention to a low-rank approximation of the
input based on the Restricted Isometry Property (RIP) matrix theory [190]. First, it represents
the input signal into a frequency domain (either Fourier or Wavelet). Furthermore, it
achieves a linear complexity by applying simplified attention mechanisms on a randomly
selected subset of frequencies with a fixed size m. Recently, research efforts have moved
from attention mechanisms to input representation, specifically concerning how to relate
the dimensions of a multivariate time series and how to project the input sequence into a
latent representation. The patchTST [191] assumes channel independence, i.e., independence
among the dimension of the input multivariate time series, processing each dimension
as a univariate time series. PatchTST segments each input sequence into shorter, local
sub-sequences that are fed as input samples to a naive Transformer encoder [181]. All
time series dimensions are implicitly related via the sharing of the encoder weights. A
similar consideration is adopted by the Crossformer [192], which segments each dimension
of the input time series into non-overlapping shorter sub-sequences. Unlike patchTST,
however, the Crossformer explicitly defines the relations among all dimensions using a
Two-Stage Attention (TSA) mechanism. Furthermore, Crossformer follows a Hierarchical
Encoder-Decoder architecture, in which multiple layers of TSA are used to capture relations
at multiple time scales. Another relevant work is the Pyraformer [193], which proposes a
Pyramidal Attention Module (PAM) to capture long-term dependencies while achieving a
complexity that is linear in the sequence length. Essentially, PAM consists of applying the
classic scaled dot-product attention in a sparse fashion according to a pyramidal graph,
built using a cascade of strided convolutions, that defines a multi-scale representation
of the input sequence. According to PAM, each node of the graph is a query and it
can attend only those nodes (keys) that are its direct neighbours in the graph. In this
way, Pyraformer is able to capture both short-term and long-term dependencies while
still achieving a linear complexity. Similarly to Pyraformer, Scaleformer [194] addresses
the importance of multi-scale dependencies in time series forecasting. The approach is
orthogonal to many time series Transformers and, as such, it has been empirically evaluated
with some of the aforementioned models like the Autoformer [183] and the FEDformer [184].
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Given an input past sequence and the corresponding target sequence, the main idea is to
apply one of the above-mentioned Transformer models, multiple times at multiple time
scales. At a given scale si, the input to the encoder is the original look-back window but
downsampled by a factor si using average pooling; the input to the decoder is given by the
model forecast at the previous scale si−1, but upsampled by a fixed factor s through linear
interpolation. To mitigate error propagation and distribution shifts that are due to repeated
upsampling operations, the encoder and decoder’s inputs are first normalised using Cross-
Scale Normalization. Finally, a loss function, based on an adaptive loss, is applied at each
time scale between the model forecast and the target sequence, which is also downsampled
by a factor si via average pooling. The Triformer [195] proposes a particular architecture that
integrates attention mechanisms and recurrent units to ensure high efficiency and accuracy.
The former is achieved by a patch attention mechanism with linear complexity; the latter is
obtained by using variable-specific parameters. The patch attention mechanism splits the input
sequence in P patches of length S and assigns a learnable pseudo-timestamp Tp to each patch.
When patch attention is applied, each pseudo-timestamp Tp is considered as a query Q for its
patch only. Moreover, variable-specific parameters are introduced by factorising the projection
matrices (i.e, WK and WV) into three matrices: left variable-agnostic matrix L ∈ RD ⊗Ra,
middle variable-specific matrix B ∈ Ra ⊗Ra and right variable-agnostic matrix R ∈ Ra ⊗RD,
where a � D. Finally, to cope with the limited temporal receptive field that is due to
the patch mechanism, recurrent units are used to aggregate and control the information
for all pseudo-timestamps of each layer before the final prediction. All above-mentioned
variants of Transformer share the over-stationarization problem that consists in the inability
to generate distinguishable attention scores when trained on stationarized series [196]. The
Non-stationary Transformer [196] proposes a generic framework to overcome the problem of
over-stationarization. This framework is composed of two interdependent modules: Series
Stationarization and De-stationary Attention. The former attenuates the non-stationarity of
the time series considered, using two sequential operations: Normalization module, which
computes the mean and the variance for each input time series in order to transform it
into a stationary time series, and a De-normalization module, which transforms the model
outputs back into a non-stationary time series, using the mean and variance computed in
the previous module. The latter is a novel attention mechanism, which can approximate
the attention scores that are obtained without stationarization and discover the particular
temporal dependencies from original non-stationary data. Transformer variants for time
series forecasting are described in detail in Table 12. Further details on each Transformer
variant, can be found in the original paper that presents the architecture.

Table 12. Recent variants of Transformer architecture for time series forecasting.

Ref. Year Model

[188] 2019 LogTrans
[182] 2021 Informer
[183] 2021 Autoformer
[184] 2022 FEDFormer
[193] 2022 Pyraformer
[195] 2022 Triformer
[196] 2022 Non-stationary Transfomers
[191] 2023 PatchTST
[192] 2023 Crossformer
[194] 2023 Scaleformer

Table 13 reports an extensive comparison among all aforementioned Transformer
variants. It has to be noted that, the reported results were collected from the original papers
that tested a given model on a given data set (the reader can refer to the GitHub pages
linked in the original papers of each architecture for reproducing the experiments, using
the original experimental setups).
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Table 13. Multivariate long-term forecasting benchmarks among variant of Transformer architectures with different prediction lengths P ∈ [96, 192, 336, 720]. The
input length considered for ILI data set is 36 and 96 for the others. A lower MSE or MAE indicates a better prediction. The best results, for each data sets, are
highlighted in bold.

Models Crossformer PatchTST Non-Stationary Pyraformer FEDFormer Autoformer Informer LogTrans LSTM TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 - - 0.149 0.198 0.173 0.223 0.354 0.392 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.369 0.406 0.615 0.589
192 - - 0.194 0.241 0.245 0.285 0.673 0.597 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.416 0.435 0.629 0.600
336 0.495 0.515 0.245 0.282 0.321 0.338 0.634 0.592 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652 0.455 0.454 0.639 0.608
720 0.526 0.542 0.314 0.334 0.414 0.410 0.942 0.723 0.403 0.482 0.419 0.428 1.059 0.741 0.869 0.675 0.535 0.520 0.639 0.610

Tr
af

fic

96 - - 0.360 0.249 0.612 0.338 0.684 0.393 0.562 0.349 0.613 0.388 0.719 0.391 0.684 0.384 0.843 0.453 1.438 0.784
192 - - 0.379 0.256 0.613 0.340 0.692 0.394 0.562 0.346 0.616 0.382 0.696 0.379 0.685 0.390 0.847 0.453 1.463 0.794
336 0.530 0.300 0.392 0.264 0.618 0.328 0.699 0.396 0.570 0.323 0.622 0.337 0.777 0.420 0.733 0.408 0.853 0.455 1.479 0.799
720 0.573 0.313 0.432 0.286 0.653 0.355 0.712 0.404 0.596 0.368 0.660 0.408 0.864 0.472 0.717 0.396 0.500 0.805 1.499 0.804

El
ec

tr
ic

it
y 96 - - 0.129 0.222 0.169 0.273 0.498 0.299 0.183 0.297 0.201 0.317 0.274 0.368 0.258 0.357 0.375 0.437 0.985 0.813

192 - - 0.147 0.240 0.182 0.286 0.828 0.312 0.195 0.308 0.222 0.334 0.296 0.386 0.266 0.368 0.442 0.473 0.996 0.821
336 0.323 0.369 0.163 0.159 0.200 0.304 1.476 0.326 0.212 0.313 0.231 0.338 0.300 0.394 0.280 0.380 0.439 0.473 1.000 0.824
720 0.404 0.423 0.197 0.290 0.222 0.321 4.090 0.372 0.231 0.343 0.254 0.361 0.373 0.439 0.283 0.376 0.980 0.814 1.438 0.784

IL
I

24 3.041 1.186 1.319 0.754 2.294 0.945 5.800 1.693 2.203 0.963 3.483 1.287 5.764 1.677 4.480 1.444 5.914 1.734 6.624 1.830
36 3.406 1.232 1.579 0.870 1.825 0.848 6.043 1.733 2.272 0.976 3.103 1.148 4.755 1.467 4.799 1.467 6.631 1.845 6.858 1.879
48 3.459 1.221 1.553 0.815 2.010 0.900 6.213 1.763 2.209 0.981 2.669 1.085 4.763 1.469 4.800 1.468 6.736 1.857 6.968 1.892
60 3.640 1.305 1.470 0.788 2.178 0.963 6.531 1.814 2.545 1.061 2.770 1.125 5.264 1.564 5.278 1.560 6.870 1.879 7.127 1.918

ET
T

m
2 96 - - 0.166 0.256 0.192 0.274 0.409 0.488 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 2.041 1.073 3.041 1.330

192 - - 0.223 0.296 0.280 0.339 0.673 0.641 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 2.249 1.112 3.072 1.339
336 - - 0.274 0.329 0.334 0.361 1.210 0.846 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 2.568 1.238 3.105 1.348
720 - - 0.362 0.385 0.417 0.413 4.044 1.526 0.421 0.415 0.422 0.419 3.379 1.388 3.048 1.328 2.720 1.287 3.153 1.354
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5. Other Relevant Deep Learning Models

This section is reserved for those works that propose interesting architectures for
short-term and long-term time series forecasting which do not fit the previously defined
categories. Even though these models might share the same building blocks of well-known
architectures (e.g., CNN, TCN, RNN, Transformer), due to their peculiarity and hetero-
geneity it has been decided to collect them under a proper section. In [197] a Continuous
Recurrent Unit (CRU) based on stochastic differential equations (SDEs) and Kalman filters,
that can handle irregularly sampled time series, is proposed. The FiLM (Frequency-improved
Legendre Memory) model [198] generates a representation of past time series samples by
Legendre projections. It uses a noise reduction module based on Fourier analysis to preserve
only relevant information from previous time samples, reducing the effect that noisy signals
can have on time series forecasting. In [199], it shows how a time series forecasting model
fully based on MLP can compare competitively with state-of-the-art Transformer models
(e.g., PatchTST [191]), reducing, in this way, the forecasting computational cost. In detail, it
proposes an adaption (TSMixer) of MLP-Mixer, originally proposed for the vision domain,
for time series forecasting. A convolution-based architecture, MICN (Multi-scale Isometric
Convolution Network) [200], can discover local patterns and global correlations in time series
by using a multi-branch structure and relying on downsampled 1D convolutions to extract local
features and isometric convolutions, a particular case of causal convolution (see Section 3.1.2),
to discover global correlations. Table 14 summarises the aforementioned models.

Table 14. Recent applications on time series forecasting using other deep learning architectures.

Ref. Year Application

[197] 2022 Climate data/Electronic Health Records
[198] 2022 Long-term benchmark data sets (see Section 6.2)

[199,200] 2023 Long-term benchmark data sets (see Section 6.2)

6. Benchmarks for Time Series Forecasting

Recently, a group of time series have emerged as benchmarks for assessing the perfor-
mance of machine learning models in time series forecasting tasks. This section describes
the most relevant benchmarks for both short and long-term forecasting.

6.1. Benchmarks for Short-Term Forecasting

Among several different data sets used for short-term forecasting, the most popular
ones are described in Table 15. It is worth quoting the M4 data set [44], proposed in 2020 for
the homonymous M4 competition as a common benchmark for evaluating the performance
of short-term forecasting models. The M4 data set contains 100.000 time series subdivided
according to their data frequency into six groups: M4-Yearly, M4-Quarterly, M4-Monthly,
M4-Weekly, M4-Daily and M4-Hourly. Furthermore, time series are also categorised into six
domains, namely, Demographic, Finance, Industry, Macro, Micro and Other. Some insights on
how time series are distributed into these categories are given in Figure 12.

Table 15. Short-term forecasting data sets. The column Dim refers to the dimensionality of time series.

Dataset Dim Data Type (Real/Synthetic)

M4-Yearly [44] 1 Real
M4-Quarterly [44] 1 Real
M4-Monthly [44] 1 Real
M4-Weekly [44] 1 Real
M4-Daily [44] 1 Real

M4-Hourly [44] 1 Real
Mackey-Glass [201] 1 Synthetic

DatasetA [202] 1 Real
DSVC1 [203] 1 Real

Paris-14E [204] 1 Real
DatasetD [205] 1 Synthetic
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M4-Monthly	data	set

Demographic:	5728	-	11.9%

Finance :	10987 	-	22.9%

Industry:	10017 	-	20.9%

Macro:	10016	-	20.9%

Micro:	10975	-	22.9%

Othe r:	277 	-	0.6%

Demographic Finance Industry Macro Micro Other
meta-chart.com

(a) M4-Monthly data set composition.

M4-Yearly	data	set

Demographic:	1088	-	4 .7%

Finance :	6519	-	28.3%

Industry:	3716	-	16.2%Macro:	3903	-	17 .0%

Micro:	6538	-	28.4%

Othe r:	1236	-	5.4%

Demographic Finance Industry Macro Micro Other
meta-chart.com

(b) M4-Yearly data set composition.
Total	M4	competition	data	sets

M4-Yearly:	23000	-	23.0%

M4 -Quarte rly:	24000	-	24 .0%

M4 -Monthly:	48000	-	48.0%

M4 -Weekly:	359	-	0.4%

M4 -Daily:	4227 	-	4 .2%

M4 -Hourly:	414 	-	0.4%

M4-Yearly M4-Quarterly M4-Monthly M4-Weekly M4-Daily
M4-Hourly

meta-chart.com

(c) M4-Competition data set composition.
Figure 12. Composition of the M4 data set. (a,b) show, respectively, the distribution of M4-Monthly
and M4-Yearly time series into the six M4 categories. (c) shows the number of time series in each of
the M4 data sets.

6.2. Benchmarks for Long-Term Forecasting

Nowadays, a group of specific data sets has become the de-facto benchmark [183] to
assess long-term forecasting accuracy of all Transformer variants presented in Section 4.1.4.
In detail, this benchmark is composed of nine multivariate time series data sets concerning
the following domains: electricity, transportation, weather, exchange rate and illness (see
Table 16). Time resolution can vary from 10 min up to 7 days.

Table 16. Long-term forecasting benchmark data sets. The data set size (·, ·, ·) refers to the car-
dinality of training, validation and test set, respectively. The columns dim, pred len and time res
refer to the dimensionality of time series, the number of predicted future samples and the time
resolution, respectively.

Dataset Dim Pred Len Dataset Size Time Res Domain

ETTm1 7 [96,192,336,720] (34,465, 11,521, 11,521) 15 mins Electricity
ETTm2 7 [96,192,336,720] (34,465, 11,521, 11,521) 15 mins Electricity
ETTh1 7 [96,192,336,720] (8545, 2881, 2881) 15 mins Electricity
ETTh2 7 [96,192,336,720] (8545, 2881, 2881) 15 mins Electricity

Electricity 321 [96,192,336,720] (18,317, 2633, 5261) 1 h Electricity
Traffic 862 [96,192,336,720] (12,185, 1757, 3509) 1 h Transport

Weather 21 [96,192,336,720] (36,792, 5271, 10,540) 10 mins Weather
Exchange 8 [96,192,336,720] (5120, 665, 1422) 1 day Finance

ILI 7 [24,36,48,60] (617, 74, 170) 1 week Illness

7. Conclusions

The paper has reviewed deep learning architectures for time series forecasting, un-
derlining their advances. Nevertheless, four major problems remain open. The first one
resides in the inability of most deep learning methods, with the exception of Deep Gaussian
Processes, to estimate a confidence interval for the time series prediction. In principle, all
deep learning architectures quoted in the survey can be properly modified using Bayesian
training strategies [206] in order to provide the uncertainty of the model prediction, but, to
the best of our knowledge, it has not been performed yet. The second problem resides in
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the development of more and more complex deep learning architectures. This makes them
subject to overfitting, a problem that can hardly be faced by deep learning architectures.
Therefore, the development of deep learning architectures for time series forecasting that
are robust w.r.t. overfitting is becoming more and more relevant. The third problem consists
in the need for adequately long time series. In particular, some deep learning architectures,
e.g., Transformers, require the estimation of millions of parameters, implying, in this way,
the necessity of adequately long time series for estimating them. The problem seems to
be partially addressed by data augmentation but the proposed solutions are not fully
adequate, yet. Finally, the last problem emerges in most of the reviewed deep learning
models. They assume the dynamical stationarity of time series, implying that the dynamic
system generating time series is stationary over time. When the aforementioned assump-
tion is violated, a concept drift phenomenon [207] in time series is observed, consequently
leading to a dramatic decrease in the prediction accuracy of deep learning models for time
series forecasting.
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Appendix A. Table of Mathematical Expressions

In Appendix A, the table of the most frequent mathematical expressions and operations
is provided. Table A1 provides a description for each mathematical operation.

Table A1. Table of the most commonly used mathematical operations with their respective description.

Symbol Definition

Y = w ∗ X Convolution between a kernel w and a sequence X . The result is a new sequence Y .

~y = ~u�~v Element-wise product between two vectors ~u and ~v. The result is a vector ~y such
that yi = uivi.

V ⊗W Tensor product between two vectors V and W, the result is a matrix.

I The Identity matrix.

Appendix B. Diffusion Models

In this section, the most relevant diffusion models, i.e., DDPMs (Appendix B.1), SGMs
(Appendix B.2) and SDEs (Appendix B.3), and foundations, are described.

Appendix B.1. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models, originally proposed in [173] and later extended
in [174], consider two Markov chains for forward and backward process, respectively, to
approximate the generative process of observed data. In detail, let the original noiseless data
be x0. The forward Markov chain projects x0 into a sequence of noised data x1, x2, . . . , xK

with a diffusion transition kernel:

q(xk|xk−1) = N (
√

akxk−1, (1− ak)I), (A1)
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where K is the finite number of noise level of forward process, ak ∈ (0, 1) for k = 1, 2, . . . , K
are hyperparameters indicating the variance of the noise level at each step, N (·, ·) is the
Gaussian distribution, and I is the identity matrix. The Gaussian transition kernel q(·|·)
has a fundamental property that allows obtaining xk directly from original sample x0:

q(xk|x0) = N (
√

ãkx0, (1− ãk)I), (A2)

where ãk = ∏k
i=1 ai. In DDPM, the reverse transition kernel pθ(·|·) is designed by a deep

neural network:
pθ(xk−1|xk) = N (µθ(xk, k), Σθ(xk, k)), (A3)

where θ indicates learnable parameters of deep neural networks. In order to compute the
parameters θ such that samples estimated by pθ(x0) are almost identical to observed data
x0, a maximum likelihood estimation method is performed, minimising the variational lower
bound of the estimated negative log-likelihood E[− log pθ(x0)]:

E[− log pθ(x0)] = Eq(x0:K)

[
− log p(xK) −

K

∑
k=1

log
pθ(xk−1|xk)

q(xk|xk−1)

]
, (A4)

where x0:K indicates the sequence x0, . . . , xK. A simpler objective function [174] can be
provided, as follows:

Ek,x0,ε[δ(k)||ε − εθ(
√

ãkx0 +
√

1− ãkε, k)||2], (A5)

assuming the covariance matrix equal to Σθ(xk, k) = σ2
k I, where σ2

k controls the noise level

and may vary at different reverse steps, and δ(k) = (1−ak)
2

2σ2
k ak(1−ãk)

.

Appendix B.2. Score-Based Generative Models

Score-based generative models (SGMs) [175], are made up of two modules. The former is
the score matching module [208], for estimating the unknown target distribution q(x) with the
Stein score approximation, ∇x log q(x), by means of a score-matching network (e.g., denoising
score matching [209], slided score matching [210]). The latter is the annealed Langevin dynamics
(ALD), that is a sampling algorithm generating samples with an iterative Langevin Monte
Carlo process at each update step. The fundamental idea behind denoising score matching is
to process the observed data x0 with the forward transition kernel q(xk|x0) = N (x0, σ2

k I), and
to estimate jointly the Stein scores for the noise density distributions qσ1(x), qσ2(x), . . . , qσk (x).
In this case, the Stein score for noise density function qσk (x) is ∇x log qσk (x). Hence, a neural
network sθ(x, σx), with learnable parameters θ, can approximate the Stein score. The initial
objective function is therefore given by:

Ek,x0,xk [δ(k)||sθ(xk, k) − ∇k
x log qσk (xk)||2]. (A6)

Subsequently, the ALD algorithm is used for the sampling phase. The algorithm is
initialised with a sequence of increasing noise levels σ1, . . . , σK and a starting sample
xK,0 ∼ N (0, I). For k = K, K− 1, . . . , 0, xk is updated with N iterations that compute:

z← N (0, I) (A7)

xk,n ← xk,n−1 +
1
2

ψksθ(xk,n−1, σk) +
√

ψkz, (A8)

where n = 1, . . . , N and ψk represent the step of update.
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Appendix B.3. Stochastic Differential Equations

As described in Appendices B.1 and B.2, both DDPMs and SGMs models define a
discrete forward process, considering N iterations of diffusion steps. In order to define a
continuous diffusion process, a solution based on stochastic differential equations (SDEs) [176]
has been proposed. Since both DDPMs and SGMs are discrete forms of SDEs, the SDEs
formulation can be considered as an extension of the aforementioned two definitions.
Therefore, the backward process is modelled as a time-reverse SDE (see Equation (A10)), and
the samples can be generated by solving time-reverse SDE. A general expression of SDE is
defined as follows:

dx = f (x, k)dk + g(k)dw, (A9)

and the time-reverse SDE [211] is:

dx = [ f (x, k) − g(k)2∇x log qk(x)]dk + g(k)dw̃, (A10)

where w and w̃ are standard Wiener processes [212]. It can be proved [176] that the sampling
from the probability flow ordinary differential equations (ODE) yields the same distribution of
the time-reverse SDE:

dx = [ f (x, k) − 1
2

g(x)∇x log qk(x)]dk, (A11)

where f (x, k) and g(k) are the drift and diffusion coefficients for the diffusion process, re-
spectively, and ∇x log qk(x) is the Stein score that can be learned with similar methods as
in SGMs (see Appendix B.2). At this point, it can observed that the DDPMs can be refor-
mulated in terms of SDEs, that generally known as variance preserving (VP) SDE [176]. The
same reformulation can be done for the forward process of SGMs, where the corresponding
SDE is known as variance exploding (VE) SDE [176]. After having learned the score model
sθ(x, k), the samples are generated by solving the time-reverse SDE or the probability flow
ODE with ALD techniques.
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