
Citation: AlShalaan, M.R.; Fati, S.M.

Enhancing Organizational Data

Security on Employee-Connected

Devices Using BYOD Policy.

Information 2023, 14, 275. https://

doi.org/10.3390/info14050275

Academic Editors: Moutaz Alazab

and Ammar Alazab

Received: 30 March 2023

Revised: 30 April 2023

Accepted: 3 May 2023

Published: 5 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Enhancing Organizational Data Security on Employee-Connected
Devices Using BYOD Policy
Manal Rajeh AlShalaan * and Suliman Mohamed Fati

College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia;
sgaber@psu.edu.sa
* Correspondence: 221421246@psu.edu.sa

Abstract: To address a business need, most organizations allow employees to use their own devices
to enhance productivity and job satisfaction. For this purpose, the Bring Your Own Device (BYOD)
policy provides controllable access for employees to organize data through their personal devices.
Although the BYOD practice implies plenty of advantages, this also opens the door to a variety of
security risks. This study investigates these security risks and proposes a complementary encryption
approach with a digital signature that uses symmetric and asymmetric algorithms, depending on
the organization’s digital certificate, to secure sensitive information stored in employees’ devices
within the framework of BYOD policies. The method uses Advanced Encryption System (AES),
Blowfish, RSA and ElGamal with a digital signature to achieve strong encryption and address
critical security considerations such as user authentication, confidentiality and data integrity. The
proposed encryption approach offers a robust and effective cryptographic solution for securing
sensitive information in organizational settings that involve BYOD policies. The study includes
experimental results demonstrating the proposed approach’s efficiency and performance, with
reasonable encryption and decryption times for different key and file sizes. The results of the study
revealed that AES and Blowfish have the best execution time. AES has a good balance of security
and performance. RSA performs better than ElGamal in encryption and signature verification, while
RSA is slower than ElGamal in decryption. The study also provides a comparative analysis with
previous studies of the four encryption algorithms, highlighting the strengths and weaknesses of
each approach.

Keywords: BYOD; AES; RSA; ElGamal; blowfish; digital signature; encryption; security

1. Introduction

Organizations widely deploy rapidly evolving technologies that provide significant
benefits but expose them to cyber-attacks due to employees connecting their devices to
the information system. A key concern for modern organizations is protecting their assets
against such attacks, particularly when safeguarding corporate data that are critical to their
functions. Over time, the insecure storage of such data can negatively affect confidentiality,
leading to financial losses and reputational damage for the organizations [1]. Organizations
invest heavily in acquiring the latest hardware and software technologies with high-security
standards to prevent such security breaches. Still, some underestimate the true nature
of cybersecurity attacks, which limits the adoption of advanced security measures [1].
Common devastating cyber-attacks involve employee negligence and limited information
on the best cybersecurity practices [2]. In particular, the traversal of organizational data
to employees’ devices is the primary source of data breaches, compromising the entire
system’s security. Therefore, securing organizational data by addressing this issue is very
critical. Most organizations adopt Bring Your Own Device (BYOD) policies, and they
should prioritize the security of devices connected to their systems.

Information 2023, 14, 275. https://doi.org/10.3390/info14050275 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14050275
https://doi.org/10.3390/info14050275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-6969-2338
https://doi.org/10.3390/info14050275
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14050275?type=check_update&version=1

Information 2023, 14, 275 2 of 20

BYOD is a widespread practice where employees use their personally owned devices,
including laptops and smartphones, for work purposes [3,4]. It offers several benefits, such
as increased mobility, flexibility, productivity and employee satisfaction. Most organiza-
tions have implemented information security policies to address the underlying security
risks, but employee compliance can be an issue [3]. According to a survey by Bitglass,
69% of companies permit their employees to work with their own devices to complete
their business work [5]. The security risks associated with BYOD are consistent with a
BYOD policy compliance report by Palanisamy et al., which revealed that around 21% of
organizations suffered a security breach due to mobile devices connecting to malicious
Wi-Fi hotspots [3]. In 2021, LinkedIn experienced a data leak affecting approximately
500 to 700 million user accounts [6]. Although BYOD implies plenty of advantages, this
also opens the door to various security risks, including data contamination and leakage,
which can be costly financially and reputation-wise [3]. One of the leading security risks is
that BYOD does not consider the security of the downloaded data in employees’ devices [7],
making the policy vulnerable to attacks and data breaches. Given that the storage space
of these devices has a mixture of personal information and sensitive data and documents
stored during the employees’ work on the system, such stored data might be vulnerable to
many threats that endanger the safety of user data storage, such as physical and malware
attacks [8]. Therefore, the need to secure the stored data on employees’ devices becomes a
critical issue, which is the focus of this paper.

This study aims to enhance an organizational system’s security by implementing
additional security measures on employees’ devices that are authorized to access and store
sensitive corporate data. This security approach involves encrypting the download of
company documents using the encryption algorithm in the organization’s digital certificate.
This encryption process must be applied as a mandatory requirement to enforce BYOD
policies. The proliferation of BYOD adoption in organizations has not adequately con-
sidered the associated security risks of downloaded data. The study focuses on reducing
the risk of corporate data breaches by securing downloaded data on employees’ devices
through encryption, thus protecting organizations’ privacy. It emphasizes the vulnerability
of organizational data stored on employees’ devices, which can be exposed to attacks and
data breaches. The proposed complementary encryption algorithms, such as Advanced
Encryption System (AES), RSA, ElGamal and Blowfish, enhance BYOD security and protect
corporate data on employee-connected devices. Additionally, this paper highlights the
need for organizations to comply with the Essential Cybersecurity Controls established by
the National Cybersecurity Authority to ensure the confidentiality, integrity and availabil-
ity of an organization’s information and technology assets. The following objectives are
instrumental in achieving the goal of this study:

1. Propose an encryption algorithm that runs on the user’s device upon downloading.
2. Build an encryption key generator that is centrally under the organization’s control

and will manage the encryption keys for the devices connected to the system.
3. Evaluate the proposed model to ensure security according to predefined criteria (key

length, file size).

The remainder of the present study is structured as follows: Section 2 comprises
a comprehensive review of the relevant literature about the topic under investigation.
Section 3 expounds on the research methodology adopted and the proposed approach
for the complementary encryption algorithm. Section 4 presents experimental results.
Section 5 elaborates on the discussion and findings, encompassing a comparative analysis.
Section 6 summarizes the paper, culminating in a conclusive statement that encapsulates
its critical discoveries.

Information 2023, 14, 275 3 of 20

2. Related Work

The prevalence of technology adoption by enterprises in adherence to achieving opti-
mal productivity, flexibility and end-user satisfaction has influenced the need to embrace
BYOD, which allows employees to use their personal smart devices to access an orga-
nization’s data and applications. The BYOD model has positively impacted creativity,
communication and cohesion, increasing productivity and performance.

Despite its numerous benefits, the BYOD model has left enterprises susceptible to
many cyber threats, which include data breaches, data manipulation and a lack of user au-
thentication. As a result, multiple security concerns may emerge, such as malware, viruses,
Trojans, data leaks and data manipulation [9,10]. All of these issues lead to the high cost of
maintaining BYOD devices across respective network architectures [11,12]. Experienced
and privileged user employees pose immense internal threats and risks [3]. They possess
the ability to maliciously sabotage digitized transactions, and in other instances, they be-
come victims of phishing and related social engineering attacks. About 75% of respondents
indicated a vacuum in organizational requirements and mandates requiring the need to
conduct security protocols and measures [3]. Although the BYOD model has multiple
benefits, it remains sensitive to data privacy and confidentiality caused by cyber-attacks [8].
Consequently, commercial institutions must protect their digital systems from threat actors
and related consequences. Apart from implementing basic training and programs to elimi-
nate ignorance among unsuspecting end-users, this paper emphasizes that corporations
should focus on technical countermeasures to mitigate and avoid cyber-attacks.

Cryptography is the most viable tool for providing network security based on its
ability to uphold privacy, authenticity and integrity. Encryption algorithms facilitate
data transformation through mathematical formulas and prevent unauthorized users from
accessing private and sensitive data [13]. There are three types of cryptosystems: symmetric
(private key), asymmetric (public key) and hash functions [12,14]. The commonly used
symmetric algorithms are AES, DES, 3DES and chaos cryptology, whereas RSA is the
most-used asymmetric algorithm [15]. In symmetric algorithms, the sender and receiver
share a common key, whereas asymmetric systems entail two keys. One key is publicly
known (aka public key), and only the receiver knows the second one (aka private key).
Given that symmetric algorithms use similar keys, they are less complex than asymmetric
cryptography and are a hundred times faster [16]. Symmetric keys are suitable for ensuring
the safety of organizational devices and stored data [17]. They have the primary objective
of upholding the privacy and confidentiality of the communication channels. However,
asymmetric keys are instrumental in implementing encrypted data transfers even when
both parties cannot acquire a symmetric key in a private algorithm [17]. The length of
asymmetric keys corresponds directly to their security strength and performance; the
higher the key length, the more difficult discovering the key becomes, and implicitly, the
performance reduces [18]. Thus, the level of security strength needed will be based on the
sensitivity of the encrypted data [19].

There are different types of symmetric and asymmetric cryptosystems, and they have
unique contributions to securing digital systems through encryption. In the following
subsections, we will explain some of the relevant cryptography algorithms, which are the
focus of this study.

2.1. Advanced Encryption System

AES is a private key encryption algorithm that secures data and communication
channels. AES attains encryption through permutations, substitutions, mixing and key-
adding [17]. It is the fastest encryption algorithm, capable of encrypting 1500 KB files in
less than a second while consuming the lowest energy levels [13]. AES was suggested to
have better performance than other algorithms such as RSA, DES and hashing, where AES
has the lowest time complexity [20,21]. AES could be used to mitigate DoS attacks on IoT
or other devices [22]. AES operates on fixed data block lengths of 128 bits and incorporates

Information 2023, 14, 275 4 of 20

the substitution and permutation structure. The AES protects network systems against
differential, linear, statistical and brute-force attacks [16].

AES encryption–decryption processes are mainly done in rounds, and each one con-
tains four basic stages as follows:

I. ShiftRows ‘permutation stage’
II. Byte Substitute ‘substitution stages’
III. MixColumn ‘substitution stages’
IV. AddRundKey ‘substitution stages’

Figure 1 represents the AES algorithm flow chart [23].

Information 2023, 14, x FOR PEER REVIEW 4 of 21

on IoT or other devices [22]. AES operates on fixed data block lengths of 128 bits and

incorporates the substitution and permutation structure. The AES protects network sys-

tems against differential, linear, statistical and brute-force attacks [16].

AES encryption–decryption processes are mainly done in rounds, and each one

contains four basic stages as follows:

I. ShiftRows ‘permutation stage’

II. Byte Substitute ‘substitution stages’

III. MixColumn ‘substitution stages’

IV. AddRundKey ‘substitution stages’

Figure 1 represents the AES algorithm flow chart [23].

Figure 1. AES algorithm flow chart [23].

2.2. Blowfish Algorithm

The Blowfish algorithm is a symmetric key synonymous with good performance

and outstanding optimization of the hardware and software applications. Blowfish is

highly competent in encrypting large data files [16]. The Blowfish algorithm is faster

than AES when handling image, audio, video and other data types in terms of pro-

cessing time but uses similar or less memory [16,24]. Consequently, Blowfish uses less

processing power, making its performance optimal. However, the blowfish algorithm is

less secure than other cryptosystems [16].

The Blowfish algorithm works with varying lengths not greater than 449 bits and a

64-bit block with 16 rounds, as presented in Figure 2 [13].

Figure 1. AES algorithm flow chart [23].

2.2. Blowfish Algorithm

The Blowfish algorithm is a symmetric key synonymous with good performance and
outstanding optimization of the hardware and software applications. Blowfish is highly
competent in encrypting large data files [16]. The Blowfish algorithm is faster than AES
when handling image, audio, video and other data types in terms of processing time but
uses similar or less memory [16,24]. Consequently, Blowfish uses less processing power,
making its performance optimal. However, the blowfish algorithm is less secure than other
cryptosystems [16].

The Blowfish algorithm works with varying lengths not greater than 449 bits and a
64-bit block with 16 rounds, as presented in Figure 2 [13].

Information 2023, 14, 275 5 of 20Information 2023, 14, x FOR PEER REVIEW 5 of 21

Figure 2. Blowfish algorithm flow chart [25].

2.3. RSA Algorithms

RSA is an asymmetric cryptosystem that utilizes two separate keys for decrypting

and encrypting data files. The keys entail private and public keys, whereby the former

decrypts the data while the latter encrypts files. Based on its capitalization on factorizing

large prime numbers in key generation, it has formidable security systems compared to

other asymmetric algorithms [17]. The generation of keys based on the factorization of

big prime numbers culminates in a larger encryption time for available datasets. Fur-

thermore, a larger time is also needed to decrypt the files, making RSA the slowest

among the algorithms [16]. Its complexity requires the double memory used by other

symmetric algorithms such as AES and Blowfish. However, RSA is efficient in offering a

high degree of confidentiality and beats ElGamal in most performance metrics [26].

RSA key generation can be used to produce public and private key pairs by follow-

ing the steps below [27]:

I. p and q are prime numbers. Then, we calculate the modulus n = pq.

II. Choose a substantial prime number (r) to produce (p 1) (q1); r will be the public

exponent.

III. Use the result of (rs − 1)/((p − 1) (q − 1)) to find a number s. s will be the private ex-

ponent.

IV. The public key will be (n, r). Although n and r are public, knowing r from n and s

is computationally not possible except if p and q are not large enough.

V. For encrypting message m, the cipher text C will be generated using the equation

C = mr mod (n)

VI. To decrypt the cipher text, the following equation will be used: m = c5 mod(n).

Figure 2. Blowfish algorithm flow chart [25].

2.3. RSA Algorithms

RSA is an asymmetric cryptosystem that utilizes two separate keys for decrypting and
encrypting data files. The keys entail private and public keys, whereby the former decrypts
the data while the latter encrypts files. Based on its capitalization on factorizing large
prime numbers in key generation, it has formidable security systems compared to other
asymmetric algorithms [17]. The generation of keys based on the factorization of big prime
numbers culminates in a larger encryption time for available datasets. Furthermore, a larger
time is also needed to decrypt the files, making RSA the slowest among the algorithms [16].
Its complexity requires the double memory used by other symmetric algorithms such as
AES and Blowfish. However, RSA is efficient in offering a high degree of confidentiality
and beats ElGamal in most performance metrics [26].

RSA key generation can be used to produce public and private key pairs by following
the steps below [27]:

I. p and q are prime numbers. Then, we calculate the modulus n = pq.
II. Choose a substantial prime number (r) to produce (p 1) (q1); r will be the public exponent.
III. Use the result of (rs − 1)/((p − 1) (q − 1)) to find a number s. s will be the private exponent.
IV. The public key will be (n, r). Although n and r are public, knowing r from n and s is

computationally not possible except if p and q are not large enough.
V. For encrypting message m, the cipher text C will be generated using the equation

C = mr mod (n)
VI. To decrypt the cipher text, the following equation will be used: m = c5 mod(n).

Figure 3 illustrates the flow chart of the RSA algorithm.

Information 2023, 14, 275 6 of 20

Information 2023, 14, x FOR PEER REVIEW 6 of 21

Figure 3 illustrates the flow chart of the RSA algorithm.

Figure 3. RSA algorithm flow chart [13].

Digital Signature

A digital signature is a method of signing files electronically and achieving authen-

ticity and legitimacy using keys and encryption [26]. The signature will be different for

each file based on the file information, which guarantees that the electronic document is

reliable, the signature was created by a known source, and the document has not been

altered; selected verifiers only can recover and verify the file from the digital signature

[28]. The digital signature can be done using one of the public key cryptosystems, RSA

or ElGamal and many other systems [29,30]. Kritsanapong et al. [31] showed that RSA is

100% accurate in both signing and checking procedures, and it completed these process-

es with a good performance rate.

2.4. ElGamal

ElGamal is central to upholding and maintaining information security. It is a public

algorithm cryptosystem vital in encrypting large data files. ElGamal is a robust and

Figure 3. RSA algorithm flow chart [13].

Digital Signature

A digital signature is a method of signing files electronically and achieving authenticity
and legitimacy using keys and encryption [26]. The signature will be different for each file
based on the file information, which guarantees that the electronic document is reliable, the
signature was created by a known source, and the document has not been altered; selected
verifiers only can recover and verify the file from the digital signature [28]. The digital
signature can be done using one of the public key cryptosystems, RSA or ElGamal and
many other systems [29,30]. Kritsanapong et al. [31] showed that RSA is 100% accurate
in both signing and checking procedures, and it completed these processes with a good
performance rate.

Information 2023, 14, 275 7 of 20

2.4. ElGamal

ElGamal is central to upholding and maintaining information security. It is a public
algorithm cryptosystem vital in encrypting large data files. ElGamal is a robust and effective
algorithm for maintaining the security and quality of encrypted and decrypted, and it
shows performance efficiency comparable to state-of-the-art methods [32,33].

Although RSA is faster than ElGamal in the encryption and signature verification
process, the latter decrypts and generates signatures faster than the former [12]. Although
RSA and ElGamal are slower than symmetric algorithms such as AES and Blowfish, they
have better security. The symmetric algorithms are faster and demand less computational
power but are less secure than asymmetric algorithms. Public and private keys indicate
that every user possesses a unique key inaccessible to other parties, leading to increased
security compared with other encryption algorithms.

ElGamal key generation will be processed as follows [12,34]:

I. Pick p, which is a prime number.
II. Select g as a generator number.
III. Choose x as a random integer between 0 and p-2, where 0 < x < p-2, and x will be the

secret value.
IV. Generate y using this equation: y = gx mod p. (p, x) is the private key, and (p, g, y) is

the public key

After generating y, the key encryption and decryption process will be as follows [12,34]:

I. To encrypt a message M, a public key will be used along with a random secret integer
k, where 1 < k < p-2.

II. A message bit will be transformed into a cipher by calculating C1, C2 . . .
III. To calculate C1, this equation will be used: a = gk mod p.
IV. To calculate C2, this equation will be used: b = (yk ∗ M) mod p.
V. The cipher file will be C = (C1, C2).
VI. To decrypt C, the private key (p, x) will be used.
VII. Find the cipher C = (a, b).
VIII. Find a, where a = (C1x) p-2 mod p, and calculate M, where M = (a ∗ C2) mod p.

Figure 4 shows the flow chart of ElGamal.

2.5. Discussion of Related Work

Various researchers have examined the encryption capabilities of different algorithms
and identified their capacity to ensure adequate encryption. Tiwari et al. [21] examined
the suitability of AES and RSA algorithms and noticed that they offered a high level of
encryption capacity because they depend on public and private keys shared securely to
reduce the risk of unauthorized viewing or modification of documents and messages.
Buhari et al. [24] investigated the capabilities of AES and Blowfish and found that the two
algorithms offer benefits such as low execution times that can enhance user experience.
Yousif [26] argued that the implementation of a public and private key helps encryption by
reducing the risk of individuals having both keys and modifying messages and documents.
Commey et al. [16] compared the efficiency of the Triple DES, AES, Blowfish and RSA
algorithms. However, they mentioned that a browser and a word processor affected the
result accuracy. Emmanuel et al. [12] evaluated the performance and space complexities
of RSA and ElGamal cryptographic algorithms, but the concluded results were based on
one data type only. Adeniyi et al. [29] assessed the execution times of RSA, ElGamal, RSA
digital signature and ElGamal digital signature, though the performance was measured
based on one file type: text files. Their work was applied to the transmitted data, and
they suggested a future implementation that secures stored sensitive data as well. Finally,
Kritsanapong et al. [31] contended that digital signatures are created using public keys that
are unique to the sender and verified using corresponding public keys. Therefore, they
have a high level of security and allow data encryption, reducing the risk of unauthorized
viewing and modification.

Information 2023, 14, 275 8 of 20Information 2023, 14, x FOR PEER REVIEW 8 of 21

Figure 4. ElGamal algorithm flow chart [12].

2.5. Discussion of Related Work

Various researchers have examined the encryption capabilities of different algo-

rithms and identified their capacity to ensure adequate encryption. Tiwari et al. [21] ex-

amined the suitability of AES and RSA algorithms and noticed that they offered a high

level of encryption capacity because they depend on public and private keys shared se-

curely to reduce the risk of unauthorized viewing or modification of documents and

messages. Buhari et al. [24] investigated the capabilities of AES and Blowfish and found

that the two algorithms offer benefits such as low execution times that can enhance user

experience. Yousif [26] argued that the implementation of a public and private key helps

encryption by reducing the risk of individuals having both keys and modifying messag-

es and documents. Commey et al. [16] compared the efficiency of the Triple DES, AES,

Blowfish and RSA algorithms. However, they mentioned that a browser and a word

Figure 4. ElGamal algorithm flow chart [12].

Although the researchers recognize the usefulness of these algorithms in data encryp-
tion, they do not address their relevance in a BYOD policy. Accordingly, the present study
intends to address these research gaps by implementing an algorithm to secure stored
organizational data and examining the performance based on different types of documents,
as well as ensuring that the accuracy will not be affected by any external factors.

Table 1 shows a summary of all the reviewed related work with their results.

Information 2023, 14, 275 9 of 20

Table 1. Summary of related work.

S/N Author Methods Result

1 Commey et al. [16] 3DES, AES, Blowfish
and RSA

Blowfish is the fastest followed by AES, while RSA uses about
twice the memory used by the symmetric algorithms

2 Abay [14] Blowfish, IDEA and AES
AES uses less power for encrypting the text than Blowfish, and AES
can be used in situations where high security is needed. In case of

performance aspects, Blowfish can be used

3 Emmanuel et al. [12] RSA and ElGamal
RSA performs better than the ElGamal during encryption, where

the ElGamal algorithm performs better in terms of decryption, and
RSA operates better in terms of space usage during decryption.

4 Rouaf and Yousif [13] DES, AES, RSA,
PRESENT and REA

AES and DES have the greatest execution time with good
performance on all devices. REA performs well on all mobile

devices. PRESENT is slow as a lightweight algorithm. RSA is the
slowest one.

5 Oleiwi et al. [17] DES, AES and RSA
AES is considered the best algorithm among symmetric key

encryption algorithms. Among asymmetric encryption algorithms,
RSA provides greater security.

6 Adeniyi et al. [29] SHA-256, RSA, ElGamal
and digital signature

RSA is better than ElGamal during the encryption and signature
verification, while ElGamal performs better than RSA during the

decryption and signature generation process.

7 Yousif [26] RSA and ElGamal

The analysis reveals that the El-Gamal and RSA methods are
efficient and sufficient for offering a high degree of confidentiality,

security and reliability. However, RSA outperforms ElGamal in
most performance metrics

8 Ali et al. [20] AES, RSA, DES and
3DES

The results of the experimental analysis suggest that AES algorithm
outperforms other algorithms, such as RSA and DES, in encrypting

and decrypting files of different sizes. Therefore, the algorithm
offers less time complexity to achieve better operation.

9 Tiwari et al. [21] AES, RSA and hashing AES algorithm takes less time to encrypt and decrypt files
compared with hashing and RSA algorithms.

10 Buhari et al. [24] AES and Blowfish
Blowfish is more efficient compared with AES when handling most

file types. Therefore, Blowfish outperforms AES in most of the
test cases.

The reviewed articles show that using encryption and digital signatures is a reliable
solution for data security and integrity. As mentioned by BYOD research papers, there are
several limitations while applying BYOD, which lacks protection for the downloaded data
on the device. Encryption and digital signature were not applied by previous studies along
with BYOD policies. This motivated us to design a complimentary encryption module with
key generation and digital signatures for organizations that apply BYOD policies to add a
level of security for organizations’ confidential data because BYOD devices are the most
vulnerable security link in most organizations.

3. Materials and Methodology

This study aims to enhance the protection of organizational data by adding another pro-
tection layer to employee-connected devices according to the BYOD policy. The proposed
methodology assumes the organization has high standard of security on the organizational
side, with an effective BOYD policy that is acceptable to all the employees. However, the
download of confidential business documents and data into the employees’ devices is one
of the severe security issues that violate data confidentiality. Such confidentiality violations
occur when the employees use the devices in a less secure environment.

Thus, there is an urgent need to add extra security to employees’ devices, which
are authorized to store sensitive organizational data securely. This extra feature involves
encrypting the download of organizational documents; the encryption process will be a part
of BYOD policy enforcement requirements. This study will evaluate the effectiveness of

Information 2023, 14, 275 10 of 20

various encryption algorithms along with digital signatures and a hash function (SHA-256)
for securing organizational data that are accessible by employees through their personal
devices for work purposes.

The evaluation involves symmetric encryption algorithms (AES and Blowfish) and
asymmetric cryptography algorithms (RSA and ElGamal), both with RSA digital signatures.
The proposed system, built using Java as a programming language and Swagger UI as GUI
for the created API, focuses on fundamental security considerations, such as confidentiality,
non-repudiation and data integrity. Encryption was used for confidentiality, while digital
signatures were used to ensure the integrity of the data, with any disparity between the
signatures implying that the data had been altered, providing a measure of data integrity.

The methodology involves assessing the performance of implemented algorithms in
terms of speed and complexity and comparing results with other previous studies. The
experiments include evaluating the encryption and decryption times of the algorithms with
digital signatures and the impact of different key lengths and file sizes on the performance.

The system diagram is displayed in Figures 5 and 6. Figure 5 displays the flow of
downloading organizational documents to employees’ devices.

Information 2023, 14, x FOR PEER REVIEW 11 of 21

Figure 5. System flow of downloading organizational documents.

The diagram in Figure 6 shows the flow of opening encrypted documents.

Figure 5. System flow of downloading organizational documents.

Information 2023, 14, 275 11 of 20

Information 2023, 14, x FOR PEER REVIEW 12 of 21

Figure 6. System flow of opening encrypted documents.

3.1. Description of the Technical Details

3.1.1. Java Programming Language

Java Spring boot with spring framework used to implement multiple classes along

with Maven dependency management to run the application.

3.1.2. Java Cryptography

We focus on the most used cryptographic library, namely the Java Cryptography

Architecture (JCA), which offers an extensive variety of cryptographic services, includ-

ing symmetric and asymmetric encryption, digital signatures and key management.

3.1.3. Swagger User Interface

User interface framework was used to generate an interactive documentation web-

site to read open API to visualize the interface.

3.1.4. Hardware Specifications

The following hardware specifications were chosen carefully to achieve good per-

formance:

 Processor: Intel(R) Core (TM) i7-8565U CPU @ 1.80–1.99 GHz

 RAM: 32.0 GB.

3.2. Key Generation

In our proposed system, key generation follows these steps:

I. Initialize the algorithm key with user passcode and salt using a key generator

II. Initialize the key size and iteration count if needed.

III. Generate the secret key or key pairs depending on the algorithm type.

IV. Calculate the generation time.

Figure 6. System flow of opening encrypted documents.

The diagram in Figure 6 shows the flow of opening encrypted documents.

3.1. Description of the Technical Details
3.1.1. Java Programming Language

Java Spring boot with spring framework used to implement multiple classes along
with Maven dependency management to run the application.

3.1.2. Java Cryptography

We focus on the most used cryptographic library, namely the Java Cryptography
Architecture (JCA), which offers an extensive variety of cryptographic services, including
symmetric and asymmetric encryption, digital signatures and key management.

3.1.3. Swagger User Interface

User interface framework was used to generate an interactive documentation website
to read open API to visualize the interface.

3.1.4. Hardware Specifications

The following hardware specifications were chosen carefully to achieve good performance:

1. Processor: Intel (R) Core (TM) i7-8565U CPU @ 1.80–1.99 GHz
2. RAM: 32.0 GB.

3.2. Key Generation

In our proposed system, key generation follows these steps:

I. Initialize the algorithm key with user passcode and salt using a key generator
II. Initialize the key size and iteration count if needed.
III. Generate the secret key or key pairs depending on the algorithm type.
IV. Calculate the generation time.

Information 2023, 14, 275 12 of 20

For generating a key, one of the classes, KeyGenerator or KeyPairGenerator, can be
used, relying on the algorithm. KeyGenerator has the ability of a symmetric key generation,
whereas KeyPairGenerator has the ability of an asymmetric key generation. To ensure
appropriate entropy in the secret key, the hash of this data is changed into a secret. The
secret is then used to generate the key by using the methods SecretKeyFactory, PBEKeySpec
and SecretKeySpec from the javax.crypto library. Part of the code for key generation is
shown below.

Information 2023, 14, x FOR PEER REVIEW 13 of 21

For generating a key, one of the classes, KeyGenerator or KeyPairGenerator, can be

used, relying on the algorithm. KeyGenerator has the ability of a symmetric key genera-

tion, whereas KeyPairGenerator has the ability of an asymmetric key generation. To en-

sure appropriate entropy in the secret key, the hash of this data is changed into a secret.

The secret is then used to generate the key by using the methods SecretKeyFactory,

PBEKeySpec and SecretKeySpec from the javax.crypto library. Part of the code for key

generation is shown below.

SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");

KeySpec spec = new PBEKeySpec(userInput.toCharArray(), salt , 65536,keySize);

SecretKey key = new Secret-KeySpec(factory.geneateSecret(spec).getEncoded(), "AES");

3.3. Encryption and Decryption

The following steps are used for encryption and decryption of implemented algo-

rithms in our proposed system (RSA, ElGamal, AES, Blowfish):

I. Declare the cipher by specifying the algorithm name.

II. Initialize the cipher for encryption or decryption by specifying the mode and key.

III. Encrypt or decrypt the file using the doFinal method.

IV. Calculate the encryption or decryption time.

Here, the file is encrypted and decrypted in a single process, as shown below. The

transformation and process used in this project were recommended by a Google team

[35].

Cipher encryptionCipher = Cipher.getInstance("AES/GCM/NoPadding");

encryptionCipher.init(Cipher.ENCRYPT_MODE, key,

new GCMParameterSpec(T_LEN,"AES/GCM/NoPadding".getBytes(), 0 , 12));

byte[] encryptedBytes = encryptionCi-pher.doFinal(messageInBytes);

3.4. Digital Signature

Our proposed system will compute the digital signature and verification to guaran-

tee the integrity of the file using SHA-256. The authenticity of the file is revealed if the

recomputed signature and the signature with the encrypted file are equal; otherwise, the

file has been altered.

The following steps are used for digital signature generation and verification:

I. Produce a key pair, generated by the KeyPairGenerator class. In our case, an RSA

key pair was generated with a 2048-bit length.

II. Initialize signature using hash function SHA256.

III. Initiate signature or verify it using the file and key corresponding to the operation.

IV. Return generated signature or verification response.

The file signature generation process is shown below.

Signature privateSignature = Signature.getInstance("SHA256withRSA");

 privateSignature.initSign(privateKey);

 privateSignature.update(plainText.getBytes(UTF_8));

 byte[] signature = privateSignature.sign();

 return Base64.getEncoder().encodeToString(signature);

4. Results

The proposed BYOD-based complementary encryption system provides the follow-

ing features:

3.3. Encryption and Decryption

The following steps are used for encryption and decryption of implemented algorithms
in our proposed system (RSA, ElGamal, AES, Blowfish):

I. Declare the cipher by specifying the algorithm name.
II. Initialize the cipher for encryption or decryption by specifying the mode and key.
III. Encrypt or decrypt the file using the doFinal method.
IV. Calculate the encryption or decryption time.

Here, the file is encrypted and decrypted in a single process, as shown below. The
transformation and process used in this project were recommended by a Google team [35].

Information 2023, 14, x FOR PEER REVIEW 13 of 21

For generating a key, one of the classes, KeyGenerator or KeyPairGenerator, can be

used, relying on the algorithm. KeyGenerator has the ability of a symmetric key genera-

tion, whereas KeyPairGenerator has the ability of an asymmetric key generation. To en-

sure appropriate entropy in the secret key, the hash of this data is changed into a secret.

The secret is then used to generate the key by using the methods SecretKeyFactory,

PBEKeySpec and SecretKeySpec from the javax.crypto library. Part of the code for key

generation is shown below.

SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");

KeySpec spec = new PBEKeySpec(userInput.toCharArray(), salt , 65536,keySize);

SecretKey key = new Secret-KeySpec(factory.geneateSecret(spec).getEncoded(), "AES");

3.3. Encryption and Decryption

The following steps are used for encryption and decryption of implemented algo-

rithms in our proposed system (RSA, ElGamal, AES, Blowfish):

I. Declare the cipher by specifying the algorithm name.

II. Initialize the cipher for encryption or decryption by specifying the mode and key.

III. Encrypt or decrypt the file using the doFinal method.

IV. Calculate the encryption or decryption time.

Here, the file is encrypted and decrypted in a single process, as shown below. The

transformation and process used in this project were recommended by a Google team

[35].

Cipher encryptionCipher = Cipher.getInstance("AES/GCM/NoPadding");

encryptionCipher.init(Cipher.ENCRYPT_MODE, key,

new GCMParameterSpec(T_LEN,"AES/GCM/NoPadding".getBytes(), 0 , 12));

byte[] encryptedBytes = encryptionCi-pher.doFinal(messageInBytes);

3.4. Digital Signature

Our proposed system will compute the digital signature and verification to guaran-

tee the integrity of the file using SHA-256. The authenticity of the file is revealed if the

recomputed signature and the signature with the encrypted file are equal; otherwise, the

file has been altered.

The following steps are used for digital signature generation and verification:

I. Produce a key pair, generated by the KeyPairGenerator class. In our case, an RSA

key pair was generated with a 2048-bit length.

II. Initialize signature using hash function SHA256.

III. Initiate signature or verify it using the file and key corresponding to the operation.

IV. Return generated signature or verification response.

The file signature generation process is shown below.

Signature privateSignature = Signature.getInstance("SHA256withRSA");

 privateSignature.initSign(privateKey);

 privateSignature.update(plainText.getBytes(UTF_8));

 byte[] signature = privateSignature.sign();

 return Base64.getEncoder().encodeToString(signature);

4. Results

The proposed BYOD-based complementary encryption system provides the follow-

ing features:

3.4. Digital Signature

Our proposed system will compute the digital signature and verification to guarantee
the integrity of the file using SHA-256. The authenticity of the file is revealed if the
recomputed signature and the signature with the encrypted file are equal; otherwise, the
file has been altered.

The following steps are used for digital signature generation and verification:

I. Produce a key pair, generated by the KeyPairGenerator class. In our case, an RSA key
pair was generated with a 2048-bit length.

II. Initialize signature using hash function SHA256.
III. Initiate signature or verify it using the file and key corresponding to the operation.
IV. Return generated signature or verification response.

The file signature generation process is shown below.

Information 2023, 14, x FOR PEER REVIEW 13 of 21

For generating a key, one of the classes, KeyGenerator or KeyPairGenerator, can be

used, relying on the algorithm. KeyGenerator has the ability of a symmetric key genera-

tion, whereas KeyPairGenerator has the ability of an asymmetric key generation. To en-

sure appropriate entropy in the secret key, the hash of this data is changed into a secret.

The secret is then used to generate the key by using the methods SecretKeyFactory,

PBEKeySpec and SecretKeySpec from the javax.crypto library. Part of the code for key

generation is shown below.

SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");

KeySpec spec = new PBEKeySpec(userInput.toCharArray(), salt , 65536,keySize);

SecretKey key = new Secret-KeySpec(factory.geneateSecret(spec).getEncoded(), "AES");

3.3. Encryption and Decryption

The following steps are used for encryption and decryption of implemented algo-

rithms in our proposed system (RSA, ElGamal, AES, Blowfish):

I. Declare the cipher by specifying the algorithm name.

II. Initialize the cipher for encryption or decryption by specifying the mode and key.

III. Encrypt or decrypt the file using the doFinal method.

IV. Calculate the encryption or decryption time.

Here, the file is encrypted and decrypted in a single process, as shown below. The

transformation and process used in this project were recommended by a Google team

[35].

Cipher encryptionCipher = Cipher.getInstance("AES/GCM/NoPadding");

encryptionCipher.init(Cipher.ENCRYPT_MODE, key,

new GCMParameterSpec(T_LEN,"AES/GCM/NoPadding".getBytes(), 0 , 12));

byte[] encryptedBytes = encryptionCi-pher.doFinal(messageInBytes);

3.4. Digital Signature

Our proposed system will compute the digital signature and verification to guaran-

tee the integrity of the file using SHA-256. The authenticity of the file is revealed if the

recomputed signature and the signature with the encrypted file are equal; otherwise, the

file has been altered.

The following steps are used for digital signature generation and verification:

I. Produce a key pair, generated by the KeyPairGenerator class. In our case, an RSA

key pair was generated with a 2048-bit length.

II. Initialize signature using hash function SHA256.

III. Initiate signature or verify it using the file and key corresponding to the operation.

IV. Return generated signature or verification response.

The file signature generation process is shown below.

Signature privateSignature = Signature.getInstance("SHA256withRSA");

 privateSignature.initSign(privateKey);

 privateSignature.update(plainText.getBytes(UTF_8));

 byte[] signature = privateSignature.sign();

 return Base64.getEncoder().encodeToString(signature);

4. Results

The proposed BYOD-based complementary encryption system provides the follow-

ing features:

Information 2023, 14, 275 13 of 20

4. Results

The proposed BYOD-based complementary encryption system provides the following
features:

1. Encrypting and decrypting files using one of the algorithms (RSA, ElGamal, AES and
Blowfish) based on the company digital certificate

2. Generating digital signatures and verifying signatures by using the RSA algorithm to
ensure the data’s integrity.

3. Including user passcodes in the generation of keys for symmetric and asymmetric
algorithms.

4. Using the Swagger UI interface for easy interaction with the API for the selection
of documents, cryptography processes, algorithms and user passcodes to be en-
crypted/decrypted and signed/verified.

Figure 7 shows the display API in the Swagger UI that provides the organization’s
users with various selections to upload their files to be encrypted after selecting encryption.
The algorithm then clicks on the ‘Execute’ button to generate the file that includes the
cipher text and the digital signature for that given file.

Information 2023, 14, x FOR PEER REVIEW 14 of 21

1. Encrypting and decrypting files using one of the algorithms (RSA, ElGamal, AES

and Blowfish) based on the company digital certificate

2. Generating digital signatures and verifying signatures by using the RSA algorithm

to ensure the data’s integrity.

3. Including user passcodes in the generation of keys for symmetric and asymmetric

algorithms.

4. Using the Swagger UI interface for easy interaction with the API for the selection of

documents, cryptography processes, algorithms and user passcodes to be encrypt-

ed/decrypted and signed/verified.

Figure 7 shows the display API in the Swagger UI that provides the organization’s

users with various selections to upload their files to be encrypted after selecting encryp-

tion. The algorithm then clicks on the ‘Execute’ button to generate the file that includes

the cipher text and the digital signature for that given file.

Figure 7. Complementary encryption algorithm Swagger UI.

4.1. Result Analysis

AES and Blowfish were tested using different key sizes of 128, 192 and 256 bits,

whereas 512, 1024, 2048 and 3072 bits were used for the RSA and the ElGamal algo-

rithms for encryption and decryption. For signature generation and verification, 2048-bit

RSA was used. Files of different types and sizes were tested, and the time taken for each

operation was recorded in milliseconds.

4.1.1. Encryption

Different file sizes were encrypted using the four algorithms (RSA, ElGamal, AES

and Blowfish) with different key sizes and RSA digital signatures. The encryption time

for each algorithm was recorded and tabulated (Tables 2 and 3).

Table 2. Encryption data for RSA and ElGamal algorithms with signature.

Key Size File Size (KB)
RSA with Signature

Time (ms)

ElGamal with

Signature Time (ms)

512 10 43 431

512 15 54 687

512 20 75 840

1024 10 64 895

1024 15 87 1967

1024 20 108 3012

2048 10 89 2960

2048 15 192 3898

2048 20 254 4976

Figure 7. Complementary encryption algorithm Swagger UI.

4.1. Result Analysis

AES and Blowfish were tested using different key sizes of 128, 192 and 256 bits,
whereas 512, 1024, 2048 and 3072 bits were used for the RSA and the ElGamal algorithms
for encryption and decryption. For signature generation and verification, 2048-bit RSA was
used. Files of different types and sizes were tested, and the time taken for each operation
was recorded in milliseconds.

4.1.1. Encryption

Different file sizes were encrypted using the four algorithms (RSA, ElGamal, AES and
Blowfish) with different key sizes and RSA digital signatures. The encryption time for each
algorithm was recorded and tabulated (Tables 2 and 3).

Table 2. Encryption data for RSA and ElGamal algorithms with signature.

Key Size File Size (KB) RSA with Signature
Time (ms)

ElGamal with
Signature Time (ms)

512 10 43 431
512 15 54 687
512 20 75 840

1024 10 64 895
1024 15 87 1967

Information 2023, 14, 275 14 of 20

Table 2. Cont.

Key Size File Size (KB) RSA with Signature
Time (ms)

ElGamal with
Signature Time (ms)

1024 20 108 3012
2048 10 89 2960
2048 15 192 3898
2048 20 254 4976
3072 10 132 4590
3072 15 221 6321
3072 20 310 8150

Table 3. Encryption data for Blowfish and AES algorithms with signature.

Key Size File Size (KB) Blowfish with
Signature Time (ms)

AES with Signature
Time (ms)

128 10 0.5 0.7
128 15 0.9 1
128 20 1 2
192 10 1 2
192 15 2 3
192 20 4 5
256 10 6 7
256 15 6.5 8
256 20 8 11

The two figures and tables illustrate the encryption execution times for different
encryption algorithms.

Table 2 and Figure 8 show that the ElGamal algorithm execution time rate was con-
stantly higher than RSA during encryption for different file sizes and key lengths. The
ElGamal execution time was under 450 ms with a 512-bit key size and 10 KB file size, which
then doubled to around 900 ms with a 1024-bit key size. With a 3072-bit key size, the
time reached a high of almost 4600 ms, almost 10 times that of the execution time with a
512-bit key size. The RSA execution time rate showed a similar trend but was between
10 to 30 times less than that of ElGamal with all key sizes.

Information 2023, 14, x FOR PEER REVIEW 15 of 21

3072 10 132 4590

3072 15 221 6321

3072 20 310 8150

Table 3. Encryption data for Blowfish and AES algorithms with signature.

Key Size File Size (KB)
Blowfish with

Signature Time (ms)

AES with Signature

Time (ms)

128 10 0.5 0.7

128 15 0.9 1

128 20 1 2

192 10 1 2

192 15 2 3

192 20 4 5

256 10 6 7

256 15 6.5 8

256 20 8 11

The two figures and tables illustrate the encryption execution times for different en-

cryption algorithms.

Table 2 and Figure 8 show that the ElGamal algorithm execution time rate was con-

stantly higher than RSA during encryption for different file sizes and key lengths. The

ElGamal execution time was under 450 ms with a 512-bit key size and 10 KB file size,

which then doubled to around 900 ms with a 1024-bit key size. With a 3072-bit key size,

the time reached a high of almost 4600 ms, almost 10 times that of the execution time

with a 512-bit key size. The RSA execution time rate showed a similar trend but was be-

tween 10 to 30 times less than that of ElGamal with all key sizes.

Figure 8. Graphical representation of different file sizes with RSA and ElGamal encryption time.

Table 3 and Figure 9 show a slight difference between Blowfish and AES encryption

times, but Blowfish consumes less time than AES. There is a direct relationship between

increasing key length and file size on performance. Blowfish execution time started at 0.5

ms with a 128-bit key size and 10 KB file size, which then doubled to 1 millisecond with

a 192-bit key size. Then, it showed an increase and reached around 6 ms with a 256-bit

key size. The AES execution time rate showed a similar trend but was between 1 to 1.3

times higher than that of Blowfish with all key sizes.

Figure 8. Graphical representation of different file sizes with RSA and ElGamal encryption time.

Table 3 and Figure 9 show a slight difference between Blowfish and AES encryption
times, but Blowfish consumes less time than AES. There is a direct relationship between
increasing key length and file size on performance. Blowfish execution time started at
0.5 ms with a 128-bit key size and 10 KB file size, which then doubled to 1 millisecond with
a 192-bit key size. Then, it showed an increase and reached around 6 ms with a 256-bit key
size. The AES execution time rate showed a similar trend but was between 1 to 1.3 times
higher than that of Blowfish with all key sizes.

Information 2023, 14, 275 15 of 20Information 2023, 14, x FOR PEER REVIEW 16 of 21

Figure 9. Graphical representation of different file sizes with Blowfish and AES encryption time.

4.1.2. Decryption

The exact file sizes encrypted in Tables 2 and 3 were decrypted. The decryption time

for each algorithm was recorded and tabulated (Tables 4 and 5).

Table 4. Decryption data for RSA and ElGamal algorithms with verification.

Key Size File Size (KB)

RSA with

Verification Time

(ms)

ElGamal with

Verification Time

(ms)

512 10 406 197

512 15 734 287

512 20 1269 360

1024 10 1184 357

1024 15 2207 461

1024 20 3032 593

2048 10 2711 549

2048 15 4870 821

2048 20 6589 1047

3072 10 5930 997

3072 15 7842 2130

3072 20 9771 3270

Table 5. Decryption data for Blowfish and AES algorithms with verification.

Key Size File Size (KB)

Blowfish with

Verification Time

(ms)

AES with

Verification Time

(ms)

128 10 0.3 0.5

128 15 0.5 0.6

128 20 0.7 1

192 10 1 1

192 15 2 3

192 20 4 4

256 10 4 6

256 15 5 6

256 20 7 9

The two figures and tables illustrate the decryption execution times for different al-

gorithms.

Table 4 and Figure 10 show that ElGamal consumes less time than RSA during de-

cryption for different key lengths and file sizes. The RSA rate was around 400 ms with a

Figure 9. Graphical representation of different file sizes with Blowfish and AES encryption time.

4.1.2. Decryption

The exact file sizes encrypted in Tables 2 and 3 were decrypted. The decryption time
for each algorithm was recorded and tabulated (Tables 4 and 5).

Table 4. Decryption data for RSA and ElGamal algorithms with verification.

Key Size File Size (KB)
RSA with

Verification Time
(ms)

ElGamal with
Verification Time

(ms)

512 10 406 197
512 15 734 287
512 20 1269 360

1024 10 1184 357
1024 15 2207 461
1024 20 3032 593
2048 10 2711 549
2048 15 4870 821
2048 20 6589 1047
3072 10 5930 997
3072 15 7842 2130
3072 20 9771 3270

Table 5. Decryption data for Blowfish and AES algorithms with verification.

Key Size File Size (KB)
Blowfish with

Verification Time
(ms)

AES with
Verification Time

(ms)

128 10 0.3 0.5
128 15 0.5 0.6
128 20 0.7 1
192 10 1 1
192 15 2 3
192 20 4 4
256 10 4 6
256 15 5 6
256 20 7 9

The two figures and tables illustrate the decryption execution times for different algorithms.
Table 4 and Figure 10 show that ElGamal consumes less time than RSA during de-

cryption for different key lengths and file sizes. The RSA rate was around 400 ms with a
512-bit key size and a file size of 10 KB, which then increased to more than double to reach
around 1200 ms with a 1024-bit key size. This then ended by reaching around 6000 ms
with a 3072-bit key size. The ElGamal execution time rate showed a similar trend but was
between 2 to 6 times less than the RSA rate with all key sizes.

Information 2023, 14, 275 16 of 20

Information 2023, 14, x FOR PEER REVIEW 17 of 21

512-bit key size and a file size of 10 KB, which then increased to more than double to

reach around 1200 ms with a 1024-bit key size. This then ended by reaching around 6000

ms with a 3072-bit key size. The ElGamal execution time rate showed a similar trend but

was between 2 to 6 times less than the RSA rate with all key sizes.

Figure 10. Graphical representation of different file sizes with RSA and ElGamal decryption time.

Table 5 and Figure 11 reveal that AES requires more time than Blowfish. A direct re-

lationship is found between increasing key size and file size on performance. AES execu-

tion time was around 0.5 ms with a 128-bit key size and a 10 KB file size, which then

doubled to reach 1 millisecond with a 192-bit key size. With a 256-bit key size, the time

had reached a high of almost 6 ms, almost 12 times that of the execution time with a 128-

bit key size. The Blowfish execution time rate showed a similar trend but was between 1

to 1.6 times less than the AES rate with all key sizes.

Figure 11. Graphical representation of different file sizes with Blowfish and AES decryption time.

4.1.3. Key Generation

The time taken for RSA, ElGamal, AES and Blowfish to generate a key was captured

and recorded (Tables 6 and 7).

Table 6. Key generation data for RSA and ElGamal.

Key Size User Input Size (Bytes) RSA Time (ms) ElGamal Time (ms)

512 10 56 43

512 15 67 51

512 20 88 76

1024 10 142 126

1024 15 180 167

1024 20 267 173

2048 10 1306 428

2048 15 1381 643

2048 20 1407 780

3072 10 2866 1983

3072 15 3124 2432

Figure 10. Graphical representation of different file sizes with RSA and ElGamal decryption time.

Table 5 and Figure 11 reveal that AES requires more time than Blowfish. A direct
relationship is found between increasing key size and file size on performance. AES
execution time was around 0.5 ms with a 128-bit key size and a 10 KB file size, which
then doubled to reach 1 millisecond with a 192-bit key size. With a 256-bit key size, the
time had reached a high of almost 6 ms, almost 12 times that of the execution time with a
128-bit key size. The Blowfish execution time rate showed a similar trend but was between
1 to 1.6 times less than the AES rate with all key sizes.

Information 2023, 14, x FOR PEER REVIEW 17 of 21

512-bit key size and a file size of 10 KB, which then increased to more than double to

reach around 1200 ms with a 1024-bit key size. This then ended by reaching around 6000

ms with a 3072-bit key size. The ElGamal execution time rate showed a similar trend but

was between 2 to 6 times less than the RSA rate with all key sizes.

Figure 10. Graphical representation of different file sizes with RSA and ElGamal decryption time.

Table 5 and Figure 11 reveal that AES requires more time than Blowfish. A direct re-

lationship is found between increasing key size and file size on performance. AES execu-

tion time was around 0.5 ms with a 128-bit key size and a 10 KB file size, which then

doubled to reach 1 millisecond with a 192-bit key size. With a 256-bit key size, the time

had reached a high of almost 6 ms, almost 12 times that of the execution time with a 128-

bit key size. The Blowfish execution time rate showed a similar trend but was between 1

to 1.6 times less than the AES rate with all key sizes.

Figure 11. Graphical representation of different file sizes with Blowfish and AES decryption time.

4.1.3. Key Generation

The time taken for RSA, ElGamal, AES and Blowfish to generate a key was captured

and recorded (Tables 6 and 7).

Table 6. Key generation data for RSA and ElGamal.

Key Size User Input Size (Bytes) RSA Time (ms) ElGamal Time (ms)

512 10 56 43

512 15 67 51

512 20 88 76

1024 10 142 126

1024 15 180 167

1024 20 267 173

2048 10 1306 428

2048 15 1381 643

2048 20 1407 780

3072 10 2866 1983

3072 15 3124 2432

Figure 11. Graphical representation of different file sizes with Blowfish and AES decryption time.

4.1.3. Key Generation

The time taken for RSA, ElGamal, AES and Blowfish to generate a key was captured
and recorded (Tables 6 and 7).

Table 6. Key generation data for RSA and ElGamal.

Key Size User Input Size (Bytes) RSA Time (ms) ElGamal Time (ms)

512 10 56 43
512 15 67 51
512 20 88 76
1024 10 142 126
1024 15 180 167
1024 20 267 173
2048 10 1306 428
2048 15 1381 643
2048 20 1407 780
3072 10 2866 1983
3072 15 3124 2432
3072 20 3507 2974

Information 2023, 14, 275 17 of 20

Table 7. Key generation data for Blowfish and AES.

Key Size User Input Size (Bytes) AES Time (ms) Blowfish Time (ms)

128 10 151 143
128 15 167 158
128 20 183 176
192 10 194 187
192 15 229 210
192 20 246 231
256 10 337 297
256 15 389 327
256 20 415 386

The two tables illustrate the key generation execution times for different algorithms.
Table 6 shows a slight difference between ElGamal and RSA algorithms in the key

generation process. Here, ElGamal consumes less time than RSA. ElGamal spends around
45 ms in generating a 512-bit key size and 2000 ms to generate a 3072-bit key size, around
40 times that of the execution time with a 512-bit key size. The RSA execution time rate
showed a similar trend but with a difference of around 30% greater than that of ElGamal
with all key sizes.

Table 7 reveals that AES spends more time generating keys than Blowfish. There
is a direct relationship between increasing key size and user passcode size on the key
generation time. AES takes around 150 ms to generate a 128-bit key size, and this more
than doubles when generating a 256-bit key size. Blowfish’s execution time rate showed a
similar trend but with a difference of around 8% less than that of AES with all key sizes.

5. Discussion

A comparative analysis was done of the four encryption algorithms (RSA, ElGamal,
Blowfish and AES) based on the changeable variables of each algorithm to enhance organi-
zation security in BYOD policies. The experimental outcomes in the tables show from the
analysis of asymmetric algorithms that encryption and decryption times depend on the
key and file sizes, and key generation times depend on the key and user passcode sizes.
As the key and file sizes or user passcode sizes increase, the RSA and ElGamal algorithms’
encryption and decryption key generation times significantly increase. RSA with signatures
has a better execution time than ElGamal with signatures in the encryption processes, while
ElGamal with verification has a better execution time than RSA with verification during
the decryption process and key generation.

By contrast, for symmetric algorithms, the encryption and decryption times for Blow-
fish and AES algorithms remain relatively constant or have small differences where Blow-
fish performs better than AES. Key generation time will depend on the key and user
passcode sizes, the key generation times remarkably increase, when we process large key
sizes and passcode.

The encryption and decryption times may increase with larger file sizes and key sizes.
Therefore, the average encryption, decryption and key generation times appear reasonable
and should not significantly impact the performance of employees’ devices.

Findings and Comparison with Existing Work

In this section, a comparative analysis and a discussion of the implemented encryption
algorithms with previous research have been demonstrated in terms of performance. The
RSA, ElGamal, AES and Blowfish results were compared with those of Adeniyi et al. [29],
Emmanuel et al. [12], Rouaf and Yousif [13], Abay [14] and Ali et al. [20].

Tables 8 and 9 show a time comparison of our suggested algorithm with previous
studies implementing similar techniques, where the time taken in our proposed system
seems to be better in terms of performance.

Information 2023, 14, 275 18 of 20

Table 8. RSA and ElGamal comparison.

Technique File Size (KB) Time Taken

Encryption Decryption
RSA [29]

10

95 ms 3428 ms
RSA [12] 372 ms 3819 ms
RSA [13] 2747 ms -

Complementary encryption algorithm (RSA) 89 ms 2711 ms
ElGamal [29] 3520 ms 637 ms

Complementary encryption algorithm (ElGamal) 2960 ms 549 ms

Table 9. AES and Blowfish comparison.

Technique File Size (KB) Time Taken

Encryption Decryption
AES [14]

10

11 ms 12 ms
AES [20] 203 ms 203 ms
AES [13] 18 ms -

Complementary encryption algorithm (AES) 7 ms 6 ms
Blowfish [14] 12 ms 13 ms

Complementary encryption algorithm (Blowfish) 6 ms 4 ms

Table 8 shows that our RSA and ElGamal execution time was between 0.9 to 30 times
lower than previous studies’ algorithm rates in the encryption and decryption process.
Table 9 demonstrates that AES and Blowfish execution time was between 1.5 to 29 times
lower than previous studies’ algorithm rates in terms of encryption and decryption.

The analysis aligns with the literature findings, highlighting the performance and
security of these algorithms. For example, in a comparative study of RSA and ElGamal
algorithms, Emmanuel et al. [12] concluded that they are both secure cryptographic algo-
rithms. Still, their efficiency may vary depending on the application and file format. RSA
may be faster for audio files [12]. Adeniyi et al. [29] inferred that RSA is faster in encrypting
messages and verifying digital signatures, while ElGamal is faster in decrypting messages
and generating digital signatures. Blowfish is about four times faster than AES, which is
faster than RSA (the slowest algorithm) [16]. Abay [14] also revealed that AES has better
performance with higher throughput than Blowfish. When the throughput value increases,
the power consumption of the encryption method decreases. Overall, the literature shows
that AES has a good balance of security and performance. Abay’s [14] findings revealed
that AES has better performance, with high throughput and lower power consumption,
compared with other algorithms, suggesting that AES is more efficient for encryption
and decryption operations, especially in applications that require high throughput. These
findings align with the results and reviewed work, which revealed that AES had a good
balance of security and performance and could be the best choice for the organization’s
BYOD infrastructure. However, further analysis and testing are required to determine the
extent to which AES ensures the security of organizational data based on the specific needs
and requirements.

6. Conclusions

This paper proposes a BYOD-based data secure storage system with encryption and
decryption features using AES, Blowfish, ElGamal and RSA algorithms with signature gen-
eration and verification, an API with a Swagger UI interface and the generation of private
and public keys with user passcode, applied on downloaded files on employees’ devices to
ensure organizational data security. The paper compares four encryption algorithms and
concludes that AES has the best balance of security and performance for high-throughput
applications in an organization’s BYOD infrastructure. Further testing is recommended to

Information 2023, 14, 275 19 of 20

assess the system’s security based on specific needs. This proposed system addresses BYOD
challenges and provides an efficient and secure data storage solution for organizations.
The study may serve as a helpful reference for organizations implementing secure data
storage techniques.

Author Contributions: Conceptualization, methodology, validation, formal analysis, investigation,
and visualization, M.R.A. and S.M.F. Software and writing—original draft preparation, M.R.A.
Writing review and editing, S.M.F. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors would like to acknowledge the support of Prince Sultan University for paying
the Article Processing Charges (APC) for this publication.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Perera, S.; Jin, X.; Maurushat, A.; Opoku, D.-G.J. Factors affecting reputational damage to organisations due to cyberattacks.

Informatics 2022, 9, 28. [CrossRef]
2. Bhusal, C.S. Systematic review on social engineering: Hacking by manipulating humans. J. Inf. Secur. 2021, 12, 104–114. [CrossRef]
3. Palanisamy, R.; Norman, A.A.; Mat Kiah, M.L. BYOD Policy Compliance: Risks and Strategies in Organizations. J. Comput. Inf.

Syst. 2022, 62, 61–72. [CrossRef]
4. Hertel, G.; Stone, D.L.; Johnson, R.D. The Wiley Blackwell Handbook of the Psychology of the Internet at Work; John Wiley & Sons:

Hoboken, NJ, USA, 2017.
5. Business Wire. Bitglass 2020 BYOD Report: Increased Remote Work Drives BYOD, But Security Is Not Keeping Pace. Avail-

able online: https://www.businesswire.com/news/home/20200708005267/en/Bitglass-2020-BYOD-Report-Increased-Remote-
Work-Drives-BYOD-but-Security-is-Not-Keeping-Pace (accessed on 9 March 2023).

6. Scrubbed. LinkedIn Data Leak—What We Can Do about It. Available online: https://scrubbed.net/blog/linkedin-data-leak-
what-we-can-do-about-it/ (accessed on 8 March 2023).

7. Turban, E.; Pollard, C.; Wood, G. Information Technology for Management: On-Demand Strategies for Performance, Growth and
Sustainability; John Wiley & Sons: Hoboken, NJ, USA, 2018.

8. Bahaddad, A.A.; Almarhabi, K.A.; Alghamdi, A.M. Factors Affecting Information Security and the Implementation of Bring Your
Own Device (BYOD) Programmes in the Kingdom of Saudi Arabia (KSA). Appl. Sci. 2022, 12, 2707. [CrossRef]

9. Ntwari, R.; Habinka, A.E.; Kaggwa, F. BYOD systematic literature review: A layered approach. Eur. J. Technol. 2022, 6, 69–85.
[CrossRef]

10. Shrestha, P.; Thakur, R.N. Study on Security and Privacy Related Issues Associated with BYOD Policy in Organizations in Nepal.
LBEF Res. J. Sci. Technol. Manag. 2019, 1, 41–62.

11. Maglaras, L.; Almomani, I. Digitization of healthcare sector: A study on privacy and security concerns. Korean Inst. Commun. Inf.
Sci. 2023, in press. [CrossRef]

12. Emmanuel, A.A.; Marion, A.O.; Aderemi, O.; Olugbara, O.O. Computational complexity of RSA and ElGamal cryptographic
algorithms on video data. J. Theor. Appl. Inf. Technol. 2022, 100, 5437–5445. [CrossRef]

13. Rouaf, M.T.; Yousif, A. Performance Evaluation of Encryption Algorithms in Mobile Devices. In Proceedings of the 2020
International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan,
26 February–1 March 2021. [CrossRef]

14. Abay, M.M. Performance Analysis of Blowfish, IDEA and AES Encryption Algorithms. Int. J. Res. Anal. Rev. 2020, 7, 668–678.
15. Alenezi, M.; Usama, M.; Almustafa, K.; Iqbal, W.; Raza, M.A.; Khan, T. An efficient, secure, and queryable encryption for

nosql-based databases hosted on untrusted cloud environments. Int. J. Inf. Secur. Priv. 2019, 13, 14–31. [CrossRef]
16. Commey, D.; Griffith, S.; Dzisi, J. Performance comparison of 3DES, AES, Blowfish and RSA for Dataset Classification and

Encryption in Cloud Data Storage. Int. J. Comput. Appl. 2020, 177, 17–22. [CrossRef]
17. Oleiwi, Z.C.; Alawsi, W.A.; Alisawi, W.C.; Alfoudi, A.S.; Alfarhani, L.H. Overview and Performance Analysis of Encryption

Algorithms. J. Phys. Conf. Ser. 2020, 1664, 012051. [CrossRef]
18. Rasool, M.-U.; Iftikhar, S.; Saba, T.; Al-ghamdi, J.S. Ensuring authentication in cloud computing through homomorphic encryption.

J. Theor. Appl. Inf. Technol. 2017, 95, 3032–3040.
19. Shrestha, P.; Thakur, R.N. Channel state information-based cryptographic key generation for Intelligent Transportation Systems.

IEEE Trans. Intell. Transp. Syst. 2021, 22, 7496–7507. [CrossRef]
20. Ali, K.; Akhtar, F.; Memon, S.A.; Shakeel, A.; Ali, A.; Raheem, A. Performance of cryptographic algorithms based on time

complexity. In Proceedings of the 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies
(iCoMET), Sukkur, Pakistan, 29–30 January 2020. [CrossRef]

https://doi.org/10.3390/informatics9010028
https://doi.org/10.2139/ssrn.3720955
https://doi.org/10.1080/08874417.2019.1703225
https://www.businesswire.com/news/home/20200708005267/en/Bitglass-2020-BYOD-Report-Increased-Remote-Work-Drives-BYOD-but-Security-is-Not-Keeping-Pace
https://www.businesswire.com/news/home/20200708005267/en/Bitglass-2020-BYOD-Report-Increased-Remote-Work-Drives-BYOD-but-Security-is-Not-Keeping-Pace
https://scrubbed.net/blog/linkedin-data-leak-what-we-can-do-about-it/
https://scrubbed.net/blog/linkedin-data-leak-what-we-can-do-about-it/
https://doi.org/10.3390/app122412707
https://doi.org/10.47672/ejt.1006
https://doi.org/10.1016/j.icte.2023.02.007
https://doi.org/10.3390/a15100373
https://doi.org/10.1109/ICCCEEE49695.2021.9429673
https://doi.org/10.4018/IJISP.2019040102
https://doi.org/10.5120/ijca2020919897
https://doi.org/10.1088/1742-6596/1664/1/012051
https://doi.org/10.1109/tits.2020.3003577
https://doi.org/10.1109/icomet48670.2020.9073930

Information 2023, 14, 275 20 of 20

21. Tiwari, D.; Singh, A.; Prabhakar, A. Performance Analysis of AES, RSA and Hashing Algorithm Using Web Technology. In
Computing Algorithms with Applications in Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 413–418. [CrossRef]

22. Javed, Y.; Khan, A.S.; Qahar, A.; Abdullah, J. Preventing Dos Attacks in IOT Using AES. J. Telecommun. Electron. Comput. Eng.
2017, 9, 55–60.

23. Ribouh, S.; Phan, K.; Malawade, A.V.; Elhillali, Y.; Rivenq, A.; Al Faruque, M.A. A novel secure artificial bee colony with advanced
encryption standard technique for biomedical signal processing. Period. Eng. Nat. Sci. 2022, 10, 288. [CrossRef]

24. Buhari, B.A.; Obiniyi, A.A.; Sunday, K.; Shehu, S. Performance evaluation of symmetric data encryption algorithms: AES and
Blowfish. Saudi J. Eng. Technol. 2019, 4, 407–414. [CrossRef]

25. Kothandan, A. Modified Blowfish Algorithm to Enhance Its Performance and Security. Ph.D. Thesis, National College of Ireland,
Dublin, Ireland, 2020.

26. Yousif, S.F. Performance comparison between RSA and El-Gamal algorithms for Speech Data Encryption and decryption. Diyala J.
Eng. Sci. 2023, 16, 123–137. [CrossRef]

27. Ahmed, B.K.A.; Mahdi, R.D.; Mohamed, T.I.; Jaleel, R.A.; Salih, M.A.; Zahra, M.M.A. Secure and efficient data storage operations
by using intelligent classification technique and RSA algorithm in IOT-based cloud computing. Sci. Program. 2022, 2022, 2195646.
[CrossRef]

28. Tahat, N.; Shaqboua, R.; Abdallah, E.E.; Bsoul, M.; Shatanawi, W. A New Digital Signature Scheme with Message Recovery Using
Hybrid Problems. Int. J. Electr. Comput. Eng. 2019, 9, 3576–3583. [CrossRef]

29. Adeniyi, E.A.; Falola, P.B.; Maashi, M.S.; Aljebreen, M.; Bharany, S. Secure Sensitive Data Sharing Using RSA and ElGamal
Cryptographic Algorithms with Hash Functions. Information 2022, 13, 442. [CrossRef]

30. Kavin, B.; Ganapathy, S. A new digital signature algorithm for ensuring the data integrity in cloud using elliptic curves. Int. Arab.
J. Inf. Technol. 2021, 18, 180–190. [CrossRef]

31. Somsuk, K.; Thakong, M. Authentication system for e-certificate by using RSA’s digital signature. Telecommun. Comput. Electron.
Control 2020, 18, 2948. [CrossRef]

32. Imran, O.A.; Yousif, S.F.; Hameed, I.S.; Abed, W.N.A.-D.; Hammid, A.T. Implementation of el-gamal algorithm for speech signals
encryption and decryption. Procedia Comput. Sci. 2020, 167, 1028–1037. [CrossRef]

33. Babu, T.G.; Jayalakshmi, V. Conglomerate energy efficient Elgamal encryption based data aggregation cryptosystems in Wireless
Sensor Network. Int. J. Eng. 2022, 35, 417–424. [CrossRef]

34. Kasodhan, R.; Gupta, N. A new approach of digital signature verification based on BioGamal algorithm. In Proceedings of the
2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March 2019.
[CrossRef]

35. Oracle. Class Cipher. Available online: https://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html (accessed on 10
January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-981-15-2369-4_35
https://doi.org/10.21533/pen.v10i1.2610
https://doi.org/10.36348/SJEAT.2019.v04i10.002
https://doi.org/10.24237/djes.2023.16112
https://doi.org/10.1155/2022/2195646
https://doi.org/10.11591/ijece.v9i5.pp3576-3583
https://doi.org/10.3390/info13100442
https://doi.org/10.34028/iajit/18/2/6
https://doi.org/10.12928/telkomnika.v18i6.17278
https://doi.org/10.1016/j.procs.2020.03.402
https://doi.org/10.5829/ije.2022.35.02b.18
https://doi.org/10.1109/iccmc.2019.8819710
https://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html

	Introduction
	Related Work
	Advanced Encryption System
	Blowfish Algorithm
	RSA Algorithms
	ElGamal
	Discussion of Related Work

	Materials and Methodology
	Description of the Technical Details
	Java Programming Language
	Java Cryptography
	Swagger User Interface
	Hardware Specifications

	Key Generation
	Encryption and Decryption
	Digital Signature

	Results
	Result Analysis
	Encryption
	Decryption
	Key Generation

	Discussion
	Conclusions
	References

