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Abstract: In this paper, we propose a novel attack on image encryption for privacy-preserving
deep neural networks (DNNs). Although several encryption schemes have been proposed for
privacy-preserving DNNs, existing cipher-text-only attacks (COAs) have succeeded in restoring
visual information from encrypted images. Image encryption using the Vision Transformer (ViT)
is known to be robust against existing COAs due to the operations of block scrambling and pixel
shuffling, which permute divided blocks and pixels in an encrypted image. However, the correlation
between blocks in the encrypted image can still be exploited for reconstruction. Therefore, in this
paper, a novel jigsaw puzzle solver-based attack that utilizes block correlation is proposed to restore
visual information from encrypted images. In the experiments, we evaluated the security of image
encryption for privacy-preserving deep neural networks using both conventional and proposed
COAs. The experimental results demonstrate that the proposed attack is able to restore almost all
visual information from images encrypted for being applied to ViTs.

Keywords: image encryption; jigsaw puzzle solver; vision transformer; privacy preserving

1. Introduction

In recent years, the rapid development of deep neural networks (DNNs) has made it
possible to perform complex tasks such as speech recognition and image classification with
a high accuracy [1]. Simultaneously, the utilization of cloud computing services, such as
Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform (GCP), has been
on the rise because of their cost-effectiveness and simplicity of deployment. Furthermore,
the appearance of cloud Automated Machine Learning (AutoML) has made it possible for
users to obtain accurate results without having extensive knowledge on which algorithms
would be suitable to obtain the results; for example, a user can easily get a classification
result by using Cloud Vision API. However, since cloud servers are completely untrusted,
an image including privacy information such as fingerprints and radiographs tends to be
processed on the premises due to the risk of data leakage [2]. In light of the increasing
use of cloud computing services for processing sensitive data, there is a pressing need to
ensure the protection of data privacy in cloud environments. Although full encryption with
provable security such as RSA and AES is the most secure option for securing multimedia
data, there is a trade-off between security and other requirements such as low processing
demand, bitstream compliance, and signal processing in the encrypted domain. Several
perceptual encryption schemes have been developed to achieve this trade-off [3–8]. On
the other hand, for protecting data privacy in a cloud server, privacy-preserving DNNs
for image classification are proposed [9,10]. The use of learnable image encryption for
privacy-preserving DNNs enables us to protect personally identifiable information in an
image such as fingerprints and facial information. Moreover, encrypted images can be
applied to machine learning algorithms in the encrypted domain. In this paper, we focus
on protecting visual information in an image by encrypting it before uploading to the
cloud environment.
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Although various perceptual encryption schemes for privacy-preserving DNNs have
been proposed to protect the visual information of images [11–13], state-of-the-art cipher-
text-only attacks (COAs) succeed in reconstructing visual information from encrypted im-
ages [14–17]. Therefore, encryption schemes that are robust against various attacks are
essential for privacy-preserving DNNs without degrading image classification performance.

On the other hand, image encryption using isotropic networks such as the Vision
Transformer (ViT) [18], a model for image classification based on the transformer architec-
ture, has been shown to outperform conventional methods in terms of classification [19,20].
Moreover, this scheme enhances robustness against attacks by permuting divided blocks
in an encrypted image, an operation called block scrambling [19]. As a way of restoring
visual information from encrypted images including permuted blocks, jigsaw puzzle solver
attacks have been proposed that utilize the correlation between permuted blocks to be
assembled [21]. Jigsaw puzzle solvers have succeeded in solving very large jigsaw puzzles,
such as 30,745 piece puzzles, by using genetic algorithms [21]. Besides, jigsaw puzzles
with the small size of pieces, such as 7× 7 pixels, are partially assembled by utilizing
hierarchical piece loops [22]. It has been confirmed that the use of an extended jigsaw
solver enables us to restore visual information from encrypted images with permuted
blocks, including permuted, rotated, inverted, negative–positive transformed, and RGB
shuffled blocks [23]. Therefore, if the operation of block scrambling is included in image
encryption for privacy-preserving DNNs, the security against jigsaw solver attacks need to
be evaluated.

On the other hand, the latest encryption scheme for application to ViTs is known to be
robust against jigsaw puzzle solver attacks because of applying not only block scrambling
but also pixel shuffling, which permutes the pixels in divided blocks [20]. However, since
the operation of pixel shuffling in the scheme is performed using a common secret key
for all blocks, an attack that solves pixel shuffling using edge information in each block is
assumed. Therefore, in this paper, we propose a novel jigsaw puzzle solver-based attack to
restore visual information from images encrypted for being applied to ViTs. The proposed
attack is feasible even for other block-based image encryption methods when a common
key is applied to all divided blocks. A part of this work was presented in [24]. In this
paper, in particular, we compare the proposed method with conventional attacks [14–17]
under various conditions in terms of the restoration of visual information from encrypted
images. The conventional attacks are utilized to show the attacks cannot restore visual
information from images encrypted for being applied to ViTs. The contribution of this work
is that we propose an attack that enables the restoration of almost all visual information
from images encrypted for being applied to ViTs [20]. In experiments, the security of
image encryption for privacy-preserving DNNs is evaluated by using the proposed attack
and five conventional COAs: a brute force attack (BF-attack), a feature reconstruction
attack (FR-attack) [14], an inverse transformation network attack (ITN-attack) [15], a jigsaw
puzzle solver attack (JPS-attack) [21], and an extended jigsaw puzzle solver attack (EJPS-
attack) [23].

The rest of this paper is organized as follows. Section 2 provides an overview of
privacy-preserving DNNs and the encryption schemes used for them. Section 3 presents
the proposed attack for image encryption for privacy-preserving DNNs in addition to the
conventional attacks. The experimental results including robustness against the proposed
and conventional attacks are given in Section 4. Finally, Section 5 concludes this paper.

2. Preparation

Privacy-preserving DNNs for image classification and the image encryption used for
them are summarized in this section.
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2.1. Privacy-Preserving DNNs

Privacy-preserving DNNs for image classification are carried out as illustrated in
Figure 1.

EncryptionKey 

Images

Encryption

Testing

Key 

Training

User Cloud Server

Images

Encrypted Images

Encrypted Images

Classification Result

Deep Neural

Network

Figure 1. Privacy-preserving deep neural networks for image classification.

In training, a user encrypts training images by using image encryption for privacy-
preserving DNNs [11–13] and sends them to a cloud server. The cloud server trains an
image classification model using the visually protected images, that is, the privacy of
the images is preserved. On the other hand, for testing, the user sends an encrypted
testing image to the cloud server and gets classification results. Depending on the type
of image encryption, the testing images can be encrypted by using a different secret key
from the one used for training. The visually protected images are used in both training and
testing, thereby protecting the privacy of images in the case of data leakage on the cloud
server. However, several attacks have been proposed to reconstruct visual information from
encrypted images. Therefore, the security of the encryption scheme needs to be discussed
in addition to its classification performance.

Convolutional neural networks (CNNs), such as VGG [25] and ResNet [26], are mostly
used for privacy-preserving image classification. It has been known that an encryption
scheme using block scrambling, which permutes divided blocks, enhances the robustness
against several attacks. However, permuting the positions of divided blocks in encrypted
images degrades the classification performance. Therefore, block scrambling cannot be
applied to image encryption for CNN-based privacy-preserving DNNs.

On the other hand, image encryption using isotropic networks such as the ViT, a
model for image classification based on the transformer architecture, has been proposed to
enhance the security and classification performance [27]. The use of the ViT enables us to
apply block scrambling to image encryption for privacy-preserving image classification
because it includes an operation for patch embedding. For example, images from the
CIFAR-10 dataset are resized from 32× 32 to 224× 224 or 384× 384 and then divided
into a 16× 16 patch to fit the same patch size of pretrained models such as the ViT-B/16
and ViT-L/16. Furthermore, the latest image encryption using the ViT not only uses block
scrambling but also pixel shuffling that permutes the pixels in divided blocks, which makes
the encryption scheme more robust [20]. In this paper, we aim to evaluate the security of
image encryption using the ViT.

2.2. Image Encryption for Privacy-Preserving DNNs

There are two types of image encryption for privacy-preserving DNNs, image encryp-
tion without permutations [11,12] and image encryption with permutations [13,20,28], as
shown in Table 1.
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Table 1. Summary of image encryption for privacy-preserving deep neural networks.
√

indicates
image encryption using block scrambling. X × Y indicates the resolution of encrypted image. n
denotes number of blocks in encrypted image and M indicates block size.

Plain LE [11] PE [12] ELE [13] EtC [28] VTE [20]

Block
scrambling

√ √ √

Key type Same Different Different Same Same

Key space (M2 · 6)!· 2M2·6 23·X·Y · 6X·Y ((M2 · 6)!· 2M2·6)n ·n! 8n · 2n · 6n · n! n!· ( M
2 )2!

Example

This paper focuses on encryption for a 24-bit RGB color image I with X × Y pixels.
Each type of encryption is carried out by dividing I into blocks with M×M pixels.

Tanaka first proposed learnable image encryption (LE), which uses an adaptation
network to reduce the effect of encryption, thus maintaining a high classification perfor-
mance [11]. In this scheme, a secret key is shared between training and testing; thus, proper
secret key management is needed to prevent the secret key from leaking. LE images are
generated by following the procedure below.

1. Divide the RGB color image I into blocks of M×M pixels.
2. Separate each pixel into upper and lower 4 bit pixel values to form six-channel blocks.
3. Reverse the intensities of the pixel values in each block randomly by a secret key.
4. Shuffle the pixel values in each block randomly by a secret key.
5. Combine six channels in each block into three channel to generate an encrypted image.

To enhance the security of LE, extended learnable image encryption (ELE) was pro-
posed [13]. The procedure of ELE is described below.

1. Divide RGB color image I into blocks of M×M pixels.
2. Permute randomly the divided blocks by using a secret key.
3. The same procedure of LE is applied to the permuted blocks to generate an en-

crypted image.

This encryption scheme enables us to use different secret keys between training and
testing; thus, there is no need for secret key management. Moreover, the security of this
encryption scheme has been enhanced by using different keys for training and testing.
Although ELE enhances security owing to the addition of block scrambling in comparison
to LE, the classification performance of ELE is lower than that of LE. Furthermore, an
adaptation network is required to keep the classification accuracy the same as LE.

On the other hand, pixel-wise image encryption (PE) was proposed, which combines
negative–positive transformations and color component shuffling [12]. This encryption
scheme enables us to use different secret keys between training and testing, the same as
ELE. In this encryption method, the following steps are carried out.
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1. Divide RGB color image I into X×Y pixels.
2. Apply negative–positive transformations to each pixel of the three color channels

randomly by using a secret key. In this scheme, the secret key is independently used
for all color components. In this step, a pixel q is transformed to q′ by

q′ =
{

q (r(i) = 0)
q⊕ (28 − 1) (r(i) = 1)

, (1)

where r(i) is a random binary integer generated by the secret key. In this paper, the
value of occurrence probability P(r(i)) = 0.5 has been used to invert bits randomly.

3. Shuffle three color components of each pixel by using a secret key.
4. Combine X×Y pixels to generate an encrypted image.

Block-scrambling-based image encryption has been proposed for encryption-then-
compression (EtC) systems transmitted over an untrusted channel provider. An image
encrypted using this scheme is referred to as an EtC image [28]. The procedure of the EtC
scheme is given as follows (see Figure 2).

Block Rotation
and

Block Inversion

Geometric

Transformation

Negative-

Positive
Transformation

Dividing

into Blocks

IntegrationColor

Transformation

Block

Scrambling

Color
Component

Shuffling

Encrypted

Image

Image

Figure 2. Block-scrambling-based image encryption (EtC) [28].

1. Divide RGB color image I into blocks of M×M pixels.
2. Permute randomly the divided blocks using a secret key.
3. Rotate and invert randomly each block by using a secret key.
4. Apply negative–positive transformations to each block by using a secret key according

to Equation (1).
5. Shuffle three color components of each block by using a secret key.
6. Integrate the encrypted blocks to generate an encrypted image.

Note that the secret keys are commonly used for all color components. Although the
classification performance when using EtC images is low, the use of isotropic networks
such as the ViT improves it. As in the original paper [27], an EtC image is generated after
resizing to 224× 224 or 384× 384 pixels to fit the resolution of a pretrained model.

A vision-transformer-based image encryption (VTE) has been proposed that combines
block scrambling and pixel shuffling [20]. Similar to EtC images, the VTE scheme is carried
out after an image is resized. Figure 3 shows the procedure of VTE. The procedure for
performing this encryption scheme is given as follows.

Dividing

into Blocks
Integration

Block

Scrambling

Encrypted

Image

Image

Dividing into

Sub-Blocks

Pixel

Shuffling

Figure 3. Vision-transformer-based image encryption (VTE) [20].
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1. Divide an RGB color image I into blocks B = {B1, . . . , Bi, . . . , Bn}, i ∈ {1, . . . , n} with
M×M pixels, where n is the number of divided blocks calculated by

n = b X
M
c × b Y

M
c. (2)

2. Permute the divided blocks by using a secret key KVTE1, where KVTE1 is commonly used
for all color components. Accordingly, the scrambled blocks B′ = {B′1, . . . , B′i , . . . , B′n}
are generated.

3. Divide each scrambled block B′i into four non-overlapping square sub-blocks Sij, j ∈
{UL, UR, LL, LR} with M

2 ×
M
2 pixels, where SiUL is defined as the upper left position

of the ith blocks, SiUR as the upper right, SiLL as the lower left, and SiLR as the lower
right. Thereby, scrambled blocks divided into sub-blocks S = {S1j, . . . , Sij, . . . , Snj}
are generated. The number of sub-blocks m is described as

m = 4n. (3)

4. Shuffle the pixel position within a sub-block by using a secret key KVTE2 to generate
pixel shuffled sub-blocks S′ = {S′1j, . . . , S′ij, . . . , S′nj}, where KVTE2 is commonly used
for all sub-blocks and color components. As a result, each scrambled block is divided
into four encrypted sub-blocks, denoted by S′i = {S′iUL, S′iUR, S′iLL, S′iLR}.

5. Merge all blocks to generate an encrypted image.

In this paper, M = 4 is used for LE and ELE images, while M = 16 is used for the EtC
and VTE images, similarly to [11,13,20,27]. On the other hand, EtC and VTE images are
generated after resizing to 224× 224 pixels to fit the resolution of a pretrained model.

3. Proposed Attacks

In this section, five conventional cipher-text-only attacks (COAs), a brute force attack
(BF-attack), a feature reconstruction attack (FR-attack) [14], an inverse transformation
network attack (ITN-attack) [15], a jigsaw puzzle solver attack (JPS-attack) [21], and an
extended jigsaw puzzle solver attack (EJPS-attack) [23], are summarized, and the novel
jigsaw puzzle solver-based attack is proposed.

3.1. Threat Models

The objective of an attacker in an image classification scenario where privacy is a
concern is to recover visual information from encrypted images. Encrypted images are
transmitted to an untrusted cloud provider for model training and testing, as shown in
Figure 1. Therefore, we assume that the attacker has access to encrypted images and the
encryption algorithm but does not possess the secret key. That is to say, we assume that the
attacker can only carry out a cipher-text-only attack (COA) using encrypted images.

Several COAs have been proposed to restore visual information from encrypted im-
ages, as described in Section 2.2. In this paper, we use five conventional COAs: a brute force
attack (BF-attack), a feature reconstruction attack (FR-attack) [14], an inverse transformation
network attack (ITN-attack) [15], a jigsaw puzzle solver attack (JPS-attack) [21], and an
extended jigsaw puzzle solver attack (EJPS-attack) [23].

The robustness of an encrypted image against the brute force attack (BF-attack) has
been evaluated on the basis of the size of the key space [28]. The key space of each
encryption scheme is calculated on the basis of the resolution of the image X × Y, the
number of divided blocks n, and the block size M used for encryption, as shown in Table 1.

For example, the key space of LE depends on only the block size, while that of PE
depends on the resolution of the image. The key space of the LE [11] is calculated as
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O(LE) = Nps(M) · Nnp(M)

= (M2 · 6)! · 2M2·6

= (42 · 6)! · 242·6

= 96! · 296, (4)

where Nps(M) and Nnp(M) are the key spaces of the pixel shuffling and intensities re-
versing. On the other hand, the key space of ELE is larger than that of LE because of the
operation of block scrambling. Hence, the key space of ELE [13] is given by

O(ELE) = Ndps(M, n) · Nbs(n)

= ((M2 · 6)! · 2M2·6)n · n!

= ((42 · 6)! · 242·6)64 · 64!

= (96! · 296)64 · 64!, (5)

where Ndps(M, n) is the key space of pixel shuffling and intensities reversing and Nbs(n) is
the key space of block scrambling. Note that, in this scheme, pixel shuffling and intensities
reversing are carried out independently on each block. The key space of the PE [12] is
represented by

O(PE) = Nnpi(X, Y) · Npsi(X, Y)

= 23·X·Y · 6X·Y

= 23·32·32 · 632·32

= 23072 · 61024, (6)

where Nnpi(X, Y) and Npsi(X, Y) are the key spaces of the negative–positive transformation
and pixel shuffling in each pixel. The number of blocks in an EtC image is larger than ELE
because of resizing. Accordingly, the key space of the EtC [28] is calculated as

O(EtC) = Nrib(n) · Nnpb(n) · Npsb(n) · Nbs(n)

= 8n · 2n · 6n · n!

= 8196 · 2196 · 6196 · 196!, (7)

where Nrib(n) is the key space of block rotation and inversion, Nnpb(n) is the key space
of the negative–positive transformation, and Npsb(n) is the key space of color component
shuffling. Similar to EtC images, the number of blocks in VTE images is expanded owing
to resizing. Thus, the key space of VTE [20] is represented as

O(VTE) = Nbs(n) · Npss(M)

= n! · (M
2
)2!

= 196! · (16
2
)2!

= 196! · 64!, (8)

where Npss(M) is the key space of pixel shuffling in each sub-block. The key spaces for the
LE, PE, ELE, EtC, and VTE are represented as

O(ELE)� O(PE)� O(EtC)� O(VTE)� O(LE)� 2256. (9)

The key space of each encryption scheme is larger than a 256-bit key, so LE, PE, ELE,
EtC, and VTE are robust against brute force attacks.
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The feature reconstruction attack (FR-attack), which uses the edge information on
images, was proposed to restore the visual information of encrypted images, as described
in Algorithm 1 [14].

Algorithm 1 FR-attack [14]

Require: Encrypted input image Ie of size X×Y;
number of bits L; leading bit b ∈ {0, 1}

1: for q = (u, v) ∈ Ie do
2: for c ∈ R, G, B do
3: if bqc/(2L − 1)c 6= b then
4: qc ← qc ⊕ (2L − 1)
5: end if
6: end for
7: end for

It is known that the FR-attack is an effective attack method against PE [12] images.
This algorithm utilizes a neighborhood of surrounding pixels, so permuting pixels or blocks
in an encrypted image enhance the robustness against the FR-attack.

The inverse transformation network attack (ITN-attack) is an attack where the ad-
versary prepares exact pairs of plain and encrypted images using different keys. An
ITN-attack is capable of restoring visual information from LE [11] images. A loss between
a reconstructed image and the original one is utilized to train the transformation model. As
described in the original paper [15], the architecture of the transformation model varies de-
pending on the type of encryption. For example, the transformation model for PE consists
of 1× 1 locally connected layers each with a kernel size and a stride of (1, 1) .

The jigsaw puzzle solver attack (JPS-attack), which considers the blocks of an en-
crypted image as pieces of a jigsaw puzzle, was proposed to reconstruct visual information.
The JPS-attack is carried out by calculating the correlation between permuted blocks. It has
been shown that assembling jigsaw puzzles becomes difficult when the encrypted images
have a large number of blocks and the block size is small [28]. Although it is known that
the application of block scrambling to encrypted images enhances the robustness against
various attacks, the use of a jigsaw puzzle solver attack enables visual information to be
reconstructed [21]. Furthermore, the extended jigsaw puzzle solver attack (EJPS-attack) en-
ables us to reconstruct EtC images, namely encrypted images including permuted, rotated,
inverted, negative–positive transformed, and RGB shuffled blocks [23]. It has been con-
firmed that the use of an EJPS-attack successfully restores visual information from EtC [28]
images. However, the jigsaw puzzle solver attack cannot restore images including pixel
shuffling. Therefore, we propose a novel jigsaw puzzle solver-based attack that enables us
to reconstruct an encrypted image including pixel shuffled blocks.

3.2. Jigsaw Puzzle Solver-Based Attack

In this paper, a novel jigsaw puzzle solver-based attack, which utilizes the correlation
between blocks for reconstruction, is proposed. The proposed attack aims to restore visual
information from images encrypted for being applied to ViTs [20]. In contrast, the proposed
attack is feasible even for other block-based image encryption methods when a common
key is applied to all divided blocks. The proposed attack consists of the two steps shown
in Figure 4; the first step is sub-block restoration, which aims to solve pixel shuffling
in an encrypted image, and the second is a jigsaw puzzle solver attack to assemble a
scrambled image.

The purpose of sub-block restoration is to solve pixel shuffling in a sub-block by using
the pixels at the edges of the sub-block to generate a non-shuffled pixel block, denoted
by Ŝij.

First, the positions of the upper left corner pul , upper right corner pur, lower left corner
pll , and lower right corner plr in Ŝij are determined as illustrated in Figure 5.
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Restored Image

Sub-Block

Restoration

Jigsaw Puzzle

Solver

Encrypted Image

Figure 4. Proposed jigsaw puzzle solver-based attack

Figure 5. Positions of upper left corner pul , upper right corner pur, lower left corner pll , and lower
right corner plr in sub-block Ŝij. The MSE values between p1 and p2 and between p3 and p4 are
calculated, respectively.

Given the four different pixel positions p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3),
p4 = (x4, y4), p1 6= p2 6= p3 6= p4, x1, y1, x2, y2, x3, y3, x4, y4 ∈ {1, 2, . . . , M

2 } in S′ij, the
pixel intensities are defined as S′ij(p1, c), S′ij(p2, c), S′ij(p3, c), and S′ij(p4, c), c ∈ {R, G, B}.
Thus, the sum of all mean squared error (MSE) values between left and right sub-blocks is
calculated by

fw(p1, p2) = ∑
c

n

∑
i=1

(S′iUL(p1, c)− S′iUR(p2, c))2

+(S′iLL(p1, c)− S′iLR(p2, c))2.

(10)

On the other hand, the sum of all MSE values between upper and lower sub-blocks is
calculated as

fh(p3, p4) = ∑
c

n

∑
i=1

(S′iUL(p3, c)− S′iLL(p4, c))2

+(S′iUR(p3, c)− S′iLR(p4, c))2.

(11)

Using Equations (10) and (11), pul , pur, pll , and plr are given as

plr, pll , pur, pul = arg min
p1,p2,p3,p4

{ fw(p1, p2) + fh(p1, p3)

+ fw(p3, p4) + fh(p2, p4)}.
(12)
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Next, the positions of the restored right edge pr = {pr1, . . . , prk, . . . , pr M
2 −2} and left

edge pl = {pl1, . . . , plk, . . . , pl M
2 −2} are calculated as

prk, plk = arg min
p1,p2

fw(p1, p2). (13)

Similar to prk and plk, the positions of the restored upper edge pu = {pu1, . . . , puk, . . . ,
pu M

2 −2} and lower edge pdy = {pd1, . . . , pdk, . . . , pd M
2 −2} are defined as

puk, pdk = arg min
p3,p4

fh(p3, p4). (14)

The remaining positions in Ŝij are determined by minimizing the MSE of the surround-
ing pixels to generate the restored image Î as illustrated in Figure 6.

Figure 6. Procedure of sub-block restoration.

After solving the pixel shuffling encryption by using sub-block restoration, the jigsaw
puzzle solver is applied to Î to generate restored image Î′. It is known that an encrypted
image that includes only shuffled blocks with 14× 14 pixels can be easily restored [29].
Therefore, an image encrypted by using block-wise image encryption with M = 16 can be
restored when sub-block restoration performs well.

4. Experiments
4.1. Experimental Conditions

In this section, the security of the image encryption for privacy-preserving DNNs was
evaluated by using the FR-attack, the ITN-attack, the JPS-attack, the EJPS-attack, and the
proposed attack. We used 10,000 testing images with 32 × 32 pixels from the CIFAR-10
dataset for the FR-attack and ITN-attack, and 100 of the testing images were used for the
JPS-attack, EJPS-attack, and proposed attack. Before performing the EtC and VTE, each
image was resized to 224 × 224 pixels.

For the ITN-attack, the same architecture was used as in paper [30]. On the other
hand, a jigsaw puzzle solver using genetic algorithms was utilized to restore encrypted
images as the JPS-attack [21]. The average of the structural similarity index measure (SSIM)
values between an original image and the restored one were calculated for the FR-attack,
ITN-attack, JPS-attack, and proposed attack. The resolution of an image reconstructed by
using the EJPS-attack is sometimes different from the original one because of the algorithm
used for assembling encrypted blocks. Thus, the largest component Lc ∈ [0, 1], which
means the ratio of the correct pairwise adjacencies, was utilized to evaluate the robustness
of the encrypted images against the EJPS-attack [31]. In this measure, a larger value means
a higher compatibility, namely an adversary succeeds in reconstructing visual information
from the encrypted images. For the evaluation of security against the EJPS-attack, ten
different encrypted images were generated from one ordinary image by using different
keys. We assembled the encrypted images by using the extended jigsaw puzzle solver and
chose the image that had the highest Lc. We performed this procedure for each encrypted
image independently and calculated the average Lc for the 100 images [23]. Furthermore, in
order to demonstrate the effectiveness of the proposed attack, we measured the computation
time using a PC with a 3.2 GHz processor and a main memory 128 Gbytes Processor:Intel
Core i9-12900K 3.2GHz, OS:Ubuntu 20.04 LTS).
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4.2. Experimental Results

Figure 7 shows the security of the image encryption for privacy-preserving DNNs
evaluated by using the FR-attack, ITN-attack, JPS-attack, EJPS-attack, and proposed attack.
As shown in Figure 7a, the LE images were almost reconstructed by using the ITN-attack,
as the average values of SSIM were 0.46. Moreover, the PE images were restored by using
the FR-attack. On the other hand, the EtC images were robust against the FR-attack,
ITN-attack, JPS-attack, and proposed attack because of the operation of block scrambling.
However, when using the EJPS-attack, half of visual information was reconstructed as the
average value of Lc was 0.48, as illustrated in Figure 7b. Although the ELE images were
robust against the FR-attack, ITN-attack, JPS-attack, EJPS-attack, and proposed attack, it
was known that the classification performances are lower than others and an adaptation
network is needed.

(a)

(b)

Figure 7. Average structural similarity index measure (SSIM) or largest component Lc values of
images reconstructed by cipher-text-only attacks (COAs). Boxes span from first to third quartile,
referred to as Q1 and Q3, and whiskers show maximum and minimum values in range of [Q1

− 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)]. Band and cross inside boxes indicate median and average
values, respectively. Dots represent outliers. (a) SSIM values of restored images under a feature
reconstruction attack (FR-attack) [14], an inverse transformation network attack (ITN-attack) [15], a
jigsaw puzzle solver attack (JPS-attack) [21] and the proposed attack. (b) Largest component values
of extended jigsaw puzzle solver attack (EJPS-attack) [23].

Figure 8 shows examples of encrypted and reconstructed images, where Table 1
indicates the original and encrypted ones. As illustrated in Figure 8, the proposed attack
succeeded in reconstructing the VTE images more clearly than the FR-attack, ITN-attack,
JPS-attack, and EJPS-attack, as the average value of SSIM was 0.96.

Figure 9 illustrates the running time of the JPS-attack, EJPS-attack, and proposed
attack, where the average time of 100 images from the CIFAR-10 dataset were plotted. Note
that the running time of the FR-attack and ITN-attack is short compared to the other attacks.
As shown in Figure 9, the running time of the proposed attack is almost the same as the
other attacks. It was confirmed that the use of a jigsaw puzzle solver-based attack enables
us to restore visual information, even though it is known that applying block scrambling
and pixel shuffling to image encryption enhances the robustness.



Information 2023, 14, 311 12 of 14

LE PE ELE EtC VTE

Image size (X×Y pixels) 32× 32 32× 32 32× 32 224× 224 224× 224

Block size (M×M pixels) 4× 4 1× 1 4× 4 16× 16 16× 16

FR-attack

ITN-attack

JPS-attack

EJPS-attack

Proposed attack

Figure 8. Examples of images reconstructed by using the feature reconstruction attack (FR-attack) [14],
the inverse transformation network attack (ITN-attack) [15], the jigsaw puzzle solver attack (JPS-
attack) [21], the extended jigsaw puzzle solver attack (EJPS-attack) [23], and the proposed attack.
Table 1 shows the original and encrypted images.
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Figure 9. Running time of the jigsaw puzzle solver attack (JPS-attack) [21], the extended jigsaw
puzzle solver attack (EJPS-attack) [23], and the proposed attack.

5. Conclusions

In this paper, we evaluated the security of image encryption for privacy-preserving
DNNs by using the latest COAs. The BF-attack, FR-attack, ITN-attack, JPS-attack, EJPS-
attack, and proposed attack were utilized as COAs. Furthermore, a novel jigsaw puzzle
solver-based attack was proposed for encrypted images including scrambled blocks and
shuffled pixels. In experiments, the robustness of LE, PE, ELE, EtC, and VTE images
was evaluated by using the CIFAR-10 dataset. Although it is known that applying block
scrambling and pixel shuffling to image encryption enhances the robustness against various
attacks, the use of the proposed attack succeeded in reconstructing visual information.
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