
Citation: Kim, K.; Jang, J.; Park, H.;

Jeong, J.; Shin, D.; Shin, D. Detecting

Abnormal Behaviors in Dementia

Patients Using Lifelog Data: A

Machine Learning Approach.

Information 2023, 14, 433. https://

doi.org/10.3390/info14080433

Academic Editor: Maria Luisa

Villani

Received: 17 July 2023

Revised: 30 July 2023

Accepted: 31 July 2023

Published: 1 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Detecting Abnormal Behaviors in Dementia Patients Using
Lifelog Data: A Machine Learning Approach
Kookjin Kim 1,2 , Jisoo Jang 1,2 , Hansol Park 1,2, Jaeyeong Jeong 1,2, Dongil Shin 1 and Dongkyoo Shin 1,2,*

1 Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea;
kjkim@sju.ac.kr (K.K.); wekki96@sju.ac.kr (J.J.); miro9303@sju.ac.kr (H.P.); jaeyeong@sju.ac.kr (J.J.);
dshin@sejong.ac.kr (D.S.)

2 Department of Convergence Engineering for Intelligent Drones, Sejong University,
Seoul 05006, Republic of Korea

* Correspondence: shindk@sejong.ac.kr

Abstract: In this paper, a proof-of-concept method for detecting abnormal behavior in dementia
patients based on a single case study is proposed. This method incorporates the collection of lifelog
data using affordable sensors and the development of a machine-learning-based system. Such
an approach has the potential to enable the prompt detection of abnormal behavior in dementia
patients within nursing homes and to send alerts to caregivers, which could potentially reduce
their workload and decrease the risk of accidents and injuries. In a proof-of-concept experiment
conducted on a single dementia patient in a Korean nursing home, the proposed system, specifically
the multilayer perceptron model, demonstrated exceptional performance, achieving an accuracy
of 0.99, a precision of 1.00, a recall of 1.00, and an F1 score of 1.00. While being cost-effective and
adaptable to various nursing homes, these results should be interpreted as preliminary, being based
on a limited sample. Future research is aimed at validating and improving the performance of the
abnormal behavior detection system by expanding the experiments to include lifelog data from
multiple nursing homes and a larger cohort of dementia patients. The potential application of this
system extends beyond healthcare and medical fields, reaching into smart home environments and
various other facilities. This study underscores the potential of this system to enhance patient safety,
alleviate family concerns, and reduce societal costs, thereby contributing to the improvement of the
quality of life for dementia patients.

Keywords: dementia; Internet of Things (IoT); lifelog sensors; anomaly detection; machine learning;
elderly care

1. Introduction

The term “dementia”, also known as “major neurocognitive disorder”, is not a refer-
ence to a specific disease but to a series of symptoms caused by various diseases. Common
underlying conditions, such as Alzheimer’s disease, stroke, and Parkinson’s disease, typi-
cally give rise to dementia symptoms. These symptoms are prevalent in the population
aged 65 and older [1], with notable features including the presence of beta-amyloid and
tau proteins in the brain, which accumulate to the extent that they interfere with normal
cognitive function. This phenomenon manifests as changes in memory, abstract thinking,
judgment, behavior, mood, and emotions, as well as disruptions in physical control [2].

Globally, one person is diagnosed with dementia every three seconds. As of 2020,
over 50 million people worldwide live with dementia, a number expected to nearly double
every 20 years, reaching 78 million by 2030 and 139 million by 2050. The annual total
cost of dementia worldwide exceeds $1.3 trillion, with this figure projected to increase to
$2.8 trillion by 2030 [3].

Dementia is one of the most cost-intensive diseases in society, accounting for 85% of
the costs associated with family or community care [3,4] and contributing significantly
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to disability and nursing home placement [5]. To reduce expenditure, efforts can be
initiated by reducing the workload of caregivers. Various care services are performed by
caregivers, such as physical activity support, emotional support, cognitive activity support,
dementia management support services, and emergency services. Among these, dementia
management support services, which involve dealing with abnormal behaviors in dementia
patients, pose the most significant challenge. If abnormal behaviors in dementia patients
lead to accidents, injuries or even death can result. Therefore, immediate protection must
be provided by caregivers when such behaviors occur. However, in most rehabilitation
nursing homes currently caring for dementia patients, the system relies on caregivers
periodically patrolling and responding to abnormal behavior. Consequently, providing
immediate protection for dementia patients under these circumstances is challenging.

To address this issue, the optimal solution would be to collect images or videos of
abnormal behavior in dementia patients and train machine learning algorithms on this
data. However, building such a system in most rehabilitation nursing homes is challenging
due to the significant financial burden it entails.

Therefore, in this paper, a system is proposed that uses affordable sensors to collect
lifelog data and train machine learning algorithms to detect abnormal behavior in dementia
patients and immediately alert caregivers. Lifelog data is collected by attaching sensors
to various pieces of furniture within nursing homes and having dementia patients wear
smartwatches. When patients approach furniture within the nursing home, lifelog data is
transmitted to the lifelog sensor hub.

The organization of the paper is as follows: In Section 2, research cases on abnormal
behavior detection are discussed, the machine learning models utilized in this paper are
examined, and previous studies are reviewed. Section 3 is dedicated to the introduction
of the system design and the data employed in the experiments. The experimental results
obtained by using the system and data introduced in Section 3 are presented in Section 4.
Lastly, the study is concluded in Section 5.

2. Related Works

Research on abnormal behavior detection is actively and continuously being con-
ducted. Methods for detecting abnormal behavior encompass behavioral observation,
interviews, standardized assessment tools, biometric signal measurement, and image recog-
nition technology. This section delves into studies that employ machine learning techniques
for abnormal behavior detection and introduces the machine learning algorithm models
utilized in this research.

2.1. Research on Detection of Abnormal Behavior Based on Machine Learning

Abnormal human behavior in both densely and sparsely populated environments was
detected by Kuppusamy, P. et al. [6]. The video clip datasets used were the UCF-Crime
Dataset [7] and the UCSD Anomaly Detection Dataset [8]. These datasets were used to train
CNN (Convolutional Neural Networks) [9]. The result demonstrated an accuracy of 98.5%
in densely populated environments and 99.5% in less densely populated environments.

Niu, Z. et al. [10] suggested an abnormal detection approach based on the Ensemble
Active Semi-Supervised Learning (ADESSA) method, which amalgamates the benefits
of semi-supervised learning and active learning. The detection accuracy was enhanced,
and false alarms were reduced by employing a combination of multiple classifiers in the
proposed approach. The ADESSA model was trained on the NSL-KDD Dataset [11] and
the KDD Cup 99 Dataset [12], attaining an accuracy of 99.2%.

Wang, J. et al. [13] introduced a deep-learning-based approach that utilizes video
data for detecting abnormal human behavior. Data were generated by recording videos of
abnormal human behavior, and a deep learning model was trained on these data. CNN
was used to extract features from video frames, which were then input into long short-term
memory (LSTM) [14] for classification, yielding an accuracy of 92.5% in detecting abnormal
human behavior.
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Han R. et al. [15] put forth an abnormal behavior detection method aimed at de-
tecting malicious activities based on host behavior data. Host behavior data were col-
lected in a time series format by configuring a testbed. To tackle the imbalance of the col-
lected data, adaptive synthetic (ADASYN) [16] and synthetic minority over-sampling tech-
niques (SMOTE) [17] were employed, and models such as K-Nearest Neighbor (KNN) [18],
Naïve Bayes (NB) [19], Random Forest (RF) [20], Autoencoder (AE) [21], and Memory-
Augmented Deep Autoencoder (MemAE) [22] were trained. The SMOTE-based MemAE
model achieved an F1 score of 1.00 and an area under the receiver operating characteristic
curve (AUROC) of 0.98.

Huang, C. et al. [23] proposed a temporal-aware contrastive network (TAC-Net), which
is a deep-contrastive-learning-based abnormal event detection framework. On datasets
such as UCSD [24], CUHK Avenue [25], and ShanghaiTech [26], models like MemAE [22],
ISTL [27], sRNN-AE [28], and TAC-Net [23] were trained and tested. The suggested
TAC-Net achieved the highest accuracy of 98.1%.

Chen, G. et al. [29] introduced a neuromorphic vision-based abnormal event detection
system. The public NeuroAED dataset [29] was created, consisting of four sub-datasets
(walking, campus, square, and staircase datasets). Additionally, the Event-based Multiscale
Spatial-Temporal (EMST) model [29] was proposed for experimentation. Models such as
EMST, Sparse Representation (SR) [30], and K-Singular Value Decomposition (K-SVD) [31]
were trained on the dataset, ultimately achieving an accuracy of 95.8%.

Li, G. et al. [32] examined papers that conducted anomaly detection on multivari-
ate time series data using machine learning algorithms. Based on their findings, it was
determined that most studies predominantly employed LSTM [14] and AE [21] models,
achieving high accuracy with these models.

Various approaches for detecting abnormal behavior were considered in the studies.
Research that focused on detecting abnormal behavior based on video data primarily
utilized CNN models. In other studies, a diverse range of models were employed, and
as demonstrated in Table 1, models such as KNN, NB, and RF were used when detecting
abnormal behavior with time series data.

Table 1. Related works on abnormal behavior detection using machine learning.

Study (Year) Dataset Model Accuracy

Kuppusamy, P. et al. [6] (2022) UCF-Crime [7], UCSD [8] CNN [9] 99.5%
Niu, Z. et al. [10], (2023) NSL-KDD [11], KDD Cup 99 [12] ADESSA [10] 99.2%
Wang, J. et al. [13] (2019) Human behavior video dataset [13] CNN [9], LSTM [14] 92.5%

Han R. et al. [15] (2023) Host behavior data [15] KNN [18], NB [19], RF [20], AE [21],
MemAE [22] 98.3%

Huang, C. et al. [23] (2021) UCSD [24], CUHK Avenue [25],
ShanghaiTech [26]

MemAE [22], TAC-Net [23], ISTL
[27], sRNN-AE [28] 98.1%

Chen, G. et al. [29] (2020) NeuroAED [29] EMST [29], SR [30], K-SVD [31] 95.8%
Li, G. et al. [32] (2022) Time series dataset [32] LSTM [14], AE [21] 91.7%

2.2. Machine Learning Argorithms

In this study, a dementia patient abnormal behavior detection system based on lifelog
data will be developed by applying not only models like KNN and RF, as examined in
Section 2.1, but also additional models, such as logistic regression (LR) [33], decision tree
(DT) [34], support vector machines (SVM) [35], and multi-layer perceptron (MLP) [36].
By comparing and analyzing the results obtained in the research, the optimal model can
be selected, and tangible outcomes that contribute to the health and safety of dementia
patients are expected.

The data introduced in Section 3, to be presented later, possess a very simple structure.
Applying complex models like AE, MemAE, and LSTM to such data may cause overfitting
and result in lower accuracy. Therefore, this study will exclude the use of AE, MemAE, and
LSTM, focusing on other models instead.
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In this section, the principles, advantages, and disadvantages of the models to be used
in the experiments are briefly described. This will aid readers in understanding how each
model is applied to the data and contributes to the detection of abnormal behavior.

2.2.1. K-Nearest Neighbors (KNN)

KNN is a simple supervised learning algorithm that can be used for both classification
and regression problems.

• Principle: KNN classifies a data point based on the majority class of its k-nearest
neighbors in the feature space.

• Pros: Easy to implement, works well with small datasets, and requires no training.
• Cons: Computationally expensive for large datasets, sensitive to noise and irrelevant fea-

tures, and performance decreases as the dimensionality of the feature space increases.

2.2.2. Random Forest (RF)

RF is an ensemble learning method that constructs multiple decision trees to improve
overall prediction accuracy.

• Principle: Combines the predictions of multiple decision trees, which are trained on
different subsets of the dataset, to make a final decision.

• Pros: Reduces overfitting, handles missing values well, and provides good feature
importance estimates.

• Cons: Can be slow to train and predict, particularly with many trees, and may struggle
with very high-dimensional datasets.

2.2.3. Logistic Regression (LR)

LR is a statistical method for binary classification problems.

• Principle: Models the probability of the outcome using the logistic function applied to
a linear combination of input features.

• Pros: Easy to implement, fast to train, and provides interpretable feature coefficients.
• Cons: Assumes a linear relationship between features and the log-odds of the outcome

and may struggle with complex decision boundaries.

2.2.4. Decision Tree (DT)

DT is a type of model used for both classification and regression tasks.

• Principle: Splits the data into subsets based on feature values, recursively constructing
a tree-like structure with decision nodes and leaf nodes.

• Pros: Easy to understand and interpret, can handle both numerical and categorical
data, and requires little preprocessing.

• Cons (Continued): Prone to overfitting, sensitive to small changes in the data, and
may produce biased trees if some classes dominate.

2.2.5. Support Vector Machines (SVM)

SVM is a supervised learning algorithm for classification and regression tasks.

• Principle: Finds the optimal hyperplane that maximizes the margin between different
classes in the feature space.

• Pros: Effective in high-dimensional spaces, versatile due to the use of kernel functions,
and provides good generalization performance.

• Cons: Can be slow to train for large datasets, requires parameter tuning, and may
struggle with noisy or overlapping classes.

2.2.6. Multi-Layer Perceptron (MLP)

An MLP is a type of feedforward artificial neural network, typically used for super-
vised learning tasks such as classification and regression.
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• Principle: Consists of an input layer, one or more hidden layers, and an output layer,
with each layer containing a set of interconnected nodes (neurons). The network is
trained using backpropagation and gradient descent.

• Pros: Can learn complex non-linear relationships between input and output and can
be used for a wide range of applications.

• Cons: Can be sensitive to hyperparameter choices, prone to overfitting, and may
require significant computational resources for large networks.

3. Design and Implementation of Machine-Learning-Based Dementia Patient
Abnormal Behavior Detection System

In this section, the design and implementation of a machine-learning-based system
for detecting abnormal behavior in dementia patients are described. The proposed system
employs various machine learning models, such as those outlined in Section 2.2, to detect
and classify the behavior of dementia patients. Furthermore, an overview of the data
collection methods and descriptions for the dementia patients’ lifelog data are provided.

3.1. System Structure and Description

This proof-of-concept study was conducted in an actual nursing home in South Korea.
The experiment took place on one floor dedicated to caring for dementia patients within
the nursing home, and the data of one dementia patient were utilized for the experiment.
As illustrated in Figure 1, the system is a machine learning-based system for detecting
abnormal behavior in dementia patients, and it collects lifelogs (smartwatch ID, sensor ID,
time) from lifelog sensors attached to furniture within the nursing home.
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Figure 1. Structure of machine-learning-based system for detecting abnormal behavior in
dementia patients.

When a dementia patient wearing a smartwatch interacts with the lifelog sensors,
such as through shaking, the corresponding lifelog (smartwatch ID, sensor ID, time) is
transmitted to the lifelog sensor hub and data collection occurs. The lifelog is then stored
in the database within the lifelog data management server on the Amazon Web Services
(AWS) cloud. At one-minute intervals, the lifelog is sent to the abnormal behavior detection
server, where the model determining the presence of abnormal behavior is executed. The
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resulting decision is subsequently transmitted to the smartphones of doctors and nurses
via an app.

The smartphone app, designed as an experimental application to run on Android
devices, is exclusively installed on the smartphones of participating doctors and nurses.
This app generates audible and vibratory alarms whenever abnormal behaviors occur in
dementia patients, allowing users to verify the timing of these incidents, as illustrated in
Figure 1 of the smartphone application interface.

It is important to acknowledge the limitation of this study, which is that it includes
data from a single dementia patient in a single environment. While this allows for a more
controlled examination of the feasibility of the system, it may limit the generalizability of the
results. Future work should aim to include data from multiple patients in various settings,
including those without dementia, to evaluate the robustness of the proposed system more
thoroughly. We see this work as an initial step towards a more comprehensive investigation
into machine-learning-based abnormal behavior detection in dementia patients.

3.2. Lifelog Sensor Device

The lifelog sensor device is utilized to detect the activities of dementia patients by
being attached to furniture within the nursing home. These sensors consist of adhesive
lifelog sensors, smartwatches, and lifelog sensor hubs. To minimize implementation costs,
these sensor devices are equipped with a minimal set of internal sensors and batteries.

The locations where adhesive lifelog sensors are attached are shown in Figure 2, and
the sensor numbers, locations, furniture, and equipment are listed in Table 2. Actual photos
of the furniture within the nursing home with attached sensors are displayed in Figure 3.
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Table 2. Location and details of adhesive lifelog sensor devices.

Sensor Number Location Furniture or Appliances

1 Bedroom Bedroom door
2 Restroom—Man Restroom door 2
3 Program room Refrigerator door
4 Bedroom Bedpan
5 Program room Table chair
6 Nursing room Medicine box
7 Bedroom Locker drawer
8 Main entrance Main entrance
9 Bedroom Personal bucket
10 Restroom Main restroom door
11 Restroom—Woman Restroom door 1

Information 2023, 14, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. Actual photos of adhesive lifelog sensor devices installed in nursing home. 

The adhesive lifelog sensor features a square outer panel made of acrylonitrile–
butadiene–styrene [37], and its interior is composed of a motion-detecting sensor and 
battery, as depicted in Figure 4. 

Figure 3. Actual photos of adhesive lifelog sensor devices installed in nursing home.

The adhesive lifelog sensor features a square outer panel made of acrylonitrile–
butadiene–styrene [37], and its interior is composed of a motion-detecting sensor and
battery, as depicted in Figure 4.

The smartwatch, worn by dementia patients, can be charged using a micro-USB
charger and detects the movements of the paired lifelog sensors via Bluetooth without
any special settings according to the registered device ID on the server. The smartwatch
has an outer panel made of polycarbonate and contains a battery, Bluetooth module, and
display module internally. Only dementia patients participating in the experiment wear
such smartwatches. The lifelog sensor hub serves to receive the lifelog data transmitted
by the smartwatch and forwards it to the server. Therefore, it is simply composed of a
Bluetooth transceiver module and a battery. The smartwatch and lifelog sensor hub are
configured as shown in Figure 5.
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3.3. Lifelog Dataset

Dementia patients may exhibit abnormal behaviors when they are confused in situa-
tions that are difficult to understand, feel anxious, or experience loneliness. Representative
examples include insomnia, confusingly wearing clothes or bed sheets, and problematic
behavior in the restroom, which are summarized in Table 3.

Table 3. Examples of abnormal behaviors in dementia patients.

Abnormal Behaviors Description

Wandering Walking aimlessly and getting lost, especially in
familiar surroundings

Falls Losing balance and falling, often leading to injury
Sleep disturbances Difficulty falling asleep or staying asleep

Delusions/Hallucinations seeing, hearing, or believing things that are not real

Agitation and aggression Verbal or physical outbursts, including hitting, biting, or
kicking, often in response to frustration or confusion

Repetitive questioning/behaviors Asking the same question or doing the same
action repeatedly

Eating disturbances (overeating,
pica, anorexia)

Eating too much or too little, or eating non-food items,
such as paper or dirt

Medication mismanagement Taking too much medication or taking
medication improperly

Hoarding/Inappropriate behaviors
(including hoarding objects or

engaging in socially inappropriate
or unhygienic behaviors)

Collecting or hoarding items or engaging in behavior that
is socially inappropriate or unhygienic

Lifelog sensors play a role in detecting and analyzing the data collected from dementia
patients’ abnormal behaviors to determine whether these behaviors are abnormal. For this
purpose, the lifelog sensors are equipped with the capability to detect abnormal behaviors,
such as repetitive actions in daily life and sleep disturbances. Thus, the lifelog sensors can
detect abnormal behaviors like the repetitive behaviors and sleep disturbances introduced
in Table 3. Accurately detecting and analyzing these abnormal behaviors is important for
understanding and managing the health status of dementia patients.

A part of the lifelog dataset collected using the devices introduced in Section 3.2
is presented in Table 4. This dataset consists of date, time, sensor number, and labels,
where the sensor number corresponds to the numbers described in Figure 2 and Table 2.
The labels include three labels: 0 for normal behavior, 1 for repetitive behaviors, and 2
for sleep disturbances, which were manually assigned by the caregivers attending to the
dementia patients.

Table 4. Lifelog dataset with labeled abnormal behaviors.

Date Time
Sensor Numbers

Label
1 2 3 4 5 6 7 8 9 10 11

15 November 2022 07:10 0 0 0 0 0 0 3 0 37 0 0 1
15 November 2022 07:11 0 0 0 0 0 10 7 0 5 0 0 0
15 November 2022 07:12 0 0 0 0 0 0 17 0 9 0 0 0
15 November 2022 07:14 0 0 6 0 0 0 0 0 0 0 0 0

The sensor data was collected from a single dementia patient who had given consent
for their personal information to be used. The collection period was from 11 November 2022
to 20 December 2020, and during this time, a total of 65,844 rows of data were collected.
There were only a small number of missing data entries, most of which were due to
temporary sensor malfunctions or communication issues. Whenever sensor malfunctions
were identified, the affected sensors were promptly replaced.
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4. Experiment and Experimental Results

In this section, the lifelog dataset introduced in Table 4 is preprocessed, the param-
eters of the learning models are explained, and the performance results of the models
are presented.

4.1. Data Preprocessing

After preprocessing the lifelog dataset introduced in Table 4, the learning models were
set up and experiments were conducted. The data preprocessing involved the following
steps: First, the date and time were converted to datetime format and the datetime column
was set as the index. Upon examining the data in Table 4, missing values were found
where the sensors did not function. Consequently, all data rows with missing values were
removed. Next, appropriate features were added: total_activations (TA) represent the total
number of activated neurons in the entire lifelog dataset, max_activation (MaxA) indicates
the highest number of activated neurons in each lifelog, mean_activation (MeanA) denotes
the average number of activated neurons in each lifelog, and std_activation (SA) signifies
the standard deviation of the number of sensor activations. Finally, the preprocessed data
was divided into training and testing sets in a 7:3 ratio. The preprocessed data is shown
in Table 5.

Table 5. Preprocessed lifelog dataset.

Datetime
Sensor Numbers

Label TA MaxA MeanA SA
1 . . . 11

15 November 2022 07:10 0 . . . 0 1 21.0 15.0 3.818 7.723
15 November 2022 07:11 0 . . . 0 0 24.0 24.0 4.364 10.854
15 November 2022 07:12 0 . . . 0 0 40.0 37.0 7.363 17.023
15 November 2022 07:15 0 . . . 0 0 22.0 10.0 4.000 6.842
15 November 2022 07:16 0 . . . 0 0 26.0 17.0 4.727 9.234

Visualization is essential for comparing data before and after preprocessing. Di-
mensionality reduction techniques, such as T-distributed stochastic neighbor embedding
(t-SNE) [38] and uniform manifold approximation and projection (UMAP) [39], are com-
monly used for this purpose. Dimensionality reduction is a technique in which high-
dimensional data is simplified into lower dimensions for easier visualization and analysis.
T-SNE is a nonlinear dimensionality reduction technique that maps high-dimensional data
to lower dimensions while preserving similarities. However, t-SNE can have slow compu-
tational speeds and performance issues. UMAP was developed to address these problems.
This nonlinear dimensionality reduction technique is like t-SNE but operates faster and
can be applied to large-scale data. UMAP aims to preserve the similarity between high-
dimensional data points in lower dimensions. It achieves this by selecting an optimized
approximation method depending on the complexity of the data. Consequently, UMAP is
better suited for the visualization and analysis of large-scale and high-dimensional data.

In this study, UMAP was utilized to visualize the data both before and after prepro-
cessing, as depicted in Figure 6. The color assignments for the dots are as follows: purple
dots represent label 0, green dots signify label 1, and yellow dots denote label 2. Prior to
preprocessing, data points indicating normal behaviors, repetitive behaviors, and sleep
disturbances were closely clustered together. This dense clustering made distinguishing
between different behavioral patterns challenging due to their overlap.

However, after preprocessing, the data distribution became more explicit, with the
different behavior data points becoming more dispersed. It’s important to note here that
we intentionally aimed for a sparse feature map. This may seem counterintuitive since
compact and well-separated clusters typically improve classification. However, in our
context, in which we deal with various behaviors that might interact and overlap, a sparse
feature map brings a particular advantage.
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Specifically, this sparsity in the feature map reveals a nuanced view of the underlying
data structure. It helps in uncovering subtler patterns and potential outliers that might
be missed in a more densely clustered feature map. Furthermore, the sparse feature map
offers additional insights into the relations and distances between different clusters. These
insights are particularly valuable in our study as they enhance our understanding of the
behavior patterns of dementia patients. We believe this approach, although somewhat
unconventional, provides a more comprehensive overview of the behavioral patterns we
are studying.

4.2. Parameters and Performance Evaluation of Models

In the experiment, a total of six models were used: KNN, RF, LR, DT, SVM, and MLP,
as introduced in Section 2.2. The initial parameters for these models were set as shown
in Table 6 based on default settings typically used in machine learning libraries, such as
Scikit-learn, and guided by previous empirical studies.

Recognizing that the model performance can be highly dependent on the chosen
parameters, we embarked on a fine-tuning process. We utilized techniques like grid search
and cross-validation to ensure the parameters’ suitability for our specific dataset. The pa-
rameters were adjusted iteratively based on the models’ performance in preliminary runs.

Table 6 hence represents the best-performing parameter settings from our experimental
runs. It is crucial to highlight that these parameters are tailored to our specific dataset and
may not be optimal for other datasets or problem contexts. Therefore, when applying these
models to other datasets or problem contexts, a similar process of parameter tuning should
be performed.

In this study, confusion matrices were used, and accuracy, precision, recall, and F1
score were calculated to evaluate the performance of each model. Localization curve (LC),
receiver operating characteristic (ROC), and precision–recall curve (PRC) were also utilized.
First, the confusion matrix is a visualization tool that helps measure the performance of
classifiers, providing an intuitive view of the relationship between actual and predicted
labels. Prediction results are classified as true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) when compared to the actual class. Table 7 is an example of a
confusion matrix for a binary classification model with two classes (positive/negative). In
Table 7, TP refers to cases correctly predicted as positive when they are positive, and TN
refers to cases correctly predicted as negative when they are negative. FP refers to cases
incorrectly predicted as positive when they are negative, and FN refers to cases incorrectly
predicted as negative when they are positive.
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Table 6. Experimental setup and model parameters.

Model Parameters

KNN
n_neighbors: 5
weights: ‘uniform’
algorithm: ‘auto’

RF

n_estimators: 100
max_depth: None
min_samples_split: 2
min_samples_leaf: 1
max_features: ‘auto’
bootstrap: True

LR

C: 1.0
penalty: ‘l2’
solver: ‘lbfgs’
max_iter: 100

DT

criterion: ‘gini’
splitter: ‘best’
max_depth: None
min_samples_split: 2
min_samples_leaf: 1

SVM

C: 1.0
kernel: ‘rbf’
gamma: ‘scale’
decision_function_shape: ‘ovr’
max_iter: -1

MLP

hidden_layer_sizes: 1 layer of 100 neurons (100)
activation: ‘relu’
solver: ‘adam’
alpha: 0.0001
batch_size: ‘auto’
learning_rate: ‘constant’
max_iter: 200
random_state: 42

Table 7. Confusion matrix.

Actual Values
Positive Negative

Predicted Values
Positive TP FP
Negative FN TN

To evaluate the performance of the models, metrics such as accuracy, precision, recall,
and F1 score were used. These metrics are described as follows:

• Accuracy: This metric represents the proportion of instances in which the model’s
predictions match the actual values. In other words, it signifies the ratio of samples
that the model correctly predicted out of the total samples. Accuracy is one of the
fundamental indicators for evaluating the performance of a classification model and is
a representative metric that demonstrates how accurately the model predicts. Accuracy
is calculated as shown in Equation (1).

Accuracy =
TP + TN

(TP + TN) + (FP + FN)
(1)

• Precision: This metric represents the proportion of samples that are positive among
the results predicted as positive by the model. In other words, it indicates how many
of the samples predicted as positive by the model are genuinely positive. A high



Information 2023, 14, 433 13 of 19

precision means that most samples predicted as positive by the model are positive.
Precision is calculated as shown in Equation (2).

Precision =
TP

TP + FP
(2)

• Recall: This metric represents the proportion of samples predicted as positive by the
model among the actual positive samples. In other words, it indicates how many of
the actual positive samples the model predicts as positive. A high recall means that
the model accurately identifies most of the positive samples. Recall is calculated as
shown in Equation (3).

Recall =
TP

TP + FN
(3)

• F1 Score: This metric is the harmonic mean of precision and recall. It represents the
average value considering both precision and recall, indicating the overall performance
of the model. A high F1 score implies that both precision and recall are high. F1 score
reaches its highest value when precision and recall are balanced. F1 score is calculated
as shown in Equation (4).

F1-Score = 2 · Precision · Recall
Precision + Recall

(4)

Ultimately, to evaluate the performance of the models, metrics such as accuracy,
precision, recall, and F1 score were calculated, as shown in Table 8. The logistic regression
model exhibited high precision, recall, and F1 score for labels 0 and 2 but low performance
for label 1. The decision tree model displayed high precision, recall, and F1 score for all
labels. The random forest model demonstrated high precision, recall, and F1 score for
labels 0 and 2 but low recall for label 1. The SVM model showed high performance for label
0 but low performance for labels 1 and 2. The KNN model revealed high precision, recall,
and F1 score for labels 0 and 2 but low performance for label 1. The MLP model presented
high precision, recall, and F1 score for all labels, offering the highest performance among
all models.

Table 8. Performance evaluation results by model.

Model Accuracy
Precision Recall F1 Score

0 1 2 0 1 2 0 1 2

LR 0.9794 0.98 0.48 1 1 0.08 0.89 0.99 0.13 0.94
DT 0.9997 1 1 1 1 0.99 1 1 0.99 1
RF 0.9959 1 1 0.99 1 0.81 0.99 1 0.89 0.99

SVM 0.9661 0.97 0 1 1 0 0.14 0.98 0 0.24
KNN 0.9871 0.99 0.91 0.97 1 0.49 0.88 0.99 0.64 0.92
MLP 0.9999 1 1 1 1 1 1 1 1 1

In this study, the confusion matrix for each model was visualized, allowing for a
more detailed analysis of the model’s prediction results by examining the TP, TN, FP, and
FN values. To create a confusion matrix for each model, the model was first fitted to the
training dataset and predictions were made on the test dataset. Subsequently, the confusion
matrix was visualized using the plot_confusion_matrix function. This function employed
the heatmap feature from the Seaborn library to represent the confusion matrix as a color-
coded grid. Each cell displayed the number of actual labels and predicted labels for the
corresponding labels. The generated confusion matrices enabled a comparative analysis of
the performance of each model. By examining Figure 7, it can be observed that all models
made correct predictions, with the KNN model having the lowest prediction label count at
19,032, but the performance difference was minimal due to a difference of approximately
10 from the other models.
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Secondly, LCs were found to be useful visualization tools for evaluating the accuracy
of each label when classifiers make predictions. LCs display how the accuracy for a specific
label varies within a certain range, which can help identify the range in which predictions
are incorrect for that label. LCs are commonly used for assessing the reliability and error
analysis of classification models and can be generalized for other classification problems.
To generate an LC, the classification threshold for each label was adjusted based on the
predicted probabilities. Next, samples of each label were selected from the test dataset,
and the accuracy of the selected samples was calculated while adjusting the classification
threshold. This process was repeated with the threshold varying from 0 to 1, generating
the LC. The resulting LC visualized the accuracy and classification threshold changes for
the given label, allowing for comparative analysis of model performance. By examining
Figure 8, it can be confirmed that the RF, DT, and MLP curves show the best accuracy,
trending upward.
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Thirdly, receiver operating characteristic curves are a visualization tool used to eval-
uate the performance of binary classification models. These curves plot the TPR against
the FPR for different classification thresholds. The TPR represents the proportion of ac-
tual positives that are correctly identified, while FPR represents the proportion of actual
negatives that are incorrectly identified as positive. The area under the curve (AUC) of
the ROC curve is a widely used metric for measuring the performance of classification
models, with a value closer to 1 indicating better performance. ROC curves provide a way
to visually compare the performance of different models. In Figure 9, we can observe that
the RF, DT, LR, and MLP models exhibit high performance, with RF and MLP achieving
the best performance, with an AUC of 1.00 for all labels (0, 1, 2).
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In this study, precision–recall curve is used to evaluate the performance of binary
classifiers. PRC is like ROC curves but is more suitable for imbalanced class datasets since
it considers classification errors between classes and visualizes the relationship between
precision and recall. PRCs display the changes in precision and recall at various thresholds,
using a curve with recall on the X-axis and precision on the Y-axis as an indicator to
evaluate the performance of classification models. Precision represents the proportion of
true positive samples among the positive samples predicted by the model, while recall
represents the proportion of true positive samples among the actual positive samples.
Average precision (AP) is the average of precision values across all recall values and
represents the average of precision values rather than the area under the PRC graph. The
higher the AP, the better the model’s performance. PRCs are particularly useful when
evaluating the performance of classification models for imbalanced class datasets. After
analyzing the PRCs for each model, it was found that RF, DT, and MLP exhibit high
performance, with MLP achieving the best performance with an AP of 1.00 for all labels, as
shown in Figure 10.
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5. Conclusions

In this study, a machine learning-based system was developed to detect abnormal
behaviors in dementia patients using low-cost sensors to collect lifelog data. The system
was tested in a nursing home in South Korea, where actual data from dementia patients
were collected and used to train machine learning models. The MLP model exhibited
the best performance with an accuracy of 0.99 and a precision, recall, and F1 score values
of 1.00 for all classes. While the DT model also showed high performance, overall, the
MLP model demonstrated superior results. Other models displayed high performance for
certain classes but lower performance for others.

The proposed system holds the potential to alleviate the workload of caregivers,
promptly detecting abnormal behaviors in nursing homes and alerting caregivers, thereby
preventing accidents and injuries among dementia patients. This system built using cost-
effective components, mainly affordable gyro sensors, offers a feasible solution for broad
implementation across numerous nursing homes. As compared to other surveillance
systems, such as CCTV-based systems, our system provides a more affordable solution
without significant sacrifice in effectiveness. This cost-effectiveness, potentially enhancing
the quality of life of dementia patients and reducing social costs, is one of the primary
advantages of our system.

However, a limitation of this study is that experiments were conducted at a single
nursing home, using data from only one dementia patient due to research costs and other
constraints. Additionally, the lifelog data of the dementia patient cannot be made public
due to personal information protection laws.

In future research, it is planned to expand the experiments to various nursing homes
and collect lifelog data from multiple dementia patients. Additionally, with the consent of
the guardians of dementia patients, we will make the collected data public. Furthermore,
in nursing homes in which a video-based abnormal behavior detection system can be
established, data relevant to this system will be collected and utilized for model training.
By analyzing a more diverse range of data and situations, we aim to improve the system’s
performance and provide more effective assistance to dementia patients.

This study suggests that the developed system has potential for utilization in various
fields in the future. For example, the system can be applied as a monitoring system for
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patient safety in various facilities frequented by the elderly and used to detect abnormal
behaviors in patients with other neurological disorders. Additionally, there is significant
potential for use in smart home environments. For dementia patients living at home, this
system can continuously monitor the patient’s condition and immediately alert family
members to any abnormal behavior, reducing both the safety concerns of dementia patients
and the worries of their families. The possibilities for application in the healthcare and
medical fields are immense, and it is expected that through continuous research and
development, this system will help in a wide range of application areas and scenarios.
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