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Abstract: As a dominant method for face recognition, the subspace learning algorithm 

shows desirable performance. Manifold learning can deal with the nonlinearity hidden in the 

data, and can project high dimensional data onto low dimensional data while preserving  

manifold structure. Sparse representation shows its robustness for noises and is very practical 

for face recognition. In order to extract the facial features from face images effectively and 

robustly, in this paper, a method called graph regularized within-class sparsity preserving 

analysis (GRWSPA) is proposed, which can preserve the within-class sparse reconstructive 

relationship and enhances separatability for different classes. Specifically, for each sample, 

we use the samples in the same class (except itself) to represent it, and keep the 

reconstructive weight unchanged during projection. To preserve the manifold geometry 

structure of the original space, one adjacency graph is constructed to characterize the 

interclass separability and is incorporated into its criteria equation as a constraint in a 

supervised manner. As a result, the features extracted are sparse and discriminative and 

helpful for classification. Experiments are conducted on the two open face databases, the 

ORL and YALE face databases, and the results show that the proposed method can 

effectively and correctly find the key facial features from face images and can achieve better 

recognition rate compared with other existing ones. 
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1. Introduction 

Face recognition is an important but complicated problem in computer vision. It has broad 

applications ranging from computer interface to surveillance. Many algorithms have been proposed 

in literature, including two-dimensional face recognition and three-dimensional face recognition 

methods [1–4]. Three-dimensional face recognition, which tries to use 3D geometry of the face for 

identification, proves to be more robust to illumination, pose and disguise. However, the problem of 

facial expressions is a major issue in 3D face recognition, since the geometry of the face significantly 

changes with different facial expressions. Most of the images can be seen as two-dimensional matrices, 

so 2D face recognition also received tremendous attention in computer vision and pattern recognition. 

Subspace learning methods, such as principle component analysis (PCA) [5] and linear discriminant 

analysis (LDA) [6], have been extensively studied. Both of them seek to find the low-dimensional 

representation for the original high-dimensional data, and to preserve some kind of intrinsic structure. 

PCA is an unsupervised method and the projections are obtained by maximizing the total scatter of 

the data. While LDA is a supervised method and it tries to maximize the ratio of between-class scatter 

to within-class scatter. Experiments show that LDA outperforms PCA in face recognition. However, it 

is reported that the face images probably reside in some sort of manifolds [7]. One problem of these two 

algorithms is that they only exploit the linear global Euclidean structure and ignores the local geometry 

structure. Although they have been extended to nonlinear methods like KPCA [8] and KLDA [9] by 

kernel trick, it is hard to choose a perfect kernel function and the computation is expensive. 

Manifold learning tries to find an embedding that projects the high dimensional data onto low 

dimensional data while preserving the intrinsic geometry of data, especially the local geometry. The 

representatives are Isomap [10], locally linear embedding (LLE) [11] and Laplacian eigenmaps (LE) [12]. 

However, the manifold learning algorithms are affected by two critical problems [13]: (i) the 

construction of the adjacency graph, (ii) the embedding of new test data, which is also called the out of 

sample problem. As for the later problem, He proposed a linear method named locality preserving 

projections (LPP) [14] to approximate the eigenfunctions of the Laplace–Beltrami operator on the 

manifold, that is to say, LPP is a linear version of LE. By considering the local information and class 

label information, many variants [15–18] were proposed and can achieve good performance. One critical 

step in these methods is to construct the adjacency graph; however, how to define the sparse adjacency 

weight matrices is still an open problem. 

Traditional method for adjacency graph is to use the k nearest  neighborhood graph or  

ε-neighborhood graph. However, these two methods are all parametric and the performances of the 

algorithms are highly dependent on the choice of its parameter. In [19], it is reported that the adjacency 

graph structure and graph weights are highly interrelated and should not be separated. So, it is desirable 

to design a method that can simultaneously carry out these two tasks in one step. To this end, recently 

two 1l  graph construction methods [20,21] have been proposed, which complete the adjacency graph 

and graph weight calculation within one step. 

Recently, the sparse representation (SR) [22] has been extensively studied and found wide applications 

in computer vision and image processing problems. The main idea of SR is that a query image can be 

sparsely represented as a linear combination of all the training samples, its non-zero representation 

coefficients are naturally sparse and the representations are mostly from the same class of the query 
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image, SR is an unsupervised method but it exploits the discriminant nature of sparse representation for 

classification. Based on this idea, Qiao proposed sparsity preserving projection (SPP) [23] for feature 

extraction, which tries to preserve the sparse reconstructive relationship of samples in the  

low-dimensional data by minimizing the distance between sparsely reconstructed samples and the 

original sample. However, there are still some issues to be solved. First, SPP is an unsupervised method 

and does not make use of the class information. Second, when the dictionary is large, SPP is very  

time-consuming. 

To this end, in this paper, a method called graph regularized within-class sparsity preserving 

projection analysis (GRWSPA) is proposed, which aims at preserving the within-class sparse 

reconstructive relationship by minimizing the distance between sparsely reconstructed samples in the 

same class (within class) and their corresponding original samples like SPP, which can reduce the 

computation time, as the number of samples in each class is usually much smaller than the total number 

of training samples. At the same time, by assuming samples in different classes lie on different  

sub-manifolds, it tries to maximize the scatter of inter-class samples by constructing a between-class 

adjacency graph, and pulls samples from different classes as far as possible. 

The rest of the paper is organized as follows. In Section 2, SPP is briefly reviewed. The proposed 

algorithm is presented in Section 3. In Section 4, experiments are carried out to evaluate the proposed 

algorithm. Finally, the conclusions are drawn in Section 5. 

2. Sparsity Preserving Projections 

Let 1 2{ , , , }, , 1,2, ,D

n iX x x x x R i n      be the training samples. In real applications, the 

dimensionality D  is often very high. One reasonably way is to use dimensionality reduction to map the 

data from the high-dimensional space to a low dimensional one, which can be expressed mathematically 

as T d

i iy A x R   for any ix , usually d D , here A  is called the transformation matrix. 

The idea of SPP is that every sample in the training samples can be represented as a linear combination 

of the remaining samples. That is, i ix X , here i  has the form of 1 2 1 1{ , , , ,0, , , }i i i na a a a a     , 

and most elements of i  are zero. This can be formulated as 

0
       min

. .    

i

i is t x X





 (1) 

where 
0i  denotes the 0l  norm, meaning the number of non-zero entries in i . However, this 

problem is NP-hard. If i  is sparse enough, the above optimization can be replaced as 

1
         min

. .     

i

i is t x X





 (2) 

This can be solved by standard convex programming method [24]. Suppose i  is the optimal solution 

to the above optimization, SPP then tries to preserve the sparse reconstruction relationship, which can 

be expressed as the following optimization: 
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         min

. .      

n
T T

i i

i

T T

A x A X

s t A XX A I






 (3) 

which can be simplified by simple algebra: 

1

1

    min

( )( )

( ( )( ) )

( )

n
T T

i i

i

n
T T

i i i i

i

n
T T T

i i i i

i

T T T T

A x A X

A x X x X A

A X e e X A

A X I S S S S X A



 

 







  

  

   







 (4) 

So the optimal projections are the eigenvectors of the following generalized eigenvalue problem 

( ) λT T T TX I S S S S X A XX A     (5) 

where 1 2{ , ,..., }nS    . 

3. Graph Regularized Within-Class Sparsity Preserving Analysis 

From the above section, we can see that SPP is an unsupervised method, and does not use the label 

information properly. Moreover, the sparse representations are obtained from the whole training 

samples. If the number of training samples is large, the process is very computation-expensive. In this 

section we will present an improved SPP algorithm. 

3.1. Preserve the Sparsity Structure for Within-Class Samples 

In sparse representation, a test sample ix  can be represented as a linear combination of all training 

samples, the non-zero sparse representation coefficients j

iw  can reflect the contribution of jx  while 

reconstructing ix . The higher value j

iw  is, the more similar jx  and ix  are, and are supposed to 

concentrate on the training samples within the same class as the test sample. While the small value j

iw  

means that jx  has little contribution for reconstructing ix , and is probably from different classes. 

However, SPP does not consider the class information, and its adjacency graph weights are based on 

sparse representation and take the whole training samples as dictionary. However, it is very time-

consuming if the number of training samples is large. One solution to this problem might be that we can 

take the samples in the same class as the dictionary to reconstruct ix , like SPP, it can be represented as: 

, 1

, . ,

.

        min

. .   

 1

k i

k i k i k i

j

k i

j

w

s t x X w

w





 
(6) 

where ,k ix  is denoted as the thi  sample in the thk  class, 1,2,..., ki n , 1,2,...,k c , here kn  means the 

number of samples in the thk  class, c means the number of classes. .k iX  denotes the whole samples in 
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the thk  class. The sparse representation coefficients 
,k iw  have the form of 

1 2 3 1 1

, , , , , , ,( , , , , ,0, , , )kni i T

k i k i k i k i k i k i k iw w w w w w w    . Suppose '

, ,(0,0,0, ,0, ,0, ,0)T T

k i k iw w   , then the weight 

matrix has the form of 
1 2

' ' ' ' ' '

1,1 1, 2,1 2, ,1 ,( , , , , )
cN N c c nW w w w w w w     . 

Like SPP, we hope that the sparse structure can be well preserved, which can be solved by the 

following formulation: 

2
'

, ,

1 1

         min

. .     

knc
T T

k i k i

k i

T T

A x A Xw

s t A XX A I

 






 (7) 

The above optimization can be reduced to the following problem: 

       max ( )

. .   

T T

T T

tr A XSX A

s t A XX A I
 (8) 

where T TS W W W W   . 

3.2. Discover the Discriminant Structure for between Class Samples 

It is supposed that samples from different classes lie on different sub-manifolds; one reasonable way 

for classification is to map these sub-manifolds as far as possible. We construct an adjacency graph 

( , )G X B  over the training data X  to characterize the relationship for different classes. The elements 

of the weight matrix B  can be defined as follows: 

i j(1 ) if x and x are k nearest neighbors but have different labels

0 otherwise

i j

i jij

x x

x xB




 



 (9) 

In order to guarantee the discriminant ability in low dimensional representation, like Unsupervised 

Discriminant Projection (UDP) [25], we hope that the connected points in the adjacency graph should 

stay as distant as possible, which can be expressed as the following optimization: 

21
max ( )

2
i j ij

ij

y y B
nn

  (10) 

where iy  is the low dimensional representation of ix . The above objective incurs a heavy penalty if 

nearby points ix  and jx  are mapped close while they are belonging to different classes, which is an 

attempt to ensure that if points ix  and jx  are close but are from different classes, then iy  and jy  are 

far apart, which can encode the local discriminant information and helpful for classification. 

We can simplify the above optimization as follows: 

1 1
( )

2

n
T

B i j ij B

ij

J y y B A S A
nn nn

    (11) 

where BS  is called the Laplacian difference scatter matrix. 
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1
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i i j
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S B x x x x

B x x B x x B x x

D x x B x x

XDX XBX

XLX

 

     

  

  

  

 

 





  

   

(12) 

where D  is a diagonal matrix, as ii ij

j

D B , L D B   is the Laplacian matrix. 

3.3. GRWSPA 

To take the within-class reconstruction relationship and between-class separability into account, it is 

desirable to keep the reconstruction weights in the same class as SPP while maximize the local 

discriminant information. By combining 3.1 and 3.2, it can easily form the following optimization 

        max ( ) μ ( )

. .     

T T T T

T T

tr A XSX A tr A XLX A

s t A XX A I




 (13) 

where μ  is a factor to balance the sparse representation and the discriminant ability. 

For compact expression, the maximization problem can further be transformed to the following problem: 

μ
max

T T T T

T T

A XSX A A XLX A

A XX A
A


 (14) 

Then the optimal A  is the eigenvectors corresponding to the largest d  eigenvalues of the following 

generalized eigenvalue problem: 

( μ ) λT T TXSX XLX A XX A   (15) 

4. Experimental Section 

In this section, several experiments are carried out to show the effectiveness of the proposed algorithm 

on the ORL and YALE databases. We compare our method with some classic methods including LDA, 

LPP, UDP and SPP. For classification, we use the nearest neighbor classifier for its easy implementation. 

There is a parameter μ , here we set it to max maxμ λ ( ) / λ ( )T TXSX XLX , where maxλ ( )TXSX  means the 

maximum eigenvalue of TXSX . Note that, during the feature extraction, we will encounter that some 

matrices are singular, so here PCA is employed as a preprocessing step and keep 98% energy of images. 

For UDP, the neighborhood size needs to be determined, here we set it to 1ik n  , where in  is the 

number of samples in the thi  class. 

The ORL database contains 40 individuals; each has 10 sample images with some variations in poses, 

facial expressions and some details. For each image, it is taken at different times and has different 

variations including expressions like open or closed eyes, smiling or non-smiling. Some are captured 
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with a tolerance for some tilting and rotation of the face up to 20 degrees. Figure 1 shows some samples 

of one subject from ORL database. 

 

 

Figure 1. Samples of one subject from ORL database. 

We randomly choose 3,4,5,6, 7l and  images from each class for training and the remaining for test. 

For each l , we run 10 times for each algorithm and obtain the average rate as the recognition rate.  

Table 1 gives the classification accuracy rates (%) for each algorithm under different sizes of training. 

Table 1. Recognition Rates on ORL. 

Training  PCA LDA UDP SPP GRWSPA 

3 78.2 84.7 82.8 83.2 82.8 

4 83.7 90.8 88.2 88.8 89.9 

5 86.8 93.7 88.7 90.4 95.2 

6 89.1 95.6 93.8 91.5 96.8 

7 92.4 96.9 94.7 94.8 98.1 

To see how the dimensionality affects recognition rate, Figure 2 shows the recognition rates for 

different method with respect to different dimensionality on ORL database with four training samples 

per person. 

 

Figure 2. Recognition rates vs. dimensionality on ORL database.  
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The YALE database contains 165 images from 15 subjects, with each 11 images. The images are 

captured with variations in lighting condition, facial expression (normal, happy, sad, sleepy, surprised, 

and wink). Figure 3 shows some samples of one subject from YALE database. 

 

 

Figure 3. Samples of one subject from YALE database. 

We randomly choose 3,4,5,6, 7l and  images from each class for training and the remaining for test. 

For each l , we runs 10 times for each algorithm and obtain the average rate as the recognition rate.  

Table 2 gives the classification accuracy rates (%) for each algorithm under different sizes of training. 

Table 2. Recognition Rates on YALE. 

Training PCA LDA UDP SPP GRWSPA 

3 70.9 72.9 74.8 75.7 76.5 

4 73.4 74.5 75.8 77.4 75.9 

5 73.9 75.9 78.2 79.3 82.6 

6 75.3 76.2 80.5 81.4 85.5 

7 76.8 78.1 82.4 83.6 87.8 

From Figure 2 and the tables above, we can see that all the algorithms perform better on ORL than 

YALE database. This is probably on ORL the images have less variation than the images on YALE. 

LDA and UDP outperform PCA, this is probably PCA is representative in the low dimensional space 

and helpful for reconstruction, while LDA is a supervised method and takes the class information into 

account. UDP, as a manifold learning algorithm, makes use of the local and non-local information of the 

face image, demonstrates its effectiveness in feature extraction. SPP is based upon sparse representation, 

which preserves the sparse reconstructive relationship of the data and contains natural discriminant 

information even if it is unsupervised. The proposed algorithm, on one hand, preserves the within-class 

sparse reconstructive relationships like SPP, on the other hand, maximizes the scatter of samples from 

different classes. So after projection, data from the same class are compact while data from different 

classes are far apart. So the proposed algorithm has much better performance than PCA, LDA, LPP, 

UDP and SPP. 

5. Conclusions 

In this paper, based on sparsity preserving projection, we propose a new algorithm called Graph 

Regularized Within-class Sparsity Preserving Analysis (GRWSPA). GRWSPA preserves the within-class 

sparse reconstruction weights so as to discover the intrinsic information, while maximizing the between-class 

scatter so that after projection the samples from different classes are far apart. Experiments were carried 
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out on the ORL and YALE face databases, and the results demonstrate the performance advantage of 

the proposed algorithm over others. 
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