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Abstract: Many physiology and bioinformatics research institutions and websites have opened their
own data analysis services and other related Web services. It is therefore very important to be able
to quickly and effectively select and extract features from the Web service pages to learn about and
use these services. This facilitates the automatic discovery and recognition of Representational State
Transfer or RESTful services. However, this task is still challenging. Following the description feature
pattern of a RESTful service, the authors proposed a Feature Pattern Search and Replace (FPSR)
method. First, they applied a regular expression to perform a matching lookup. Then, a custom string
was used to substitute the relevant feature pattern to avoid the segmentation of its feature pattern and
the loss of its feature information during the segmentation process. Experimental results showed in
the visualization that FPSR obtained a clearer and more obvious boundary with fewer overlaps than
the test without using FPSR, thereby enabling a higher accuracy rate. Therefore, FPSR allowed the
authors to extract RESTful service page feature information and achieve better classification results.

Keywords: RESTful services; feature extraction; web page classification; service discovery

1. Introduction

In order to facilitate data sharing and the exchange of analytical methods, and their use by
other organizations, many physiological and bioinformatics research institutions and websites have
opened their own data analysis services and other related Web services. However, it is still a challenge
to find and use these Web services quickly and effectively [1,2]. Unlike traditional Simple Object
Access Protocol (SOAP) Web services, it is crucial to effectively extract and select the features of
Representational State Transfer or RESTful service pages for the automated identification and discovery
of these pages.

Representational State Transfer (REST) is a Web software architecture style that was proposed
in 2000 by Dr. Roy Thomas Fielding in his doctoral thesis. After participating in the formulation of
the HTTP standard and the URL standard, Fielding put together these two design styles, which he
summarized as a new architectural style, namely, the REST architecture style [3]. The purpose of
this style was to facilitate the transmission of information between different software programs in
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the network (e.g., the Internet). The Web services that conform to the REST design style are called
RESTful services.

For the most part, Web services are currently divided into traditional SOAP services and
RESTful services. Because of its simple implementation, lightweight quality and extensibility, RESTful
services have been widely applied, and have become mainstream in Web service development [4].
Traditional structured SOAP Web services rely on the Web Services Description Language (WSDL) to
describe the services. WSDL is a structured language based on XML, and the computer can distinguish
and understand its descriptive information [5]. However, the description of RESTful services does
not have a unified standard. Many people have extracted many description models [6–8], but these
models have not been widely used. The description of RESTful services primarily uses semi-structured
HTML documents to describe the functions and interfaces and invokes service methods with natural
language [9]. For a computer, the description page of the service is the same as the general document.
It makes RESTful service description inundated with massive web pages, and a computer cannot
identify RESTful service pages directly, which hinders the automated discovery of RESTful services.

For this paper, the authors proposed the FPSR method to preprocess the RESTful service
pages related to physiological and bioinformatics information, and to extract and recognize the
features of the RESTful service pages. The method ensured that their features were not disrupted
by subsequent segmentation. The experimental analysis showed that this method could effectively
improve classification performance. Compared with the traditional method, this method achieved a
higher accuracy, precision, recall rate and f-score, thereby extracting RESTful service page features
more effectively.

2. Related Work

The recognition of RESTful service pages is a binary classification of web pages. Web classification
is different from the traditional plain text classification. Compared to that classification [10], HTML is
a semi-structured document that contains information (e.g., labels, images, links, code, and scripts),
which makes automatic classification difficult. In recent years, machine learning algorithms, such as
Support Vector Machine (SVM), Naive Bayes [11], K-Nearest Neighbors (KNN) [12], and Decision
tree [13] have been widely used in web page classification. There are many aspects that are worthy
of research and exploration to select and extract features effectively in web pages and use machine
learning algorithms for classification.

Kan and Thi [14] extracted feature information from URL and used SVM to carry out fast
web page classification. Hu et al. [15] extracted pictures and text information in pages and used
multi-kernel learning to classify drug-related websites. Zhao et al. [9] used the Naive Bayes
algorithm and SVM to classify RESTful services by extracting features from web page content and
document structure information. Rajalakshmi and Xaviar [16] conducted an experimental study on
URL-based web page classification feature-weighting techniques and used SVM to perform web
page classification. Altay et al. [17] used context-sensitive and keyword density to extract features
and used SVM, maximum entropy, and Extreme learning machine for malicious web page detection.
Siddiqui et al. [18] used HITEx (Health Information Text Extraction), which is an open-source natural
processing software, to extract text features and used SVM and the Naive Bayes algorithm to identify
health information web pages. Onan [19] analyzed and compared four kinds of feature selection
methods (correlation, consistency, information gain and chi-square-based feature selection) and four
different algorithms (Naive Bayes, KNN, C4.5, and FURIA) on the predictive effect of web page
classification. Mohamed et al. [13] used Term Occurrence, Term Frequency, and TD-IDF for feature
selection and extraction, and used the Naive Bayes, KNN, and Decision tree algorithms for web
page classification. Kiziloluk and Ozer [20] selected the HTML pages’ tags as features, then used the
Parliamentary Optimization Algorithm (POA) for web page classification.
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3. Datasets and Tools

3.1. Dependent Libraries

Python and related libraries were used to implement the web crawler program, data processing,
feature selection and extraction, model training, and database reading/writing operations. The tools
and libraries used are as follows.

Requests: A powerful HTTP Client library for Python. It is very easy to send a custom HTTP
request and to retrieve HTML pages using Requests.

Beautiful Soup: A Python library used for parsing HTML or XML, which can parse, query,
and modify the document tree. It is convenient to analyze the HTML pages and extract information.

scikit-learn: An excellent machine learning library in Python, which provides many out-of-the-box
machine learning algorithms, data preprocessing algorithms, and simple and effective data mining
and data analysis tools. Many machine learning algorithms can be easily used through this library.

re: This is a Python module regular expression, which provides regular expression matching
operations. Regular expressions use a single string to describe and match the string corresponding to
the pattern rules.

pymongo: A Python library for operating MongoDB, providing support for reading, writing,
querying, deleting, and other operations of MongoDB.

3.2. Data Acquisition

To obtain datasets for training and testing, the authors wrote a web crawler program using Python’s
Requests library, and obtained RESTful service pages for biological and physiological information
research institutions and organizations, including Kyoto Encyclopedia of Genes and Genomes
(KEGG) [21], the European Bioinformatics Institute (EMBL-EBL) [22], German Neuroinformatics
Node (G-Node) [23], etc. In addition, to increase the diversity and quantity of datasets, they also
retrieved description pages of RESTful services and some other non-RESTful pages from companies
such as GitHub, Google, and Facebook. They saved the retrieved URLs and the original web pages to
the MongoDB database for subsequent reading and analysis. MongoDB is a NoSQL database which
can save the data in JavaScript Object Notation (JSON)-like documents. Because it is schema-free and
has scalability, the data storage modal can be easily changed. For saving the file, MongoDB is more
suitable than other relational databases.

3.3. Datasets

The size and representativeness of the dataset determined the upper bound of the training model,
which played an important role in the training result of the model. The authors obtained 731 RESTful
service pages, of which 265 pages were related to physiological information, and 1739 non-RESTful
pages, for a total of 2470 samples. The dataset was saved in the local MongoDB database.

4. Implementation Details

4.1. Web Crawler

The authors used the Requests and Beautiful Soup libraries in Python for the implementation of
Web Crawler. First, they found all the URLs about the RESTful service using the Beautiful Soup library
to parse the directory page of the service. Then, the Requests library was used to send all the HTTP
requests for each URL and get all the web pages for each URL, and then each page and URL was saved
to MongoDB. The read and write operations of MongoDB required the help of the pymongo library in
Python. For some websites, access could not be gained without web proxy. Requests was therefore
used to set the proxies argument to access URLs through the parameter setting of proxies.
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4.2. Preprocessing of Web Pages

The preprocessing of web pages plays a significant role in the feature extraction and selection and
the performance of the classifier.

For this study, the document captured by Web Crawler was in HTML format. HTML is a
semi-structured text format, and the tags in a HTML document are used to annotate texts, images,
and other contents. JavaScript and Cascading Style Sheets (CSS) can also be used to describe a
web page’s functionality and presentation, information which was not meaningful for this study.
The authors removed it in preprocessing and retained the other information, thereby obtaining the
plain text content.

The preprocessing of web pages is shown in Figure 1. During the processing, the Beautiful Soup
library was used to finish the HTML parsing, the searching and deleting operation of the target tag,
and the extraction and filter of the tag attribute, which ensured efficient processing.
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Figure 1. Web page preprocessing.

The web page preprocessing steps are as follows:
Useless tag removal: HTML documents may include some tags such as <img>, <script>,

and <style>, which are used to display images, control the behavior of a page, and describe the
appearance. These noise or non-sense tags were removed in preprocessing. By using Beautiful Soup
(HTML parser), these tags were found by tag name, then removed.

Plain text extraction: The other tags, such as <p>, <title>, <body>, <header>, and many others,
include information about the page content description. Beautiful Soup was used to remove the
markup information and obtain the plain text.

Feature pattern search and replace: As shown in Figure 2, the authors annotated two types of
pattern string in segments from RESTful service pages of KEGG (https://www.kegg.jp/kegg/rest/
keggapi.html) and G-Node (http://g-node.github.io/g-node-portal/key_functions/data_api/0.1/
api_specification.html). The URL is the base part of the link of a special web service, and the path
corresponds to a special web service from a website. Almost all RESTful pages include a similar special
pattern. Like a URL, the special path corresponds to a special service and email address. These special
patterns in RESTful service pages are more frequent than in other web pages. Depending on different
word segmentation methods, however, these feature patterns can be split, or the same pattern can be
treated as a different feature. To solve this problem, the authors proposed the Feature Pattern Search

https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
http://g-node.github.io/g-node-portal/key_functions/data_api/0.1/api_specification.html
http://g-node.github.io/g-node-portal/key_functions/data_api/0.1/api_specification.html
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and Replace method. First, they used the regular expression to search and match all the pattern strings.
Then, they replaced the same pattern string with a special word. This method helped to avoid the
problem of pattern destruction in the tokenizing process and to save the feature pattern information.
The details of the feature pattern search and replace are shown in Table 1.

Save the results: Finally, the processed text was saved to MongoDB. Figure 3 is an example of the
HTML document preprocessing.
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Table 1. Details of Feature Pattern Search and Replace (FPSR).

Feature Pattern Regular Expression Custom String

http://locahost:8080/path1/path2 (https?)://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+
[-A-Za-z0-9+&@#/%=~_|] httpaddr

username@email.com ([a-zA-Z0-9_.+-]+@[a-zA-RZ0-9-]+.[a-zA-Z]+) emailaddr

/path1/path2 s(/[w-]+)+/? pathaddr
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4.3. Feature Extraction and Selection

BoW (bag of words) is a common document representation method in information retrieval [10].
BoW lists the words with their frequency per document. The frequency of words in a document can be
used to represent the document, which allows users to compare documents. BoW ignores the effect of
the grammar and the order of words.

Feature extraction is the process of converting raw data to numerical information which a
computer can recognize. The computer cannot recognize the raw text information directly. The raw
text can be represented by a vector using BoW, followed by a machine learning algorithm used to
process the vector.

Feature selection is the process of removing redundant and irrelevant features, that is, to select the
most effective feature from the raw features [24]. It can reduce the dimensionality of the datasets and
improve the performance of the algorithm. In web page classification, the dimensionality of features is
very large as well as the number of samples. Many of the raw features were irrelevant to this study.
It is easy to overload the algorithm and create a problem of calculation and memory consumption if
feature selection is not performed.

Most machine learning algorithms need input with a fixed length, Because machine learning
cannot process the raw text directly. The raw text must be converted to a numerical value with a fixed
length, namely, a vector. The document d can be represented as a vector of terms (e.g., (t1, t2, t3, · · · , ti)),
in which ti is a feature of d.

The process of dictionary initialization is shown in Figure 4:
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In the dictionary initialization phase, texts were split by using space and punctuation as delimiters
to extract words of at least two letters. The dictionary consisted of the words occurring in documents
more than 10 times and in less than 90% of the number of documents. Stop words were removed.
The detail of the algorithm is showed in Algorithm 1:

Algorithm 1 The detail process of dictionary initialization

Input: the text T, stop words Wstop, the Threshold of DF maxd f , mind f
Output: the set of words Wdict
for each text Ti:
lowercase (Ti)→ Tlow

i
tokenize (Tlow

i )→Wi
end
create Wdict
for each words array Wi

Wdict+ = set (Wi)
end
Wdict− = Wstop

for each word in Wdict, wi:
document_frequency (wi)→ d fi
if d fi < mind f or d fi > maxd f :

remove wi from Wdict
endif

end
return Wdict
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In this process, the authors had to measure the words with their document frequency and the
words with their word counts per document. This information was then used to convert a document
into a vector.

Finally, term frequency-inverse document frequency (TF-IDF) was used to adjust the weight
of words. The more documents the word appeared in, the less valuable that word was as a feature.
The words found frequently in all documents were systematically discounted. That left only the
frequent and distinctive words as the feature. First, TD-IDF measured the number of times that the
words occurred in a given document, and then it adjusted the number by the number of documents in
which the words appeared. The formula is as follows:

Wi,j = t fi,j ×
[

log
(

N
d fi

)
+ 1

]
, (1)

where t fij is the number of occurrences of word i in document j, d fi is the number of documents
containing i, and N is the total number of documents.

Principal Component Analysis (PCA), a tool for finding patterns in high-dimensional data,
is a commonly used linear dimension reduction algorithm. It selects the features with high variance,
and improves the calculation speed without the loss of model accuracy [25]. The generated dictionary
contained 8974 words. Therefore, the document feature was an 8974-dimensional vector. The number
of features was higher than that of the samples. PCA was used to reduce the feature dimension, thereby
improving the speed of the model training.

4.4. Classification Method

SVM is a supervised learning model with associated learning algorithms that analyzes data
used for classification and regression analysis [26]. SVM belongs to a general linear classifier,
and it minimizes empirical errors and maximizes geometric edge regions. To solve the problem
of the nonlinear discrimination of datasets in low-dimensional space, a suitable kernel function was
selected. Thus, the original finite-dimensional space was mapped into a much higher-dimensional
space by nonlinear transformation.

SVM has been used in most of the related works and has proved its success in text classification.
SVM chooses the hyperplane to obtain the maximal distance between it and the nearest training-data
point, so it has a good generalization ability. With a small amount of instance data to analyze, the SVM
algorithm can give a better result. In order to train and test the feature extraction and selection,
the authors chose the SVM algorithm of the linear kernel function as the training model of their
classifier, with other parameters set to the default value. The linear kernel function has been suggested
for text classification [27].

5. Results and Discussion

This section presents the visualization of each document processed with the FPSR method
and without the FPSR method, respectively, and the classification results obtained from the
different methods.

5.1. Dimensionality Reduction and Visualization Results

The authors conducted the feature extraction of files processed using the FPSR method, and the
size of the generated dictionary was 8974. The eigenvectors of each file were reduced to 2D using PCA
and visualized in a 2D plane. The result using the FPSR method is shown in Figure 5.

Traditional processing without the FPSR method was also done. When the preprocessing of
the web pages was maintained, and the feature extraction and the dictionary initialization were left
unchanged, the size of the generated dictionary was 9000. The visualization result is shown in Figure 6
after the same dimension reduction operation.
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The number of the features without the FPSR method is higher than the one using the FPSR
method, because the FPSR method treats different URLs, paths or email strings as the same pattern.
By comparing the visualization results of two methods, it is evident that the boundary of the figure
using the FPSR method is clearer and more obvious with fewer overlaps. The classifier presented in
this paper would make it easier to distinguish between these two categories of data.
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5.2. Classification Results

There were 731 RESTful service description pages and 1739 other types of pages in the database.
From the data, 80% of each type of data were chosen as the training set, and the remaining 20% was
chosen as the test set. First, the dimension was reduced to 2D using PCA, and then a linear kernel
function was selected by the SVM algorithm to train the data. The results for precision, recall rate,
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and f1-score with and without FPSR are listed in Tables 2 and 3, respectively. The accuracy with FPSR
reached 99.4%, whereas that of the traditional method is 94.7%, and the recall rate of the RESTful
service pages was only 87.1%.

Table 2. Classification results using FPSR.

Precision Recall f1-Socre

no_restful 0.994 0.997 0.996
restful 0.993 0.986 0.990

avg/total 0.994 0.994 0.994

Table 3. Classification results without FPSR.

Precision Recall f1-Socre

no_restful 0.947 0.980 0.963
restful 0.948 0.871 0.908

avg/total 0.947 0.947 0.947

Figure 7 indicates the confusion matrices of the test result with different preprocessing methods.
As shown in Figure 7, the test dataset included 147 RESTful service pages and 348 other pages, and the
FPSR method obtained better results, which correctly classified almost all samples with a classification
accuracy of 99.4%. The recall score was more important than the precision in this study, because the
authors had to identify as many of the RESTful service pages as possible. However, the recall score
of the preprocessing without FPSR was only 87.1%. Therefore, the authors concluded that the FPSR
method could extract the characteristics of RESTful services more effectively.
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6. Conclusions and Future Work

In this paper, the authors proposed a FPSR method for feature extraction and selection of RESTful
service description pages related to physiological information. The RESTful service page feature
pattern was searched and replaced with a specific string to avoid the destruction of its pattern in the
segmentation stage and to retain its feature information. Finally, the results of the dimensionality
reduction visualization and classification of the test set showed that this method could more effectively
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select and extract RESTful service feature information, thereby achieving a higher classification
accuracy and a lower error rate. This will play an important role in the automated discovery of
RESTful services related to physiological and bioinformatic information.

In future studies, researchers will have to increase the number of samples in the dataset and enrich
its diversity, and then verify the validity of the method on the new dataset. Furthermore, they will
have to study the relevant classifier algorithms and evaluate the indicators of each algorithm, such as
training time, accuracy, calculation speed, and other aspects, and choose the best classifier algorithm.
All this work aims to automatically identify RESTful service pages.
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