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Abstract: Network traffic classification aims to identify categories of traffic or applications of network
packets or flows. It is an area that continues to gain attention by researchers due to the necessity
of understanding the composition of network traffics, which changes over time, to ensure the
network Quality of Service (QoS). Among the different methods of network traffic classification,
the payload-based one (DPI) is the most accurate, but presents some drawbacks, such as the inability
of classifying encrypted data, the concerns regarding the users’ privacy, the high computational
costs, and ambiguity when multiple signatures might match. For that reason, machine learning
methods have been proposed to overcome these issues. This work proposes a Multi-Objective Divide
and Conquer (MODC) model for network traffic classification, by combining, into a hybrid model,
supervised and unsupervised machine learning algorithms, based on the divide and conquer strategy.
Additionally, it is a flexible model since it allows network administrators to choose between a set of
parameters (pareto-optimal solutions), led by a multi-objective optimization process, by prioritizing
flow or byte accuracies. Our method achieved 94.14% of average flow accuracy for the analyzed
dataset, outperforming the six DPI-based tools investigated, including two commercial ones, and
other machine learning-based methods.

Keywords: network traffic classification; machine learning; hybrid model; multi-objective genetic
algorithm; extreme learning machine; growing hierarchical self-organizing map

1. Introduction

Network traffic classification aims to identify categories of traffic or applications of network
packets or flows. It is an area that continues to gain attention by researchers [1–17]. Due to the growth
of the Internet, both in the number of applications and traffic volume, it is important to understand
the composition of such data, especially by Internet Service Providers (ISPs) to manage bandwidth
resources, with focus on the Quality of Service (QoS) and security.

The “Internet of Things” (IoT) is evolving and might be connecting billions of devices by 2020 [18]
and more than $11 trillion by 2025 [19]. Hence, along with the smart cities, issues of cyber security
might become greater than ever [7], with organizations possibly not knowing exactly what IoT devices
are generating traffic within their networks [20] and which kind of traffic. It is expected that traditional
security tools would not handle the processing of such a huge amount of data (i.e., “big data”) and
services [7]. This encourages the use of machine learning for network traffic classification and intrusion
detection, which can aid in the identification of hidden and unexpected patterns, also for big data
(e.g., deep learning [21–24]), and can also be used to learn and understand the processes that generate
the data [25].
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There are many methods for classifying network traffic. The most common methods are the
classification by using known transport layer ports (port-based methodology) and Deep Packet
Inspection (DPI) [14,26,27]. The port-based method analyzes the port numbers from the transport
layer and is utilized to classify applications (e.g., Skype, BitTorrent, Edonkey) or application protocols
(e.g., HTTP, FTP, DNS, SSH). This method proved to be ineffective since random ports can be used
by individual applications. A more effective method is using a DPI technique, which eliminates the
problem of random ports. The technique starts by reading payloads from packets and performs scans
with the objective of extracting signatures from network traffic data. These signatures can then be
used to identify network traffic types. The DPI-based classification method for network traffic is
usually considered the most accurate. This is the reason why many commercial solutions rely on
it [14]. However, this approach breaks when dealing with encrypted traffic data and when multiple
signatures might match. Additionally, the high computational cost makes payload-based methods face
performance issues in real world networks [28,29], aside from the concerns about users’ privacy, since
DPI relies on packet payloads inspection.

As a result, machine learning has been used for network traffic classification [1,2,4–8,10–13,17,30–32]
due to its good generalization capability and the ability to tackle such DPI issues (i.e., encrypted
data, performance issues and users’ privacy concerns). This area of research is still in evidence
stages [2–4,6,25,33] and has shown to be accurate when dealing with applications and application
protocols classification.

Although many works have been proposed, the majority of them have not paid enough attention
to certain issues, mainly related to experimental procedures. Private datasets are frequently used
in the experiments, which prevent researchers from reproducing the results, making it difficult to
benchmark network traffic classifiers. Additionally, there is a gap regarding the classification based on
byte accuracy. Most studies focus on packet or flow classification accuracies, but usually ignore byte
classification accuracy.

Flows are commonly classified as elephant (flows with large byte volume) or mice (flows with
small byte volume). Both types are important in network traffic classification, since elephant flows
can impact a low bandwidth network and mice flows can contain unwanted traffic data such as
malicious software and network policy violations data (e.g., chatting, data uploading with cloud-based
software or FTP, and piracy issues). There have been few works [10,34] that analyze the byte accuracy
performance measure. Nevertheless, they focus mainly on the flow or packet classification accuracy,
presenting byte accuracy results for analysis purposes, but with no intention of simultaneously
optimizing both accuracies. Commercial and free classification tools [14] also share a single objective:
to reach high rates of traffic classification accuracy. For networks with low bandwidth, very common
in less developed countries, for example, it is crucial to correctly classify elephant flows due to the lack
of network resources, and that is the reason why the byte accuracy measure should also be the focus.
Consequently, there is a need for a classifier that could be flexible enough to let network administrators
adjust it according to their needs.

Therefore, this work proposes a hybrid model, composed of machine learning algorithms,
which supports this flexibility by optimizing such model with the use of the Multi-Objective Genetic
Algorithm (MOGA). Additionally, to cope with the dataset and experimental issues, as mentioned
earlier, this work pretends to perform the experiments with a public dataset, containing a large set
of applications and application protocols, with the results being compared to six commonly used
network traffic classifiers (DPI), including commercial ones. Additionally, a benchmark against other
machine learning-based methods is performed. This work can thus allow researchers to compare their
methods to the hybrid model being proposed in this work, since comparisons between network traffic
classifiers are known for being a difficult task in this area of research [35].
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In a nutshell, the proposed hybrid model is composed of supervised and unsupervised machine
learning algorithms, in addition to a feature selection process, and is based on the divide and conquer
strategy [36]. The dividing process is led by an unsupervised algorithm, the Growing Hierarchical
Self-Organizing Map (GHSOM) [37], and focuses on the division of a huge and complex problem into
smaller and simpler tasks, that is, into clusters. The conquer process then attacks the less complex
tasks (smaller datasets or clusters) using a supervised learning algorithm, the Extreme Learning
Machine (ELM) [38]. This strategy proved to enhance the learning process [36] and has never yet
been tested in network traffic classification. Additionally, the MOGA algorithm is utilized to optimize
all the process. To the best of our knowledge, there have been no contributions that investigate the
use of a divide and conquer strategy for network traffic classification, along with the flexibility of
allowing network administrators to choose the best parameters for their networks, by prioritizing flow
or byte classification accuracy. This can be performed with the use of multi-objective optimization,
by selecting between pareto-optimal solutions. Besides that, this work is compared against commonly
used network traffic classifiers and machine learning algorithms, the results of which could benefit the
benchmarking of different methodologies.

The remainder of the paper is organized as follows. In Section 2, we review the literature on
network traffic classification with the aid of machine learning. Section 3 presents the proposed method,
and Section 4 shows the experimental settings and results. Finally, Section 5 concludes the paper with
future research directions.

2. Literature Review

To overcome the drawbacks of DPI tools, machine learning methods have been proposed to
deal with such a complex task, usually by using unsupervised and supervised learning algorithms.
Classification algorithms (i.e., supervised) identify category labels of instances which, in most cases,
are described by a set of features. Models are generated by training such labeled datasets, usually in
a supervised learning process, and infer the class labels for the instances (usually packets or flows)
of new network traffic data. The use of such techniques has shown to be highly accurate, even on
encrypted traffic [11,39–41]. Some works make use of unsupervised learning [42–44], mostly for
unknown traffic labeling, where instances are grouped by similarity in clusters. In unsupervised
learning, there are no explicit target outputs for each input, that is, the dataset used in the training
process is unlabeled.

Few studies focus on the use of semi-supervised algorithms. These are commonly used when the
cost of labeling instances for the learning process is too high or when the minority of instances
in a dataset are labeled, and the remaining are not, which can be easily collected in computer
networks. The classifiers proposed by [45,46] were shown to be accurate, presenting results above
90% of flow accuracy by using semi-supervised Support Vector Machine (SVM) and k-means based
algorithms, respectively.

Besides the use of supervised and unsupervised learning algorithms, some studies make use
of optimization algorithms in order to enhance the quality of their methods [12,16]. Optimization
algorithms are usually used to find the best set of parameters aiming to enhance the results, either
by minimizing or maximizing a function (e.g., to maximize the flow accuracy metric in network
classification problems, where the function is the classifier algorithm (model) itself). Multi-objective
optimization has already been used in network traffic classification, but only for feature selection
optimization [47] and network anomaly detection [48]. In [49], the optimization occurred during the
feature selection and clustering processes only, with no concern with the enhancement, simultaneously,
of two important metrics for network administrators, the byte and flow classification accuracies. We
propose to address this limitation by developing a flexible hybrid model so that network administrators
can choose what needs to be classified, that is, the flow or byte accuracy, according to their network
environment needs (there is a trade-off when selecting the best parameter between the pareto-optimal
solutions, as will be explained in Section 3).
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Our brief literature review demonstrates that different methodologies have been proposed to deal
with the difficult task of network traffic classification, including various types of machine learning
techniques. Indeed, many works have been proposed, but the majority of them has not paid sufficient
attention to the following items:

• Reproducibility is not possible when the dataset used in the experiments is private and, therefore,
hinders the benchmarking against different network traffic classifiers.

• The correct labeling (i.e., ground-truth or GT) of flow instances is necessary to build
good classifiers.

• Port and IP information should be discarded from network datasets since applications can make
use of random ports or the traffic can be encapsulated, and IP information in packets can be
obfuscated by proxies.

• Some network administrators would be more concerned to correctly classify flows which require
more bandwidth resources from a network; that is, the accuracy of bytes would be more important
than the accuracy of flows.

This paper distinguishes itself from others by paying attention to all the issues described above,
mainly by proposing a flexible hybrid model, with the aid of a multi-objective optimizer, to make
it possible for network administrators to select the best set of parameters according to their needs
(i.e., flow or byte accuracy). Additionally, the proposed model is based on the divide and conquer
strategy, by combining supervised and unsupervised learning algorithms, which enhances the overall
classification accuracy and, to the best of our knowledge, has never yet been attempted on network
traffic classification.

3. The Proposed Method

The authors in [36] claim that if a model is trained to perform different subtasks on different
occasions, there will generally be strong interference effects that lead to poor generalization and slow
learning. On the other hand, the authors also claim that, if a training dataset can be naturally divided
into subsets, representing distinct subtasks, interference can be reduced by using different expert
models for each subtask. This system also has a gating model that decides which of the experts should
be selected for each subtask [36]. In this strategy, known as “divide and conquer”, a complex problem
can be divided into simpler subproblems and attacked by individual expert models. Inspired by this
strategy, we propose a hybrid model for network traffic classification, named the Multi-Objective
Divide and Conquer (MODC) model, where the problem is split into subproblems with the aid of
an unsupervised learning model and attacked by individual supervised learning models, where
the gating model is the unsupervised learning model itself. As mentioned before, this strategy has
never been tested on network traffic classification. Additionally, this hybrid model is optimized by
a multi-objective algorithm, turning the model into a flexible solution for network administrators,
by prioritizing the accuracy in bytes, flows, or a more balanced selection. The proposed method can be
visualized in Figure 1, in which the training process, responsible for generating the complete model
(i.e., the network traffic classifier), will be detailed in the following sections.

3.1. Feature Selection

The complete model is created by training the divide and conquer phases, as seen in Figure 1.
Nonetheless, before the training phases, selecting a subset of features from the network trace (dataset),
instead of using all the available features, can enhance the final model quality. This can be performed
by using feature selection algorithms. The network trace and pre-processing boxes in Figure 1 will be
further explained in Section 4.
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Figure 1. The proposed Multi-Objective Divide and Conquer (MODC) hybrid model.

The feature selection consists of choosing one feature (attribute) subset among a complete feature
set that maximizes the model quality by filtering unnecessary features. In our methodology, we have
used the Information Gain [50] algorithm for being the best one when compared to others in our
previous work [41]. The Information Gain is commonly used in decision tree algorithms, but it
can also be used for the feature selection purpose. The higher the score obtained by a particular
feature, the better it can contribute to enhancing the model quality by producing more accurate
classification results.

For the classification task, the Information Gain (IG) measures how common a feature is in a
class when compared to all other classes in a particular dataset, by analyzing the presence or absence
of a term t. The IG determines how much information a particular attribute, or feature, contributes
to the training and classification process. Understandably, features with high information gain are
preferred to be used during the training process. A term is a word (category) that might be repeated
throughout the dataset, in different attributes. For continuous-valued attributes, it is necessary to
transform the dataset into categories, which, in this work, the methodology proposed by [51] was
applied to. Let {ci}m

i=1 be a set of classes in a training dataset. The information gain of a term t is
defined by Equation (1). This includes the a priori probability (Pr) of a term t, besides the a posteriori
probability of a class ci given the term t, that is, Pr(ci|t), and the a priori probability of a class ci in the
training dataset. To obtain the information gain score from a specific feature (attribute), it is necessary
to calculate the right-hand side of the sum of Equation (1) for each term t in that feature, sum the
obtained values, and then sum the result with the left-hand side of the summation in Equation (1).

IG(t) = −
m

∑
i=1

Pr(ci) log Pr(ci) + Pr(t)
m

∑
i=1

Pr(ci|t) log Pr(ci|t). (1)

3.2. Divide

The dividing phase consists of splitting a complex problem into smaller and simpler ones. The task
of generating a classifier model trained with a dataset containing more similar instances (i.e., sharing
the same or approximate statistical distribution), by dividing the complete dataset into clusters and
then conquering each partition by training an individual supervised learning model for each cluster,
has shown to be more efficient than training a single expert (classifier) for the full dataset [36]. Both
the divide and conquer phases can be visualized in Figure 1.
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The dividing process starts after the feature selection phase and utilizes the Growing Hierarchical
Self-Organizing Map (GHSOM) algorithm [37] as the clustering technique. The GHSOM is an
unsupervised learning algorithm and is based on the Self-Organizing Map (SOM) algorithm [52].
It has the capability of dynamically modeling the dataset into clusters, without the need of specifying
a predefined number of clusters (grid size), in contrast to the SOM algorithm, which requires the grid
size input. Thus, for the GHSOM, no prior information of the problem should be known. Additionally,
the modeling is refined by a hierarchical growing process, where individual clusters can be extended
to new self-organizing maps. This way, the network trace should be split into n clusters, in which n is
automatically determined by the GHSOM, where each cluster represents instances more similar to
each other, that is, a subtask or a dataset partition.

As already mentioned, besides grouping instances by similarity (based on the input space), into
clusters, the GHSOM is also capable of creating clusters in a hierarchical way according to the data
distribution, by expanding nodes into new layers, as can be visualized in Figure 2. For example,
at Layer 0, the complete dataset is available and is divided into clusters at Layer 1. Nodes can then be
expanded into new SOM maps (e.g., maps at Layer 2) or can grow in a horizontal way, that is, the size
of each map adapts itself based on the input space data. The maps continue to grow, horizontally
(i.e., in breadth) and hierarchically (i.e., in depth), building a data structure with many layers consisting
of independent Self-Organizing Maps (SOMs).

Layer 0

Layer 1

Layer 2

Layer 3

Figure 2. Growing Hierarchical Self-Organizing Map (GHSOM).

3.3. Conquer

The conquering phase is responsible for creating experts (i.e., classifiers) for each subtask, that
is, for each cluster created during the dividing phase. Each created cluster is a partition of the
complete dataset, grouped as simpler problems that can be better attacked by experts, according to [36].
The output data that was once discarded, during the unsupervised learning phase (i.e., the dividing
phase), is now used to train the experts by a supervised learning algorithm. In this work, the Extreme
Learning Machine (ELM) [38] algorithm was selected to create an expert (model) for each cluster, as can
be seen in Figure 1, due to its good generalization performance, fast learning rate, and robustness.
According to [38], ELM avoids problems such as local minima, overfitting, and improper learning rate,
besides the fast learning capability [38].

Usually, a single parameter is needed for training an ELM model, that is, the number of neurons.
This helps reducing the dimensional feature space for the optimization process, as will be explained
in Section 3.4. Nevertheless, the ELM also offers the possibility of changing an additional parameter,
the activation function, which in this work we propose to optimize (see Section 3.4). The overall
optimization time can be reduced with this fast learning algorithm, also due to the low number of
parameters to be optimized.
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3.4. Multi-Objective Optimization

In this paper, we propose to optimize the hybrid model by a multi-objective algorithm, turning
the model into a flexible solution for network administrators, by allowing them to prioritize accuracy
in either bytes, flows, or a more balanced selection. Therefore, we have multiple objectives, that is, Z
objective functions to be optimized. Considering S as the set of all feasible solutions for the optimization
problem, and s = {s1, ..., sn} as being a possible solution, the multi-objective process aims to find the
best solution s∗ ∈ S that minimizes or maximizes Z objective functions ψ(s∗) = {ψ1(s∗), ..., ψZ(s∗)}.
Therefore, for a maximization problem, for example, a solution s∗ should be found according to
Equation (2).

s∗ = arg maxs ψ(s), ∀s ∈ S. (2)

In this work, we use the Multi-Objective Genetic Algorithm (MOGA) [53], based on Genetic
Algorithms (GAs) [54], to optimize, simultaneously, Z = 2 objective functions, that is, the global flow
accuracy and the global byte accuracy, which will be further detailed in Section 4. The multi-objective
optimization is performed by searching for the best set of parameters for the ELM and feature selection
phases. The MOGA performs computer-based tasks that are based on the natural selection principle
(e.g., mutation, selection, and crossover, among other procedures). The MOGA output is a set of
pareto-optimal solutions, as can be seen in Figure 1. These are obtained from a set of feasible solutions,
as illustrated in Figure 3 by the shaded area. The best optimal solutions (pareto-optimal solutions) are
presented in the pareto-optimal front, or just the pareto front.

A trade-off is considered when maximizing multiple objective functions. In Figure 3, s1 and
s2 are pareto-optimal solutions, and ψ1(.) and ψ2(.) are two objective functions. It is the task of an
expert to decide between s1 and s2, that is, considering a minimization problem, if s2 is selected, then
better rates of ψ2(.) are obtained, when compared to ψ1(.). If another pareto-optimal solution is found,
between s1 and s2, and the user selects it, then one decides to have a more balanced solution. This
way, the proposed method is capable of allowing users to adjust the classifier, in a flexible manner,
by prioritizing byte, flow, or a balanced accuracy option between them. The choice could depend on
the policies adopted by network administrators.

Pareto-optimal front

Pareto-optimal solutions

Feasible 
Solution 
Space

ψ1(s)

ψ2(s)

ψ2(s1)

ψ2(s2)

ψ1(s1) ψ1(s2)

Figure 3. Multi-objective optimization aims to find pareto-optimal solutions in a feasible solution space.

To simultaneously enhance both byte and flow accuracies, it is necessary to find the best set of
parameters required for the machine learning algorithms. To achieve this, we chose to optimize
both feature selection and conquering phases only. The dividing phase was not optimized to
shorten the MOGA dimensional feature space (i.e., the search space). The chromosome used for
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the multi-optimization process can be visualized in Figure 4, composed of three genes, such as the
two ELM parameters (i.e., the activation function and the hidden layer size (number of neurons)),
and the number of features to be selected from a set of ranked features previously calculated by the
Information Gain algorithm. The Information Gain algorithm (see Figure 1) is performed once, and
a list of features with their respective values is presented. Multiple training executions (MOGA’s
individuals and generations) are then performed to train the divide and conquer models, searching for
the best pareto-optimal solutions and tested against a validation dataset, as will be further detailed
in Section 4.1.3. For each execution, a different set of features previously calculated is selected
(e.g., if number 10 is selected by the MOGA, for the feature selection gene, then the 10 highest valued
features (based on the Information Gain score) are selected for the divide and conquer training
processes). More details about the chromosome, including the MOGA parameters, and the lower and
the upper bounds definition for each gene, can be seen in Section 4.

ELM: Number of NeuronsELM: Activation FunctionIG: Number of Features to 
be Selected

Gene

Chromosome

Figure 4. The chromosome used during the multi-objective optimization process.

The chromosome, presented in Figure 4, has as input integer values only. This way, the mutation
and crossover procedures from [55] were used, in order to deal with this mixed-integer multi-objective
problem. The operators that must be changed are crossover and mutation ones [55]:

• Discrete crossover operator: If a discrete variable Xj takes its values in a set Sd
j , given two parents

X1 and X2 such as X1
j = Sd

j (i
1
j ) and X2

j = Sd
j (i

2
j ), a random number u is taken in [0, 1] and

the indices
i3j = r(ui1j + (1− u)i2j ) i4j = r((1− u)i1j + ui2j ) (3)

are generated, r being the rounding-off operator. This way, two children X3 and X4 with discrete
variable X3

j = Sd
j (i

3
j ) and X4

j = Sd
j (i

4
j ) are produced, both i3j and i4j being in the range [i1j , i2j ].

• Discrete mutation operator: A discrete variable Xj is mutated replacing it by a randomly chosen
element of Sd

j set.

As already mentioned, the lower and the upper bounds definition for each gene will be discussed
in Section 4. In a multi-objective approach, there is not a single optimal solution, but multiple optimal
non-dominated solutions or pareto-optimal solutions, due to the trade-off that is considered when
selecting the chromosomes within the pareto-optimal front (see Figure 3). This decision is up to the
network administrator, as will be detailed in Section 4.2.2.

The MOGA algorithm was chosen for the multi-objective optimization process due to some of its
benefits: (1) it is able to find, with a high probability, the best solution for an optimization problem,
(2) it is a straightforward algorithm and relatively easy to implement, (3) it attempts to search the
whole pareto front instead of one single pareto-optimal solution in each run, (4) it does not require any
domain knowledge about the problem to be solved, and (5) it is not necessary to make any assumption
about the pareto curve [56]. Nevertheless, the main drawback of MOGA is the lack of stability,
due to its stochastic mechanism. This, however, could be tackled, for example, with game-theoretic
approaches [57,58], including a hybrid approach with evolutionary algorithms [56]. In order to enhance
our optimization process (e.g., stability [56] and techniques aiming at big data [59]), in the future we
would like to perform experiments with other multi-objective optimization approaches [60–63].
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3.5. Classification

The previous sections have detailed the proposed method, including a brief explanation of the
machine learning algorithms used in this work. After training the algorithms, by following the
experimental procedures detailed in Section 4, the MODC model is finally created. Actually, this model
is composed of various models, that is, the GHSOM model and an ELM model for each GHSOM
cluster, as seen in Figure 1. Once that training process is finished, the MODC model is prepared for
the test phase, where novel and unknown instances are presented to the model to be classified as an
application (e.g., Skype, BitTorrent, and Edonkey) or application protocol (e.g., HTTP, DNS, and FTP).

When in testing phase, the classifier captures the flows (e.g., pcap file) and transforms them
into features during the pre-processing phase (see Section 4.1.2). A set of features is then generated,
as detailed in Appendix A. During the training phase, a subset of features was chosen depending
on the selected pareto-optimal solution. This subset is then passed as input to the GHSOM, which
assigns clusters for each flow. Finally, the same subset of features is used as an input for an ELM model
trained for the assigned cluster, which outputs an application or application protocol. Some of these
flows are elephant flows, and the probability of correctly classifying these kind of flows is up to the
network administrator, that must select a pareto-optimal solution (a simplified scenario is exemplified
in Section 4.2.2). In Section 4, the test dataset labels are stored to evaluate the model’s classification
performance. If the results are accurate, then the model is prepared to perform future classifications.

4. Experiments

This section describes the experimental settings, necessary for reproducibility, along with the
experimental results, analysis, and comparisons.

4.1. Experimental Settings

The experimental settings section includes the dataset description, the pre-processing phase,
the cross-validation methodology, the training parameters for reproducibility purpose, and the
performance measures to evaluate the experiments.

4.1.1. Dataset

Public and private network traffic traces (datasets) have been used in the network traffic
classification area of research. Private datasets hinder the reproducibility, making it infeasible for
researchers to reproduce the results or even compare them against other methodologies. Additionally,
most public datasets are not correctly labeled, i.e., without using a Ground-Truth (GT) process.
The work in [64] pretends to be a first step towards the impartial validation of some DPI-based
network traffic classifiers. The dataset is publicly available, the instances are correctly labeled by a
reliable GT process, and the metrics and categorizations are well defined. In this work, the dataset is
named CATALUNYA2013 [65], since it was assembled by researchers at the Universitat Politécnica de
Catalunya. It was captured between 25 February 2013 and 1 May 2013 (66 days).

The authors in [64] generated the dataset by collecting flows from three operating systems (OS),
based on the w3schools statistics (https://www.w3schools.com/browsers/browsers_os.asp) (most
used OSs in January 2013): Windows XP, Windows 7, and Linux. Apple and mobile devices were
not treated by the authors. The dataset was accurately labeled by the Volunteer-Based System (VBS),
developed at Aalborg University [66]. It is a reliable labeling process since the flow is identified mainly
by the operation system’s application process that generated the flow.

The dataset has 1,262,022 flows, but the authors were able to establish the GT for 535,438 flows
only, since 520,993 flows were labeled by the application name tag and 14,445 flows could be identified
based on the HTTP content-type header field. The remaining flows could not be identified since
they presented a lifetime of less than 1 s, making VBS incapable of reliably labeling the application
process [64]. Thus, only the reliable flows were used to train the MODC model and compare it against

https://www.w3schools.com/browsers/browsers_os.asp
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the DPI-based tools. The remaining flows were discarded. More details on the dataset can be found
in [64,67].

The dataset flow distribution is described in Table 1. The flows are divided into 10 applications
(e.g., Edonkey and BitTorrent) and application protocol (e.g., HTTP, FTP, and SSH) classes, along with
an unknown class, which is labeled as unclassified. The RTMP traffic corresponds to Flash content that
was generated by a web browser or a plugin.

Table 1. CATALUNYA2013 dataset distribution.

Application Flows Megabytes (MB)

Edonkey 176,584 2815.1
BitTorrent 62,951 2457

FTP 882 3118.1
DNS 6600 1.91
NTP 27,786 4.77
RDP 132,934 11,396

NETBIOS 9445 5.99
SSH 26,219 100.88

Browser HTTP 46,669 5813.6
Browser RTMP 427 3103

Unclassified 44,941 5617.5
TOTAL 535,438 34,433.85

4.1.2. Pre-Processing

The pre-processing is an important task in machine learning, aiming to prepare the data before
training. The CATALUNYA2013 dataset was pre-processed, firstly transformed into flows by using the
start and end timestamps defined in a log file, as described in [65]. This transformation and statistics
generated from these flows were performed by the tools argus3 (http://qosient.com/argus/), yaf (https:
//tools.netsa.cert.org/yaf/docs.html) and ra (http://qosient.com/argus/ra.core.examples.shtml).
Tools such as tstat (http://tstat.polito.it/index.shtml) could not be used, since some flows defined in
the log file did not start with a formal TCP handshake. A total of 43 statistics attributes were extracted
from the flows. The reader can refer to Appendix A for some brief descriptions. Attributes such as
source and destination ports and IP addresses were discarded, since applications can encapsulate
traffic into traditional protocols or make use of proxies. More information regarding such features can
be obtained from the ra manual (http://qosient.com/argus/man/man1/ra.1.pdf).

The dataset values were then scaled within the range [0,1], with the objective of improving the
performance and effectiveness of machine learning algorithms. The scaling process was performed
with Equation (4), where z is the scaled vector and x is the data vector to be scaled. Furthermore, due to
the imbalanced characteristic of the dataset, the process of random oversampling [68] was performed.
The undersampling process could also be used, but it was avoided so that no important information
would be lost. It is important to notice that this procedure was performed after the dividing process,
for each individual partition, as will be presented in Section 4.1.3.

z =
x−min(x)

max(x)−min(x)
. (4)

4.1.3. K-Fold Cross-Validation

To evaluate the method, a k-fold cross-validation approach was performed with four folds
(fourfold cross-validation), where each fold is an out-of-sample dataset at a time for testing purpose.
In this paper, we named the folds as D1, D2, D3, and D4. The division of the four folds was performed
randomly and in a stratified manner. During the testing phase, the final results are obtained by
summing all confusion matrices from each testing fold and calculating the performance measures
(Section 4.1.5) from this summed confusion matrix. This way, the complete dataset could be validated.

http://qosient.com/argus/
https://tools.netsa.cert.org/yaf/docs.html
https://tools.netsa.cert.org/yaf/docs.html
http://qosient.com/argus/ra.core.examples.shtml
http://tstat.polito.it/index.shtml
http://qosient.com/argus/man/man1/ra.1.pdf
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This procedure was necessary since the DPI-based tools in [64] were tested against the full dataset
(no prior training was necessary for these tools).

During the training process, by using the fourfold cross-validation procedure, for each training
dataset (i.e., three folds), 70% of the dataset, stratified, was selected randomly for training, and 30%
was for validation, as can be seen in Figure 5. This way, the MOGA could optimize the parameters by
testing such a validation dataset. The training, validation, and testing phases were repeated four times,
as seen in Figure 5. Each partition was tested separately. Finally, as already mentioned, the complete
dataset was fully tested, and the results could be compared with DPI-based tools, as well as with some
machine learning-based methods.

D1 D2 D3 D4

D1 + D2 + D3 D4

70% 30%

Training Validation Test

D2 D3 D4 D1

D2 + D3 + D4 D1

70% 30%

Training Validation Test

Figure 5. The k-fold cross-validation process. A fourfold cross-validation was performed to test the
complete dataset, where each fold is the out-of-sample dataset at a time. The validation partition is
used to validate the trained model during the multi-objective optimization (MOGA).

4.1.4. Training Parameters

When the dataset is correctly treated for the training, validation, testing, and optimization phases,
the next step is to prepare for the training process. The machine learning algorithms used in our
methodology require setting some training parameters. It is important to notice that the training
and optimization processes should occur four times, by following the k-fold cross-validation method
presented in Section 4.1.3.

Since the Information Gain algorithm ranks the features by relevance order, that is, by quality
order, it is yet necessary to choose a subset from the highest ranked features and, for that reason,
the MOGA was applied to the feature selection process to choose the subset from a total of 43 features
(see Section 4.1.2). The MOGA will determine the best subset from a set of pareto-optimal solutions
obtained during the training, by testing each solution against the validation dataset presented in
Section 4.1.3.

The optimization, along with all the experimental phases, were conducted by MATLAB working
in a distributed manner. A total of 9 CPU cores were used, distributed among three machines, each
with 30GB of RAM memory and with a single core responsible for testing one GA individual within
a population. Our fitness function, with chromosome previously presented in Figure 4, has as input
integer values only. This way, the mutation and crossover procedures from [55] were used. During
the experiments, it was observed that, after the 20th generation, no considerable changes in results
were detected. Therefore, a stall generation limit was set to 30 and a maximum generation set to 50.
The pareto fraction was set to 0.35 (MATLAB defaults); that is, only 35% of the individuals from the
pareto front of the current population are selected. The population size was set to 18 due to RAM
memory limitation, since each chromosome utilized almost 10 GB of RAM because of the dataset
number of instances and dimension size. Thus, each core occupied almost 10 GB of the machine’s
memory resource. As already discussed, in a nutshell, the chromosome was composed of the ELM
activation function, the ELM number of neurons, and the number of features to be selected from a set
of ranked features, previously pre-selected by the Information Gain algorithm.



Information 2018, 9, 233 12 of 24

With regard to the GHSOM algorithm, all parameters were set to their default values according to
the GHSOM Matlab ToolBox (http://www.ofai.at/~elias.pampalk/ghsom/download.html), that is,
Gaussian for the neighborhood function, τ1 = 0.03 (depth) and τ2 = 0.3 (breadth). For the ELM, we aim
to optimize the activation function and the number of neurons. The functions Sigmoidal, Sine, Hardlim,
Triangular Basis, and Radial Basis were considered. For the number of neurons, a range of [10, 400] was
set as lower and upper boundaries.

4.1.5. Performance Measures

This work was evaluated using the performance measures described in Table 2. The flow and
byte accuracies were named Global Flow Accuracy and Global Byte Accuracy, respectively, since they
should be calculated globally, regardless of the class. These are the measures to be optimized in this
work. The per-class flow and byte accuracies were treated by the Recall measure, with each class
being represented by i = 1, ..., M, where M is the total number of classes. The Precision measures the
classifier’s fidelity for each class i. TP is the total number of correctly classified flows, globally, and
TPi represents the flows that were correctly classified for each class i. Finally, n is the total number of
flows, globally, and ni is the total number of flows presented in class i.

Table 2. The performance measures used during the experiments.

Performance Measure Description

Global Flow Accuracy GFA = TP/n

Global Byte Accuracy GBA = TP(byte)/n(byte)

Recall in Flows RFi = TPi/ni

Recall in Bytes RBi = TPi(byte)/ni(byte)

Precision Pi = TPi/(TPi + FPi)

Average Flow Accuracy AFA =
M

∑
i=1

RFi/M

Average Precision Accuracy APA =
M

∑
i=1

Pi/M

The work in [64] considers the RFi, GFA, and AFA in their experiments only. This paper introduces
more performance measures in order to fully investigate the MODC model quality.

4.2. Experimental Results

In this section, the experimental results will be presented and analyzed, including some
comparisons to validate the model.

4.2.1. Analysis of the Divide and Conquer Strategy

Before presenting the MODC results, we should investigate the results for the divide and conquer
strategy only, without the optimization process, to verify whether this can actually enhance the quality
of a classification model. We compare two different models. The first is a single expert model (SEM),
where an ELM model is trained. The second is a divide and conquer model (DCM), as seen in Section 3,
but without the optimization process.

Both models were trained with the dataset presented in Section 4.1.1, but without the k-fold
cross-validation, to simplify the comparison. The dataset was then randomized and divided: 70% for
training and 30% for testing (stratified). A total of 16 training and testing procedures was performed
for both methods, by varying the number of ELM neurons and the number of features to be selected by
the Information Gain, assuming the values {200, 400, 600, and 800} and {10, 20, 30, and 40}, respectively.

http://www.ofai.at/~elias.pampalk/ghsom/download.html
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The results for GFA, AFA, and GBA can be seen in Figure 6a, Figure 6b, and Figure 6c, respectively.
Observe that the median values are superior in the divide and conquer model. Besides that, for AFA
and GBA, the DCM’s minimal values were superior to the SEM’s maximal values. Based on the
boxplots results, we conclude that the divide and conquer strategy is superior to a single expert model.
The results can be further enhanced by optimizing these assumed parameters, focusing on the GFA
and GBA measures, with the aid of the MOGA. This also enables network administrators to select the
best settings according to their needs, by prioritizing flow or byte accuracies.
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Figure 6. Comparison between a single expert model and a divide and conquer model. The boxplots
results for (a) Global Flow Accuracy (GFA), (b) Average Flow Accuracy (AFA), and (c) Global Byte
Accuracy (GBA) show the divide and conquer strategy efficiency.

4.2.2. Analysis of the Pareto-Optimal Solutions

After the training and optimization processes, the best set of parameters are found, and four
dataset partitions should be tested, according to the k-fold cross-validation process presented in
Section 4.1.3. This can also be visualized in Figure 5. In other words, the datasets D1, D2, D3, and D4
were tested with the best set of parameters, that is, the best pareto-optimal solutions obtained by the
MOGA optimization during four training processes.

It is important to emphasize that the pareto-optimal solutions obtained by the training and
optimization of the model with the dataset D1 + D2 + D3 should be different from what is obtained
by doing the same process for the dataset D2 + D3 + D4. Therefore, by following this procedure,
the testing results for datasets D1, D2, D3, and D4 can be visualized in Tables 3 and 4, for the best
pareto-optimal solution for the measures GFA and GBA, respectively. Additionally, the best parameters
found by the MOGA for the ELM number of neurons (# Neurons), ELM activation function (Act. Func.),
and the number of features to be used from the Information Gain ranking (# Features) are shown.
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The intermediate pareto-optimal solutions were discarded, since we aim to analyze the best solutions
for each metric only, but it could be available for the network administrators to select a more balanced
solution between flow and byte accuracies.

In Table 3, the column D1 shows the parameters obtained from the pareto-optimal solution
with the highest GFA found during optimization of the training dataset (i.e., D2 + D3 + D4)
and the performance results when the generated model was tested against the D1 (out-of-sample)
dataset. The same process occurs with the remaining columns, with each column dataset being the
out-of-sample at a given time. Note that a high number of features was selected, indicating that
almost all features were necessary to reach higher values of GFA. It can also be observed that the GBA
presented results below 80%.

Table 3. Results for the best Global Flow Accuracy (GFA) pareto-optimal solution.

D1 D2 D3 D4

# Neurons 299 218 252 391
Act. Func. Sig. Rad. Rad. Sine
# Features 41 41 42 43

GFA 89.12 89.47 89.87 89.88
AFA 94.38 94.27 93.90 93.17
GBA 69.56 78.29 70.40 67.61

The best GBA pareto-optimal solutions were also selected. The results can be visualized in Table 4.
It can be observed that, when compared to Table 3, the number of features has decreased, together with
the GFA and AFA, and the GBA performance has improved due to the selected solutions, prioritizing
the byte accuracy. The results differ depending on the pareto-optimal solution to be selected, which
should be the task of network administrators, according to their needs, turning this into a flexible
(adjustable) hybrid model.

Table 4. Results for the best Global Byte Accuracy (GBA) pareto-optimal solution.

D1 D2 D3 D4

# Neurons 358 262 223 274
Act. Func. Rad. Sine Tri. Sine
# Features 34 41 37 26

GFA 87.87 89.41 85.84 74.88
AFA 92.97 94.18 92.48 88.06
GBA 78.43 82.42 80.65 73.33

Based on the statistics presented by the MODC, generated from a given network traffic
data, firewall rules can be created (manually or automatically) to block unwanted network traffic,
as exemplified in Figure 7. The pareto-optimal selection process can be simplified for the network
administrator with the use, for example, of a settings window, with the pareto-optimal solutions being
selected through a slider controller, as seen in Figure 7, depending on the network necessity. After the
selection and confirmation, the stored model, previously trained with the optimal parameters, is then
selected to classify real time network traffic. This decision can impact the Quality of Service (QoS) of
a network, by sending a firewall instruction to prioritize the blocking of unwanted elephant flows
(e.g., on low bandwidth networks), unwanted general flows (e.g., network policy violations data) or a
more balanced decision.
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Byte Flow

MODC :: Settings0  0  0

Slide to prioritize byte or flow classification accuracy

Apply

MODCLocal Network FirewallNetwork Traffic Network Traffic DataFirewall RulesManagement Model SettingsNetwork Traffic Internet
Figure 7. Exemplification of a simplified decision process performed by a network administrator.

4.2.3. Execution Time

The execution time (in seconds) for the training, optimization, and classification phases can be
visualized in Table 5. The GHSOM and ELM training were performed several times, and the results
for the mean and standard error of the mean (95% confidence interval) are presented. Note that
the GHSOM is about 7–9 times slower than the ELM training runtime. This impacted the MOGA
optimization runtime, which, according to the results, took almost one and a half days to execute for
each of the four partitions. Nevertheless, the classification runtime reached fast performance, with
a mean of 133.859 instances (for each partition) being classified in less than 17 s; that is, the trained
model (classifier) classified about 8.070 flows per second. This can be enhanced by using a lighter and
compiled version of the model (e.g., C++), instead of using interpreted MATLAB library calls.

Table 5. Training, optimization, and classification execution times (in seconds).

D1 D2 D3 D4

GHSOM 1114.42± 45.24 1104.74± 51.60 1096.26± 35 1093.09± 26.85
ELM 165.49± 11.55 130.87± 49.28 126.5± 33.72 117.86± 32.86

MOGA 1.2524× 105 1.2763× 105 1.2623× 105 1.2591× 105

Classification 16.5858 16.585 16.5854 16.5846

4.2.4. Comparison between the MODC Model and DPI-Based Tools

The proposed method (MODC) was also compared to six popular DPI-based tools, including
two commercial ones (PACE (https://www.ipoque.com/products/dpi-engine-rsrpace-2) and
NBAR (http://www.cisco.com/c/en/us/products/ios-nx-os-software/network-based-application-
recognition-nbar/index.html) and four free tools (OpenDPI (http://code.google.com/p/opendpi/),
l7-filter (http://l7-filter.sourceforge.net), NDPI (http://www.ntop.org/products/deep-packet-
inspection/ndpi/), and Libprotoident (https://research.wand.net.nz/software/libprotoident.php)).
The results from these tools were obtained from [64], where the “App.” corresponds to the application
or application protocol and “Clas.” column corresponds to the classifier. The authors conducted the
analysis by investigating three metrics only, the Recall in Flows (RF), GFA and AFA, in order to evaluate
the DPI-based tools’ performance. The comparison of our method to these tools can be visualized in
Table 6. The Correct (Cor.) column in [64] corresponds to the Recall in this paper. The remaining columns
are the Wrong (Wro.), when the flow is incorrectly classified as another application and Unclassified
(Unc.), when the flow is classified as unknown. It is important to notice that we aim to compare the
results for flow accuracy only, since the authors in [64] did not analyze the byte accuracy.

https://www.ipoque.com/products/dpi-engine-rsrpace-2
http://www.cisco.com/c/en/us/products/ios-nx-os-software/network-based-application-recognition-nbar/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/network-based-application-recognition-nbar/index.html
http://code.google.com/p/opendpi/
http://l7-filter.sourceforge.net
http://www.ntop.org/products/deep-packet-inspection/ndpi/
http://www.ntop.org/products/deep-packet-inspection/ndpi/
https://research.wand.net.nz/software/libprotoident.php
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From Table 6, it can be observed that, for 8 out of 10 applications, the proposed method (MODC)
results exceeded 92% of accuracy, presenting good performance when compared to other DPI-based
tools. The FTP and RTMP results were average due to their small number of flows in the dataset (see
Table 1). This implicates directly in the model training, decreasing the classification performance.

Table 6. The MODC and popular DPI-based tools.

App. Clas. Cor. Wro. Unc.

EDK

PACE 94.80 0.02 5.18
ODPI 0.45 0.00 99.55
L7F 34.21 13.70 52.09

NDPI 0.45 6.72 92.83
LIB 98.39 0.00 1.60

NBAR 0.38 10.81 88.81
MODC 96.48 3.41 0.11

BTR

PACE 81.44 0.01 18.54
ODPI 27.23 0.00 72.77
L7F 42.17 8.78 49.05

NDPI 56.00 0.43 43.58
LIB 77.24 0.06 22.71

NBAR 27.44 1.49 71.07
MODC 92.26 7.23 0.51

FTP

PACE 95.92 0.00 4.08
ODPI 96.15 0.00 3.85
L7F 6.11 93.31 0.57

NDPI 95.69 0.45 3.85
LIB 95.58 0.00 4.42

NBAR 40.59 0.00 4.42
MODC 86.62 5.10 8.28

DNS

PACE 99.97 0.00 0.03
ODPI 99.97 0.00 0.03
L7F 98.95 0.13 0.92

NDPI 99.88 0.09 0.03
LIB 99.97 0.00 0.04

NBAR 99.97 0.00 0.04
MODC 94.29 0.50 5.21

NTP

PACE 100.00 0.00 0.00
ODPI 100.00 0.00 0.00
L7F 99.83 0.15 0.02

NDPI 100.00 0.00 0.00
LIB 100.00 0.00 0.00

NBAR 0.40 0.00 99.60
MODC 99.91 0.05 0.04

App. Clas. Cor. Wro. Unc.

SSH

PACE 95.57 0.00 4.43
ODPI 95.59 0.00 4.41
L7F 95.71 0.00 4.29

NDPI 95.59 0.00 4.41
LIB 95.71 0.00 4.30

NBAR 99.24 0.05 0.70
MODC 99.50 0.31 0.19

RDP

PACE 99.04 0.02 0.94
ODPI 99.07 0.02 0.91
L7F 0.00 91.21 8.79

NDPI 99.05 0.08 0.87
LIB 98.83 0.16 1.01

NBAR 0.00 0.66 99.34
MODC 98.86 1.04 0.10

NETB

PACE 66.66 0.08 33.26
ODPI 24.63 0.00 75.37
L7F 0.00 8.45 91.55

NDPI 100.00 0.00 0.00
LIB 0.00 5.03 94.97

NBAR 100.00 0.00 0.00
MODC 99.67 0.33 0.00

RTMP

PACE 80.56 0.00 19.44
ODPI 82.44 0.00 17.56
L7F 0.00 24.12 75.88

NDPI 78.92 8.90 12.18
LIB 77.28 0.47 22.25

NBAR 0.23 0.23 99.53
MODC 77.05 14.75 8.20

HTTP

PACE 96.16 1.85 1.99
ODPI 98.01 0.00 1.99
L7F 4.31 95.67 0.02

NDPI 99.18 0.76 0.06
LIB 98.66 0.00 1.34

NBAR 99.58 0.00 0.42
MODC 96.73 2.12 1.14

In order to select the best classifier, the authors in [64] utilize the AFA as the determinant measure.
Note that, in Table 7, the MODC presented the best value for AFA, outperforming all DPI-based tools.
On the other hand, our proposed method was the third best classifier when evaluating the GFA, but
with results not far from the best classifier, the PACE (commercial). Nevertheless, as mentioned before,
the MODC model has other advantages when compared to DPI-based tools, such as the capability
of classifying encrypted data, better classification speed performance, and no violation of users’ data
privacy, since no payload is required. Additionally, in Table 7, observe that other tools obtained poor
performance results for GFA and AFA.
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Table 7. Results for Global Flow Accuracy (GFA) and Average Flow Accuracy (AFA).

Classifier GFA AFA

PACE 94.22 91.01
OpenDPI 52.67 72.35
L7-filter 30.26 38.13
NDPI 57.91 82.48

Libprotoident 93.86 84.16
NBAR 21.79 46.72
MODC 89.60 94.14

4.2.5. A Deeper Analysis

The previous sections have shown that the divide and conquer strategy can enhance the model
quality, by dividing a complex problem into simpler problems and creating experts for each subproblem.
A multi-objective optimization was thus performed to optimize both flow and byte accuracies.
The comparisons, regarding average flow accuracy, have shown that our proposed method is superior
to the DPI-based tools analyzed, including the commercial ones, for the dataset being tested.

As already discussed, the authors in [64] conducted the experiments with three performance
measures only: Recall in Flows (RF), GFA, and AFA. These measures are important in order to
analyze a classifier’s quality, but they are incomplete when analyzed alone. In this section, we also
investigate the MODC performance when analyzed with four other measures: Precision, Average
Precision Accuracy (APA), Global Byte Accuracy (GBA), and Recall in Bytes (RB). The precision is an
important metric to be analyzed along with the recall, for each particular class. Good rates of recall do
not necessarily indicate that the classifier is precise, due to the likely presence of false positives.

Additionally, in this section, inspired by the divide and conquer strategy, we consider dividing
the dataset into two parts, splitting it by transport layer protocol. The dataset was divided into UDP
and TCP datasets, to verify whether the results could be improved. This way, a variant of the MODC
is proposed, the Multiple MODC (M-MODC), where an MODC model is created for each dataset
partition, that is, an MODC for the UDP dataset and another one for the TCP dataset. To simplify
the analysis and comparisons, the MODC model, applied to the full dataset (without the transport
layer protocol splitting), will be named S-MODC (Single MODC). Another reason for the dividing was
that some features were generated exclusively for TCP, making the UDP instances filled up with null
feature values and interfering during the learning process.

The results for the S-MODC can be visualized in Table 8. Note that the RF values are the same
as those of the Correct column in Table 6. Although the results for the RF show accurate results, few
can be observed in precision and RB. Nevertheless, note that poor results of precision were observed
in classes with few instances in the dataset and that poor results of RB were observed on Edonkey
and BitTorrent classes, that is, mainly UDP traffic. The precision rates could be enhanced by adding
more instances to those with few examples. The transport layer issue was tackled by creating two
distinct S-MODC models, the M-MODC, that is, by creating an S-MODC model for UDP and another
for TCP traffic.

The results for the M-MODC can be visualized in Table 9. Observe that, in this case, the results
for precision continue to present some poor values due to the lack of instances, but show an increase
in performance regarding the RB. In order to compare both methods, a summary of the results can be
visualized in Table 10. The results for both methods did not present considerable differences, with
exception to the RB, which showed to be far superior in the M-MODC method. It is important to notice
that, regarding this comparison, the best flow pareto-optimal solution was selected for analysis. When
compared to the DPI-based tools, the M-MODC is the second best classifier (AFA measure), behind
the commercial PACE only. Nevertheless, as already discussed, our method brings many advantages
when compared to the DPI-based method.
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Table 8. S-MODC results for Precision, Recall in Flows (RF), and Recall in Bytes (RB).

Application Precision RF RB

Edonkey 82.85 96.48 41.31
BitTorrent 88.73 92.26 43.91

FTP 33.00 86.62 83.42
DNS 11.31 94.29 94.15
NTP 94.30 99.91 99.93
SSH 82.10 99.50 99.57
RDP 99.21 98.86 99.87

NETBIOS 93.20 99.67 99.77
RTMP 13.24 77.05 65.17
HTTP 64.07 96.73 69.54

Table 9. M-MODC results for Precision, Recall in Flows (RF), and Recall in Bytes (RB).

Application Precision RF RB

Edonkey 78.60 89.67 91.27
BitTorrent 84.63 90.04 92.24

FTP 58.14 80.16 91.95
DNS 10.14 81.46 89.24
NTP 76.09 99.94 99.98
SSH 83.29 99.37 99.47
RDP 99.48 98.82 98.31

NETBIOS 71.85 98.92 98.48
RTMP 23.16 63.93 86.57
HTTP 87.68 85.65 88.67

Table 10. S-MODC x M-MODC results.

S-MODC M-MODC

GFA 89.60 88.97
GBA 72.69 89.59
AFA 94.14 88.80
APA 69.25 70.11

4.2.6. Comparison with Other Machine Learning Methods

We also benchmarked the S-MODC and M-MODC against some machine learning methods, such
as the ELM, this time performed using the k-fold cross validation, Naïve Bayes, k-Nearest Neighbors
(kNN), C4.5, and Softmax Layer. All the experiments were conducted using the k-fold cross validation
as described in Section 4.1.3. This way, the same test dataset was utilized for all the methods.

The same pre-processed dataset, as described in this paper, was used to train the models.
The algorithms were obtained from the official MATLAB toolboxes, with the exception of ELM
(http://www.ntu.edu.sg/home/egbhuang/elm_codes.html). It was not the purpose of this paper to
exhaustively train such models with multiple parameters, or even to propose hybrid methods with most
of them (e.g., by using optimizers), then, for that reason, the default parameters for each algorithm,
defined at the official toolboxes’ web pages for the Naïve Bayes (https://www.mathworks.com/
help/stats/fitcnb.html), kNN (https://www.mathworks.com/help/stats/fitcknn.html), C4.5 (https:
//www.mathworks.com/help/stats/fitctree.html), and Softmax Layer (https://www.mathworks.
com/help/nnet/ref/trainsoftmaxlayer.html), were used in the experiments. For the ELM, we used
400 neurons to train the model and the sigmoidal function.

http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
https://www.mathworks.com/help/stats/fitcnb.html
https://www.mathworks.com/help/stats/fitcnb.html
https://www.mathworks.com/help/stats/fitcknn.html
https://www.mathworks.com/help/stats/fitctree.html
https://www.mathworks.com/help/stats/fitctree.html
https://www.mathworks.com/help/nnet/ref/trainsoftmaxlayer.html
https://www.mathworks.com/help/nnet/ref/trainsoftmaxlayer.html
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The benchmark results are shown in Table 11. Observe that both of our methods outperformed all
the analyzed methods, with the exception of the APA, that presented slightly better results with the
C4.5 algorithm. Nonetheless, the other methods obtained poor performance of GBA, due to the fact that
our methods are able to optimize, simultaneously, both the GFA and the GBA performance measures.

Table 11. Comparison with other machine learning methods.

S-MODC M-MODC ELM Naïve B. kNN C4.5 Softmax

GFA 89.60 88.97 81.37 58.05 82.70 86.37 76.39
GBA 72.69 89.59 51.90 44.36 60.60 61.29 60.90
AFA 94.14 88.80 84.07 60.18 88.21 88.79 79.36
APA 69.25 70.11 61.62 55.58 63.27 70.67 57.75

5. Conclusions

This work proposed a Multi-Objective Divide and Conquer (MODC) model by combining
supervised and unsupervised machine learning techniques, such as the Growing Hierarchical
Self-Organizing Maps (GHSOM), the Extreme Learning Machine (ELM), the Multi-objective Genetic
Algorithm (MOGA), and the Information Gain for feature selection, into a flexible hybrid model, to
deal with the problem of network traffic classification. It is based on the divide and conquer strategy
proposed by [36]. This approach proved to enhance the learning process.

The dividing process is led by an unsupervised algorithm, the Growing Hierarchical
Self-Organizing Map (GHSOM), and focuses on the division of a large and complex problem into
smaller and simpler problems (tasks), being represented by clusters. The conquer process then attacks
the less complex tasks (smaller datasets or clusters) by a supervised learning algorithm, the Extreme
Learning Machine (ELM). Some processes are then optimized by the MOGA algorithm. To the best of
our knowledge, there are no contributions that investigate the use of a divide and conquer strategy for
network traffic classification, along with the flexibility of allowing network administrators to choose
the best parameters for their networks, by prioritizing flow or byte classification accuracy. This can be
performed with the use of multi-objective optimization, by selecting between pareto-optimal solutions.
Additionally, this work is compared against commonly used network traffic classifiers (DPI-based
tools) and some machine learning algorithms, whose results could benefit the benchmarking against
different methodologies.

The MODC presented promising results in the experiments, with an average flow accuracy of
94.14%, exceeding the performance of all DPI-based tools analyzed, including the commercial tools,
and outperforming five machine learning-based methods. Additionally, a variant of the MODC was
proposed, the Multiple MODC (M-MODC), to deal with the lack of feature values in the UDP transport
layer protocol. The M-MODC performance showed to be superior to the Single MODC (S-MODC)
concerning the global byte accuracy, presenting results of, approximately, 90%. Although promising
results were obtained in both byte and flow accuracies, the average precision accuracy reached an
average performance of 70.11% for the M-MODC method due to the lack of instances for particular
classes in the analyzed dataset, that is, due to the imbalanced dataset. Nevertheless, this can be
enhanced by collecting more instances of those classes with few examples.

For future research, online machine learning techniques could be used to improve the results and
should be investigated, since network traffic’s behavior frequently changes over time. These techniques
allow one to train a model as soon as new instances are presented to the system, incrementally.
Additionally, semi-supervised algorithms could be utilized, since they allow us the use of a few labeled
instances plus many unlabeled instances (easily collected), which benefits the training of imbalanced
datasets. Studies can also be performed on networks with high throughput (e.g., networks with
throughput of 10 Gbps or higher) with the aid of big data techniques, cloud computing with multiple
computing nodes, and deep learning.
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Appendix A. Extracted Features

Feature Description
Proto Transaction protocol
sTtl Src − > dst TTL value
dTtl Dst − > src TTL value
TotPkts Total transaction packet count
SrcPkts Src − > dst packet count
DstPkts Dst − > src packet count
TotBytes Total transaction bytes
SrcBytes Src − > dst transaction bytes
DstBytes Dst − > src transaction bytes
TotAppBytes Total application bytes
SAppBytes Src − > dst application bytes
DAppBytes Dst − > src application bytes
Load Bits per second
SrcLoad Source bits per second
DstLoad Destination bits per second
Loss Pkts retransmitted or dropped
SrcLoss Source pkts retransmitted or dropped
DstLoss Destination pkts retransmitted or dropped
pLoss Percent pkts retransmitted or dropped
SrcGap Source bytes missing in the data stream
DstGap Destination bytes missing in the data stream
Rate Pkts per second
SrcRate Source pkts per second
DstRate Destination pkts per second
SIntPkt Source interpacket arrival time (mSec)
SIntPktAct Source active interpacket arrival time (mSec)
SIntPktIdl Source idle interpacket arrival time (mSec)
DIntPkt Destination interpacket arrival time (mSec)
DIntPktAct Destination active interpacket arrival time (mSec)
DIntPktIdl Destination idle interpacket arrival time (mSec)
TcpRtt TCP connection setup round-trip time, the sum of “synack” and “ackdat”
SynAck TCP conn. setup time, the time between the SYN and the SYN_ACK packets
AckDat TCP conn. setup time, the time between the SYN_ACK and the ACK packets
sMaxPktSz Maximum packet size for traffic transmitted by the src
dMaxPktSz Maximum packet size for traffic transmitted by the dst
sMinPktSz Minimum packet size for traffic transmitted by the src
dMinPktSz Minimum packet size for traffic transmitted by the dst
Dur Record total duration
RunTime Total active flow run time
Mean Average duration of aggregated records
Sum Total accumulated durations of aggregated records
Min Minimum duration of aggregated records
Max Maximum duration of aggregated records
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