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Abstract: Hybrid exchange-correlation functionals provide superior electronic structure and optical
properties of semiconductors or insulators as compared to semilocal exchange-correlation potentials
due to admixing a portion of the non-local exact exchange potential from a Hartree-Fock theory. Since
the non-local potential does not commute with the position operator, the momentum matrix elements
do not fully capture the oscillator strength, while the length-gauge velocity matrix elements do. So far,
length-gauge velocity matrix elements were not accessible in the all-electron full-potential WIEN2k
package. We demonstrate the feasibility of computing length-gauge matrix elements in WIEN2k
for a hybrid exchange-correlation functional based on a finite difference approach. To illustrate the
implementation we determined matrix elements for optical transitions between the conduction and
valence bands in GaAs, GaN, (CH3NHj3)Pblz and a monolayer MoS;. The non-locality of the Hartree—
Fock exact exchange potential leads to a strong enhancement of the oscillator strength as noticed
recently in calculations employing pseudopotentials (Laurien and Rubel: arXiv:2111.14772 (2021)).
We obtained an analytical expression for the enhancement factor for the difference in eigenvalues not
captured by the kinetic energy. It is expected that these results can also be extended to other non-local
potentials, e.g., a many-body GW approximation.

Keywords: semiconductors; oscillator strength; density functional theory; hybrid exchange-correlation
functional; non-local potential

This paper is dedicated to the 80th birthday of Professor Karlheinz Schwarz, the
founder of the WIEN2k DFT package.

1. Introduction

Calculations of linear optical properties of solids require matrix elements for electric
dipole transitions. Momentum matrix elements

pmn (k) = (m, k| —iVy|n, k) 1)

are widely used in full-potential codes with periodic boundary conditions [1] when optical
properties are computed with local potentials (e.g., LDA (see end of the paper for the full
list of abbreviations) or GGA XC functionals) and referred to in the literature as a velocity
gauges. (Atomic units will be used throughout the paper.)

Starace [2] emphasised the limitations of Equation (1) when representing matrix
elements for electric dipole transitions. Instead, the more general velocity matrix elements
should be used

Vaun (k) = (m, k[i[H, 1]|n, k) 2

with the velocity operator [2]

v =i[H ] =p+i[Va(r 1), 1], ®)
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which contains an additional commutator term [V (r, '), 1] to account for non-local po-
tentials (e.g., the Hartree-Fock exchange in hybrid XC functionals). With |n, k) and E, (k)
being eigenstates of the Hamiltonian F, the alternative (length gauge) matrix elements can
be expressed as [2]

(m, Ki[H,x]|n,X) = i[Em(k) — Eu (k)] (m, k|r|n, k). )

Since the position operator is not well defined for periodic systems, the following
substitution is used instead: [3,4]

r = lim (e — 1) /ig, (5)
q—0

which leads to a practical expression for the velocity matrix elements in the long wavelength
limit [5,6]
(k) = lim ;Wk + Qa7 1) [En (k4 @) — En(I0)- ©)

Here, « = x,y,z is a Cartesian direction, m and # are band indices, and q, = g X, where
X is a unit vector in the direction of the x axis.

WIENZ2k [7,8] is one of the most used full-potential all-electron DFT codes for solids.
It offers many XC functionals to open the band gap, including hybrids with a non-local
Hartree-Fock potential [9]. So far, however, WIEN2k has implemented only momentum
matrix elements to compute optical properties as a part of the optic module [1]. Laurien
and Rubel [10] showed that neglecting the second term in Equation (3) when using hybrid
functionals can lead to an underestimation of the squared magnitude of matrix elements
for electric dipole transitions between conduction and valence band edges by ca. 30%.

Here, we present a scheme for the calculation of the length-gauge optical matrix
elements in WIEN2k based on a finite difference Equation (6) with the help of overlap
matrix elements

M (k, q) = <”k,n‘”k+q,m> = <lpk,n|e_iq‘r|4]k+q,m> (7)

that come from the wien2wannier module [11]. This development opens an avenue for the
calculation of optical properties (frequency-dependent dielectric tensor, absorption spec-
trum, optical conductivity, refractive index, reflectively, loss function) in the independent
particle approximation with hybrid functionals in WIEN2k.

2. Methods

DFT [12,13] calculations were performed with the WIEN2k package (version 21.1)
and the Yukawa screened hybrid (YSH) functional [9]. It was shown that by choosing
an appropriate screening length A in the Yukawa potential the YSH functional gives very
similar results as the common HSE06 XC functional [14,15]. Important parameters are
summarized in Table 1. Experimental structural parameters were used for all solids
(Figure 1) with internal atomic positions optimized at the PBE level when permitted by
symmetry. Spin-orbit coupling (SOC) was included in all calculations. The structure of
(CH3NH3)Pbls was represented by a pseudo-cubic cell taken from Ref. [16], scaled to
experimental lattice parameters at 350 K [17,18], followed by a subsequent relaxation of
atomic positions while retaining the experimental lattice parameters. The pseudo-cubic
structure means that the following constrainsa = b = ¢, « = § = v = 90° are applied to
lattice parameters, while the formal symmetry of the structure (spacegroup P1) is not cubic.
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Table 1. Structural and calculation parameters.

Parameters GaAs GaN (CH3NH3)PbI; 1L-MoS;
Space group F43m (216) P63mc (186) P1(1) Pém?2 (187)
Lattice param. A) 5.653 [19] 3.18,5.166 [20] 6.31[17,18] 3.16 [21],29.0
(pseudo-cubic)
R (bohr) 2.23 (Ga) 1.90 (Ga) 0.68 (H) 2.36 (Mo)
2.23 (As) 1.64 (N) 1.34 (C) 2.03 (S)

1.26 (N)

2.50 (Pb)

2.50 (I)
Myal 13 (Ga) 19 (Ga) 4(C) 14 (Mo)

15 (As) 5(N) 5(N) 6 (S)
18 (Pb)
17 (D)
R, Kmax 8.0 8.0 3.0 8.0
Gmax 12 12 20 12
Imax 10 (all structures)
Lvnsmax 6 (all structures)
k mesh 8§x8x8 8§x8x4 3x3x3 I9x9x1
(T centered) (T centered) (shifted) (T centered)

Energy (Ry) and 10~* (all structures)
charge converg. 1073 (all structures)

(a)

©

Figure 1. Crystal structures: (a) GaAs, (b) GaN, (c) quasi-cubic (CH3NHj3)Pbls, and (d) mono-
layer MoS;.

Velocity-gauge optical matrix elements p,,, (k) were calculated using the optic module[1]
in WIEN2k. Length-gauge optical matrix elements v, (k) were obtained with the forward

1
ol (k) ~ E(”k,n|”k+qa,m>[Em(k + qu) — En(k)] ®)
and central
®) (1) ~ 1 Ep(k + > Ey(k— 9
Upn (k) ~ _<ukf%qlxﬂ1 uk+%qa,m>[ m(k+ 5‘1«) —En(k— ECIa)] )

q
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finite difference method. The overlap matrix elements (uy , |ty ;) between the cell-periodic
parts of the Bloch functions were generated by the wien2wannier module [11] (case .mmn
output file). The length-gauge optical matrix elements for GaAs computed with YSH
were additionally verified using VASP [22], HSE06 and projector augmented-wave po-
tentials [22-24]. Sample scripts that illustrate a detailed workflow can be found in the
Supporting Information section.

The logarithmic percent change

()2
A = In| 212" 1500, (10)
5 pin 2

was used to evaluate differences between matrix elements. This approach has the following
advantages: (i) does not require a reference, (ii) is more suitable for large changes (greater
than a few percents), (iii) it has additive properties, and (iv) in the limit of small changes it
reduces to the classical ratio of the relative change to the reference.

3. Results
3.1. Finite Difference Calibration and Validation for Local XC

We selected GaAs and the local PBE XC potential [25] to prove the feasibility of
computing the length-gauge optical matrix elements using the finite difference methods
given by Equations (8) and (9). The local potential is selected here since both the length-
and velocity-gauge should lead to identical results under these circumstances. It is also
important to get a feeling for the step size g at which the finite difference approximation
converges to the accurate result given by the momentum matrix element. Here GaAs serves
as an important benchmark since the conduction band and light holes are very sharp and
non-parabolic (see Figure 2a).

Results presented in Table 2 suggest that both, the forward and the central finite
differences reproduce the values of the momentum matrix element within a 3% error. The
central finite difference converges faster (at the wave vector shift of g 2~ 0.003 rad bohr 1)
and will be used to derive matrix elements for the remaining part of this paper. The
numerical noise of the finite difference starts to show up at § < 107 rad bohr~!.

Table 2. Length-gauge velocity matrix elements |v,(1f,2 |? (at.u.) in GaAs calculated using the finite
difference approximations (forward vs. central) Equations (8) and (9) with various step sizes q. These
values are compared with the velocity-gauge momentum matrix elements \pm ? (at.u.) from the
optic module. The local (GGA-PBE) XC functional wa used, which made the velocity and the length
gauges identical. The band degeneracy is given as a superscript in parentheses and the meaning of

the subscripts is made clear in Figure 2a.

x |'Ur(:n IZ (x) 2
Transition (g = (16.0/3.5/1.2/0.0006) x 103 rad bohr1) L pmnl
Forward FD Central FD
T8 12 0264/0.402/0.420/0.402  0.412/0.422/0.422/0.402 0.417
{2 _ 12 0217/0.202/0.200/0.221  0.209/0.201/0.200/0.221 0.206

3.2. Validation for Non-Local XC

After validating our approach with the local potential, we applied it to the non-local
YSH XC functional. Again we evaluated the velocity-gauge (momentum) matrix elements
and length-gauge (velocity) matrix elements in GaAs. Now we did not expect the two
matrix elements to agree given the arguments presented in Section 1. To cross-check
our results, we also computed the velocity matrix elements with VASP, which should be

(a)

comparable with our vy, values.



Computation 2022, 10, 22

50f 10

Our YSH calculations for GaAs gave a band gap of ESM = 1.24 eV vs. E; =
1.52 eV [26] and previously reported EIg{SEO6 = 1.33 eV [27], which was a significant im-
provement over PBE. The band structure is shown schematically in Figure 2a where bands
are labeled according to the convention. The results presented in Table 3 confirmed the
agreement between WIEN2k and VASP for length-gauge matrix elements within less than
a 2% deviation. The total length-gauge oscillator strength between valence and conduction

band corresponded to mg ) |v£§§) |2 ~ 21 eV, which agreed well with the 20 eV quoted by (Yu
and Cardona [28], Section 2.6) for III-V semiconductors. The momentum (velocity-gauge)
matrix elements significantly underestimated the strength of optical transitions, which
had previously been reported and quantified in Ref. [10]. The values of |pc,|* were almost
identical to those obtained with PBE (Table 2), even though the momentum matrix elements
were derived from YSH wave functions.

@ (b)

E E
X-valley
/@ . /
b [N
Eg Eg
<100> <11> <001> <100>
k — INC k
RN I R
SO SO
(d
© E E
K-valley
N\ G
N
Re
Eg E,
<001> /RV <100> <100>
/T\ k / \ k
/\Vz
Vi

Figure 2. Schematic band structures of materials studied with SOC: (a) GaAs, (b) GaN, (c) quasi-
cubic (CH3NH3)Pbl3, and (d) monolayer MoS,. The band indices ‘c’, “hh’, ‘Ih’, and ‘so” stand for
conduction, valence heavy-hole, light-hole, and split-off bands, respectively. The scale of band
splittings is exaggerated.
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Table 3. Length-gauge |vmn |> and velocity-gauge |pmn |> matrix elements (at.u.) in GaAs calculated
using WIEN2k (with YSH) and VASP (with HSE06). Due to the non-local potential the velocity and
the length gauges are not identical. The band degeneracy is given as a superscript in parentheses and
the subscripts are explained in Figure 2a. The logarithmic deviation between Y’ | pgfé) |>and ¥ \vz(fé) ?
is given in parentheses (A as per Equation (10)).

(¥) 2
Transition L [ | v |p(x) |2
WIEN2k VASP
T~ T 0.534 0.541 0.420
ri7? _r{? 0.255 0.256 0.208
Total 0.789 (+23%) 0.797 0.628

3.3. lllustrative Applications

In the previous subsection we showed that calculations of optical properties for GaAs
with the non-local hybrid XC functional (YSH or HSE06) require length-gauge optical
matrix elements. If the momentum matrix elements had been used instead, the strength
of optical transitions would have been underestimated by 23%. Next, we showed that a
similar enhancement of the strength of direct optical transitions was also observed in other
semiconductors, such as GaN, (CH3NH;3)Pblz, and monolayer MoS,. The corresponding
band structures are shown schematically in Figure 2b—d.

The band gap of GaN is well reproduced with YSH: EgSH = 319 eV vs E;Xp =
3.30 eV [29]. Compared to GaAs, the optical matrix elements in Table 4 showed an even
larger disparity between the length-gauge velocity and the momentum matrix elements.

Table 4. Length-gauge \vmn |? and velocity-gauge |pm,, |2 matrix elements (at.u.) in GaN calculated
using the YSH XC functional.

Transition L logn |2 L loga | L lpinl? Elpial?
r{x? _ < 0211 0 0.183 0
ry? -t 0.256 0.055 0.163 0.042
r(? 2 0.026 0.507 0.018 0.377
Total 0.493 (+30%) 0.562 (+29%) 0.364 0.419

The monolayer MoS; had a direct band gap at the K = (1/3,1/3,1/3) point. Due to
large excitonic effects [30], direct comparison of the YSH band gap EgSH = 222 eV with

experiment was not possible. Thus, we used a many-body result EgG oWo — 253V [31,32] as
a reference. Similarly to other materials, the monolayer MoS; showed strong enhancement
of the matrix elements (Table 5) with the YSH XC functional. Spin selection rules disabled
half of the in-plane vg) matrix elements, while the out-of-plane matrix elements vgf,) were
zero for transitions at the band edges due to symmetry arguments.

Table 5. Length-gauge |Um,, |> and velocity-gauge \pmn |> matrix elements (at.u.) in monolayer MoS,
calculated using YSH XC functional.

Transition v |v(x) |2 Y |p(x) |2
Ky, — K¢ 0 0
Ko, — Ko, 0.107 0.075
Ko, — Ko, 0.106 0.074
Ky, — Ke, 0 0

Total 0.213 (+36%) 0.149
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The pseudo-cubic (CH3NH3)Pbl; had a direct gap at R = (1/2,1/2,1/2). The calcu-
lated band gap EgSH = 1.03 eV is an improvement relative to the PBE band gap (0.46 eV),
but it is still far from the experimental 1.5-1.6 eV for the tetragonal phase [33,34]. This
underestimation was due to the lack of stochastic thermal distortions of the Pblg octahedra,
which further opened the gap by ca. 0.5 eV at room temperature [35,36]. Table 6 captures
the matrix elements and their anisotropy caused by the reduced (pseudo-cubic) symme-
try of the unit cell. Among all materials studied here, this material showed the lowest
enhancement of the velocity matrix elements compared to the momentum matrix elements.
Table 6. Length-gauge |v,(,f,2 | and velocity-gauge |p,(,f2 ?
(CH3NHj3)PbI; calculated using the YSH XC functional.

matrix elements (at.u.) in pseudo-cubic

Transition v |v,(,f,;y’z) 2 Tl p%’yz) 2
RYP RO 0.195,0.150,0.128 (+11, +11, +8%) ? 0.174,0.135,0.118

7 The true enhancement should be about 22% due to inaccuracies in |p,(f,’1 ) |? values. See

text below for more details.

It should be mentioned that the momentum matrix elements calculated with the optic
module in the presence of SOC had an inaccuracy that progressively increased for heavier

elements. The discrepancy between | p,(,ic,’qy ) |? values calculated at the PBE level (including

SOC) with the optic module and using the finite difference overlap matrix reached ca. 12%
in the case of (CH3zNH;3)Pblz. The discrepancy fully vanished when SOC was excluded.
After crosschecking the matrix elements with VASP we concluded that the finite difference

results were correct. Since the optic module overestimated \pﬁf,;y ) |> values at PBE with
SOC, the same applied to YSH with the SOC results presented in Table 6. After including
this error, the true enhancement of YSH matrix elements for (CH3NH3)Pbl; were about 22%
(10% average enhancement in Table 6 and 12% optic error for this material). Additional
calculations with VASP and HSE06 XC functional with SOC produced a very similar result
(23% enhancement of the matrix elements).

4. Discussion

YSH length-gauge |0yt |2 matrix elements were systematically greater than the mo-

mentum matrix elements |p%S,I§ |?. The enhancement ranged from 22 to 36% in the following
order: (CH3NH3)Pblz, GaAs, GaN, and MoS; (from the smaller to higher enhancement).
This trend prompted the hypothesis that the enhancement was related to the localization of
states involved in the optical transition. (CH3NH3)Pbl; has the most extended 5p-I and
6p-Pb states, while MoS; had the most localized 4d-Mo and 3p-S states at the band edges.

To gain further insight into the difference between |p)>H |2 and |0)2H|? we wote the
momentum matrix element in the length gauge. The corresponding operator was expressed
as the commutator

p=ilT,1], (11)

where T is the kinetic energy operator. Following the same logic that leads to Equation (4),
we derived an equivalent expression for the momentum matrix element in the length-gauge

Prn(k) = i[Ty (k) — Ty (k)] (m, K|x|n, k). (12)
After dividing Equation (4) by (12) we obtain

En(k) — Eq(k)

vmﬂ(k)::pmm(k)jixijifiifij'

(13)

Thus, the 10 to 36% enhancement of the absolute squared magnitude of velocity
matrix elements vs momentum matrix elements in calculations with YSH was directly
related to the difference in eigenvalues not captured by the kinetic energy. In contrast,
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we expected the difference in eigenvalues to be fully captured by the kinetic energy, i.e.,
[Em(k) — Ex(k)]/[Tm(k) — Tu(k)] = 1, when a local potential was employed. Interestingly,
Equation (13) predicts an isotropic renormalization factor shared by all Cartesian directions
(¢ = x,y,2). Indeed, materials with anisotropic v,(qf,g—GaN (Table 4) and (CH3NHj3)Pbls
(Table 6)—showed a material-dependent yet isotropic enhancement factor, which was an
indirect proof of the validity of Equation (13).

The renormalization of momentum matrix elements should have had implications for
optical properties calculated with non-local potentials (hybrid or quasi-particle GW). The
velocity matrix elements entered the frequency-dependent dielectric tensor (an imaginary
part of the inter-band contribution) that took the following form in the independent-particle
approximation [5]

(06) ( )
ch c,0 (k)
% [ 2B B e (1) — Ea10) - ] i (14)

However, length-gauge v, matrix elements are more difficult to compute than p.,
especially at the quasi-particle GW level of theory where the finite difference method
seems the only available technique [3]. Equation (13) opens a convenient possibility to use
renormalized momentum matrix elements instead

@ (108
CXZ/keBZ T.(k) lPT(%? 3[Ec(k) = Eo (k) — w] dk, (15)

provided that eigenstates are consistent with the potential, and their kinetic energy is
known. The last expression should be valid not only for hybrid XC functionals but also for
the quasi-particle GW level of theory.

Finally, we would like to comment on the renormalization of optical transition matrix
elements proposed by Levine and Allan [37]

GW _ _.LDA/PBE (EC — EU)GW (16)

v, Uy,c (E — E,,)LDA/PBE

that is further used in the literature [5,38]. If we apply Equation (16) to the I's, — I, transition
in GaAs, one would expect the absolute squared magnitude of the velocity matrix element
to increase by the ratio of [(EYSH — EXSH) /(EPBE — EPBE)]2 which amounts to +151%. This
result contradicts the +23% difference between |pg, e PBE|2 and |UZOSCH 2 we observed (compare
Tables 2 and 3). At the same time, the dipole matrix element |(Ts,|r|T)|? becomes 127%
smaller in YSH relative to PBE and counterbalances (partly) the effect of the gap opening.
We further identified contributions of the muffin-tin spheres and of the interstitial volume
to the value of the dipole matrix element (I's,|t|T) at PBE and YSH levels of theory: 25%
Ga, 44% As, and 31% interstitial. All contributions are in phase with each other, and the
proportions remain unchanged from PBE to YSH. Equation (16), in contrast, implies the
equality of dipole matrix elements (m k\r|n K)LPA/PBE — (31 Ke|r|n, k) CW (see Equation (4).
Note that UJ;IDHA/ PBE _ pLDA/ PBE ~ pm " [10]) leads to a gross overestimation of v§" matrix
elements making them inconsistent with the band curvature [10].

5. Conclusions

Strong material-dependent enhancement of the oscillator strength (22-36% in the
absolute squared magnitude) was observed in the electronic structure calculations of semi-
conductors with a hybrid XC functional. The origin of the enhancement was traced to
the non-local Hartee-Fock exchange potential. The enhancement of the absolute squared
magnitude of velocity matrix elements |UYSH 2 vs momentum matrix elements | pYSH 2in
calculations with non-local potentials was directly related to the difference in eigenvalues
not captured by the kinetic energy, i.e., [Ey (k) — E;(k)]?/ [T (k) — T, (k)]2. This enhance-
ment is isotropic and can be readily included in a calculation of the dielectric function. Our



Computation 2022, 10, 22 90of 10

enhancement factor was much more accurate than that previously proposed by Levine and
Allan (ng / EéDA)Z, which leads to nonphysically large v5'Y matrix elements.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/computation10020022/s1, a SI-Computation.tar.gz file with
WIEN2k workflows (bash scripts), structure files, sample k-point files, and a python script for data
processing.
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Abbreviations

The following abbreviations are used in this manuscript:

BZ Brillouin zone

DFT  Density functional theory

FD Finite difference

GGA  Generalized gradient approximations
HSE Heyd, Scuseria, and Ernzerhof
LDA  Local-density approximation

PBE Perdew, Burke, and Ernzerhof
SOC  Spin-orbit coupling

VASP  Vienna ab initio simulation package
XC Exchange and correlation

YSH  Yukawa screened hybrid
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