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Abstract: We consider kinetic energy functionals that depend, beside the usual semilocal quan-
tities (density, gradient, Laplacian of the density), on a generalized Yukawa potential, that is the
screened Coulomb potential of the density raised to some power. These functionals, named Yukawa
generalized gradient approximations (yGGA), are potentially efficient real-space semilocal methods
that include significant non-local effects and can describe different important exact properties of
the kinetic energy. In this work, we focus in particular on the linear response behavior for the
homogeneous electron gas (HEG). We show that such functionals are able to reproduce the exact
Lindhard function behavior with a very good accuracy, outperforming all other semilocal kinetic
functionals. These theoretical advances allow us to perform a detailed analysis of a special class
of yGGAs, namely the linear yGGA functionals. Thus, we show how the present approach can
generalize the yGGA functionals improving the HEG linear behavior and leading to an extended
formula for the kinetic functional. Moreover, testing on several jellium cluster model systems allows
highlighting advantages and limitations of the linear yGGA functionals and future perspectives for
the development of yGGA kinetic functionals.

Keywords: density functional theory; kinetic functional; Yukawa potential

1. Introduction

The non-interacting kinetic energy (KE) functional is one of the main quantities of
interest in density functional theory [1,2]. Its exact formal definition is readily obtained,
following the Levy constrained search formalism [3], as

Ts[n] = min
Ψ→n
〈Φ| − 1

2
∇2|Φ〉 , (1)

where n is the electron density and Φ is a Kohn-Sham (KS) [4] Slater determinant yielding
the density n. This formula allows us to study different important properties of the KE
functional and provides an explicit expression for Ts in terms of KS orbitals. However, it
does not allow us to obtain an explicit expression in terms of the electron density. Therefore,
the quest for the KE density functional is still open, also considering the importance of this
quantity in many contexts including orbital-free density functional theory (OF-DFT) [5–8],
subsystem DFT [9–15], and quantum hydrodynamic theory [16–19]. In addition, semilocal
KE functionals have been used in meta-GGA exchange-correlation functionals to remove
their orbital dependence [20–24].
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Numerous investigations have been dedicated in the last decades to the study of KE
functionals [25–72]. Nevertheless, accurate approximations of Ts[n] are hard to obtain
because this quantity usually gives a dominant contribution to the ground-state energy [3]
and because of the highly non-local nature of the KE functional [5,51,73–78]. For this
reason, more recently, machine-learning methods have also been used to develop KE
functionals [79–87].

A KE functional approximation can be written

Ts[n] =
∫

τ[n](r)dr , (2)

where τ(r) is the KE density and, actually, there are two main strategies to approximate
τ(r). The simplest one considers the KE density to be a semilocal functional of the density,
that is

τ[n](r) = τsemilocal(n(r),∇n(r),∇2n(r), . . .) . (3)

This approach, which traces back to the nearsightedness principle [88], is computa-
tionally efficient because of the local nature of τ(r). However, since it is not explicitly
including non-local effects, that are quite relevant for KE functionals, semilocal functionals
face several limitations [46,89].

To overcome this problem, the other popular approach used to describe the KE density
makes explicit use of a non-local ansatz [47–63]

τnon−local(r) =
∫

nα(r)K(r, r′)nβ(r′)dr′ , (4)

where K(r, r′) is a proper non-local kernel. The presence of the non-local kernel strongly
increases the computational cost of the method and raises several practical difficulties. On
the other hand, non-local KE functionals are much more accurate [47–63].

In particular, the kernel can be designed in order to reproduce the correct linear
response behavior of the homogeneous electron gas (HEG), which has been shown to be a
very important property for the KE functional [47,60]. In fact, the KE functional and the
linear response function χ have a close relation, given by the equation [5]

F
(

δ2Ts[n]
δn(r)δn(r′)

)
= − 1

χ(k)
, (5)

where F denotes the Fourier transform and k is the momentum vector. For the HEG, the
linear response function can be computed analytically [5] and is related to the Lindhard
function [90]. Hence,

χHEG(k) = − (3π2n)1/3

π2 F−1
Lind(η) , (6)

F−1
Lind(η) =

1
2
+

1− η2

4η
ln
∣∣∣∣1 + η

1− η

∣∣∣∣ , (7)

with η = |k|/[2(3π2n)1/3] being a dimensionless momentum. The Lindhard function
cannot be accurately mimicked by any semilocal functional, because these all have a
polynomial Fourier transform [71]. On the other hand, it is the main property for most of
the non-local KE functionals.

Recently, a new class of KE functionals [71] has been proposed to join the advantages of
the semilocal methods and the good features of the non-local functionals. These functionals,
named Yukawa generalized gradient approximation (yGGA), use as input ingredients,
beside the density and its gradients, a Yukawa potential

uα(r) =
∫ n(r′)e−αkF(r)|r−r′ |

|r− r′| dr′ , (8)
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i.e., a screened Coulomb potential with αkF(r) = α(3π2)1/3n(r)1/3 as the screening length.
In this way, it is possible to include efficiently non-local effects and improve the description
of the HEG response function without resorting to the reciprocal space [71] (as it is instead
accustomed in non-local functionals).

In this work, we will take a step further in this direction and we will consider a
modification of the basic input ingredient of the functional, allowing the Yukawa potential
to be computed for a power of the density, i.e.,

uαβ(r) =
∫ nβ(r′)e−αkF(r)|r−r′ |

|r− r′| dr′ . (9)

The computational cost of Equation (9) is, at least for the spherical systems considered
in this work, the same as the one of the conventional Yukawa potential in Equation (8);
thus, it is interesting to investigate if and how the β parameter will impact the accuracy of
the linear response and of the resulting KE functional.

Therefore, we will consider yGGA functionals of the general form

τ[n](r) = τ(n(r),∇n(r),∇2n(r), uαβ(r)) . (10)

For these functionals, we will provide a full analytical derivation of the linear response
function and we will consider the exact constraints required to reproduce the Lindhard
behavior. Finally, we will analyze the role of the β parameter for the description of jellium
spheres and we will give insights for the further development of yGGA functionals.

2. Theory

We consider a KE density of the form

τ = CFn5/3Fs(p, q, yαβ) , (11)

where Fs is the KE enhancement factor and

CF =
3
10

k2
0 with k0 = (3π2)1/3 , (12)

p(r) =
|∇n(r)|2

4k2
0n(r)8/3

, (13)

q(r) =
∇2n(r)

4k2
0n(r)5/3

, (14)

yαβ(r) =
3πα2

4k0n(r)β−2/3

∫ nβ(r′)e−αk0n(r)1/3|r−r′ |

|r− r′| dr′ . (15)

The quantity yαβ is the main ingredient of the yGGA functional, whereas p (the reduced
gradient) and q (the reduced Laplacian) are the conventional ingredients of meta-GGA
functionals. The ingredient yαβ is proportional to the potential uαβ, where the normalization
constant has been choosen so that yαβ is adimensional and invariant under uniform scaling,
as shown in Ref. [71]. Moreover, in the case of a large number of electrons, where the
Thomas–Fermi (TF) limit is exact, we have also yαβ → 1: thus, the enhancement factor Fs
must be 1 when p = 0, q = 0, and yαβ = 1.

While the case of β = 1 has been deeply investigated in Ref. [71], when β 6= 1, the
properties of yαβ change. In particular, in the tail of finite systems we have:

yαβ → 3πα2

4k0

Qβ

nβ−2/3r
, (16)

Qβ =
∫

nβ(r′)dr′ , (17)
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(for β = 1, Qβ is just the number of electrons). Thus, yαβ diverges for β > 2/3 (as the
density vanishes exponentially), whereas for β ≤ 2/3, it vanishes.

2.1. Kinetic Energy Potential

Following the same derivation as in Ref. [71], the KE potential of a general modified
yGGA functional is

δTyGGA
s

δn(r)
= vMGGA

k (r) + vyGGA,1
k (r) + vyGGA,2

k (r) , (18)

with

vMGGA
k (r) =

∂τ

∂n
(r)−∇ · ∂τ

∂∇n
+∇2 ∂τ

∂∇2n
, (19)

vyGGA,1
k (r) = βn(r)β−1

∫
∂τ

∂uαβ(r′)
e−αkF(r′)|r−r′ |

|r− r′| d3r′ , (20)

vyGGA,2
k (r) = −αkF(r)

3n(r)
∂τ

∂uαβ(r)

∫
nβ(r′)e−αkF(r)|r−r′ |d3r′. (21)

The potential can also be expressed as a function of the enhancement factor using:

dτ

duαβ
=

9πα2

40
kF(r)n(r)2−β dFs

dyαβ
. (22)

Note that the potential in Equation (20) is a non-local function of the expression in
Equation (22). This means, for example, that a divergence of dτ

duαβ
in the tail of a finite

system will have an impact everywhere in the space. Thus, the enhancement factor Fs must
be properly defined in all points.

In the limit of a large number of electrons (kF → ∞), we have

vyGGA,1
k (r) = βn(r)β−1 9πα2

40
kF(r)n(r)2−β dFs

dyαβ

4π

α2kF(r)2

= β
3

10
kF(r)2 dFs

dyαβ(r)
, (23)

vyGGA,2
k (r) = −αkF(r)

3n(r)
9πα2

40
kF(r)n(r)2−β dFs

dyαβ
nβ(r)

8π

α3kF(r)3

= − 2
10

kF(r)2 dFs

dyαβ(r)
, (24)

which are stable expressions for all values of β. In this case, we also have that the MGGA
term of Equation (19) reduces to the first LDA term only. Hence, for the total KE potential,
we find

∂TyGGA
s
∂n

(r) =
5
10

kF(r)2Fs(yαβ(r))− (
3

10
β− 2

10
)kF(r)2yαβ(r)

dFs

dyαβ(r)
. (25)

With the condition Fs → 1, we have that the total KE potential of Equation (25) reduces
to ∂τ/∂n = (5/10)kF(r) = vTF(r), where vTF is the Thomas–Fermi potential. Thus, the
condition that in the TF limit Fs → yαβ → 1 yields also a correct potential.

2.2. Linear Response of a yGGA Functional

Following Refs. [71,91], we compute the linear response considering the perturbed
density n = n0 + nke−ik·r. Note that the derivation in Ref. [71] was limited to a specific
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class of yGGA functionals (the linear yGGA functional, see Section 3 in the following) and
with β = 1. Hereafter, a completely general derivation is presented.

Expanding the resulting perturbed KE density in power series, we obtain the linear
response χ = 1/F as twice the coefficient of the inverse of the second-order term. For
simplicity, we can evaluate the whole expression in r = 0, since the HEG is homogeneous
and isotropic. Then, we have n = n0 + nk, |∇n|2 = n2

kk2 and ∇2n = −nkk2. Therefore, we
need to consider

τ = CF(n0 + nk)
5/3Fs(p, q, yαβ) , (26)

with

p =
n2

kk2

4k2
0(n0 + nk)8/3

, (27)

q = − nkk2

4k2
0(n0 + nk)5/3

, (28)

yαβ ≈ 1− βk2

A2 + k2
nk
n0

+

+

[
β(β− 1)

2
A2

A2 + 4k2 +
2βA2k2 − 3β2 A2(A2 + k2)

3(A2 + k2)2 +
β(β + 1)

2

](
nk
n0

)2
, (29)

where we have set A = αk0n1/3
0 . For the derivation of the expression for yαβ, see Appendix A.

To proceed, we can expand in powers of nk both factors in Equation (26). Thus, using
the notation ∂nk = ∂/∂nk|nk=0, we can write

τ ≈ CF

(
n5/3

0 +
5
3

n2/3
0 nk +

5
9

n−1/3
0 n2

k + · · ·
)
×

×
(

Fs(0, 0, 1) + ∂nk Fsnk +
1
2

∂2
nk

Fsn2
k + · · ·

)
=

= CFn5/3
0 Fs(0, 0, 1) +

[
5CFn2/3

0
3

Fs(0, 0, 1) + CFn5/3
0 ∂nk Fs

]
nk + (30)

+

[
5CFn−1/3

0
9

Fs(0, 0, 1) +
5CFn2/3

0
3

∂nk Fs +
CFn5/3

0
2

∂2
nk

Fs

]
n2

k +O(n
3
k) .

The linear response χ = 1/F is given by twice the coefficient of the inverse of the
second-order term. Therefore,

F = 2

[
5CFn−1/3

0
9

Fs(0, 0, 1) +
5CFn2/3

0
3

∂nk Fs +
CFn5/3

0
2

∂2
nk

Fs

]
=

= k2
0n2/3

0

[
Fs(0, 0, 1)

3n0
+ ∂nk Fs +

3n0

10
∂2

nk
Fs

]
. (31)

The corresponding Thomas–Fermi-renormalized linear response is F̄ = kFF/π2 =
k0n1/3F/π2. Then,

F̄ = 3n0

[
Fs(0, 0, 1)

3n0
+ ∂nk Fs +

3n0

10
∂2

nk
Fs

]
. (32)

For simplicity of notation in the following, we neglect the subscript αβ in the yαβ

ingredient.
To obtain a more explicit expression for Equation (32), we use the chain rule
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∂nk Fs = Dp∂nk p + Dq∂nk q + Dy∂nk y , (33)

where we have employed the notation (i = p, q, y)

Di ≡
∂Fs

∂i

∣∣∣∣
(p,q,y)=(0,0,1)

. (34)

Hence, substituting the values for ∂nk p, ∂nk q, and ∂nk y, we find

∂nk Fs = −Dq
k2

4k2
on5/3

0

− Dy
1
n0

βk2

A2 + k2 . (35)

For the second derivative, we have

∂2
nk

Fs = ∂nk

(
∂p
∂nk

∂Fs

∂p
+

∂q
∂nk

∂Fs

∂q
+

∂y
∂nk

∂Fs

∂y

)
=

= ∂2
nk

pDp + ∂2
nk

qDq + ∂2
nk

yDy +
(
∂nk p

)2Dpp +
(
∂nk q

)2Dqq +
(
∂nk y

)2Dyy +

+2∂nk p∂nk qDpq + 2∂nk p∂nk yDpy + 2∂nk q∂nk yDqy . (36)

Since ∂nk p = 0, this immediately simplifies to

∂2
nk

Fs = ∂2
nk

pDp + ∂2
nk

qDq + ∂2
nk

yDy +
(
∂nk q

)2Dqq +
(
∂nk y

)2Dyy + 2∂nk q∂nk yDqy . (37)

Substituting the values for the various derivatives, we find

∂2
nk

Fs =
k2

2k2
0n8/3

0

Dp +
5k2

6k2
0n8/3

0

Dq +

+
2
n2

0

[
β(β− 1)

2
A2

A2 + 4k2 +
2βA2k2 − 3β2 A2(A2 + k2)

3(A2 + k2)2 +
β(β + 1)

2

]
Dy +

+
k4

16k4
0n10/3

0

Dqq +
1
n2

0

β2k4

(A2 + k2)2 Dyy +
βk4

2k2
0n8/3

0 (A2 + k2)
Dqy . (38)

Finally, using Equations (35) and (38) into Equation (32), we obtain the formula

F̄ = Fs(0, 0, 1) +
9
20

k2

k2
0n2/3

0

Dp +
9

160
k4

n4/3
0 k4

0

Dqq +

+
3
5

[
3β(β− 1)

2
A2

A2 + 4k2 −
3βA2(βA2 + k2) + bk2(3βA2 + 5k2)

(A2 + k2)2 +
3β(β + 1)

2

]
Dy +

+
9
10

β2k4

(A2 + k2)2 Dyy +
9
20

βk4

k2
0n2/3

0 (A2 + k2)
Dqy , (39)

which, with the substitution η = αk/(2A) and after some algebra, assumes the final form

F̄ = Fs(0, 0, 1) +
9
5

η2Dp +
9

10
η4Dqq +

36
5

βη4

α2 + 4η2 Dqy

+
9

10
β(β− 1)

(
1 +

α2

α2 + 16η2 −
2α2

α2 + 4η2

)
Dy +

+
24
5

β
η4

(α2 + 4η2)
2

(
3βDyy − 4Dy

)
. (40)
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We note that this expression is well defined and continuous for any value of α and β.
However, the case β = 1 is a special one. In fact, in this case, F̄ loses its dependence on
Dy, being dependent only on the linear combination 3βDyy − 4Dy as well as on Fs(0, 0, 1),
Dp, Dqq, Dqy (here, we only consider the dependence on the degrees of freedom related
to the modeling of the enhancement factor; α and β, which are related to the definition
of y, are considered as additional parameters). Therefore, when β = 1, there is a reduced
parametric flexibility to optimize the linear response function through the modeling of the
enhancement factor. As we will see, this has consequences for the possibility to impose the
correct asymptotic behavior to F̄.

Asymptotic Behavior

The asymptotic expansions of the exact response function are [5]

F̄Lind = 1 +
η2

3
+

8
45

η4 +O(η6) η → 0 , (41)

F̄Lind = 3η2 − 3
5
+O(η−2) η → ∞ . (42)

From Equation (40), we get for the small-η limit

F̄ = Fs(0, 0, 1) +
9
5

(
Dp − 4

β(β− 1)
α2 Dy

)
η2 +

+
3
5

(
3
2

Dqq +
12β

α2 Dqy +
16
α4 β(21β− 23)Dy +

24
α4 β2Dyy

)
η4 , (43)

and in the large-η limit

F̄ =
9
10

Dqqη4 +
9
5
(

Dp + βDqy
)
η2 +

+
3
5

(
5
3

Fs(0, 0, 1) +
β(3β− 7)

2
Dy +

3β2

2
Dyy −

3
4

α2βDqy

)
.

Therefore, we have the following asymptotic conditions

Fs(0, 0, 1) = 1 η → 0 O(η0) , (44)

Dp − 4
β(β− 1)

α2 Dy =
5

27
η → 0 O(η2) , (45)

3
2

Dqq +
12β

α2 Dqy +

+
16
α4 β(21β− 23)Dy +

24
α4 β2Dyy =

8
27

η → 0 O(η4) , (46)

9
10

Dqq = 0 η → ∞ O(η4) , (47)

9
5
(

Dp + βDqy
)
= 3 η → ∞ O(η2) , (48)

5
3

Fs(0, 0, 1) +
β(3β− 7)

2
Dy +

+
3β2

2
Dyy −

3
4

α2βDqy = −1 η → ∞ O(η0) . (49)

As we saw, in the most general case (i.e., for any value of β), the linear response
function has only five degrees of freedom (Fs(0, 0, 1), Dqq, Dp, Dqy, 3βDyy − 4Dy) to satisfy
these conditions. Thus, initially, we chose to consider Equations (44)–(48), neglecting for
the moment the η0 order in the large-η limit. With this choice, we obtain
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Fs(0, 0, 1) = 1 , (50)

Dqq = 0 , (51)

Dp =
5
27

+
4
α2 β(β− 1)Dy , (52)

Dqy =
40

27β
− 4

α2 (β− 1)Dy , (53)

3βDyy − 4Dy =
α2(α2 − 60)

27β
− 36(β− 1)Dy . (54)

These conditions fix the asymptotic behavior of the response function up to the η4

order in the short-range limit and to the η2 order in the long-range one. Using these values
into Equation (40), we find

F̄ =
34560η8 + Q6η6 + Q4η4 + 15α4η2(α2 + 72

)
+ 45α6

45(α2 + 4η2)
2
(α2 + 16η2)

, (55)

Q6 = 16
(

8α4 + 255α2 − 5832β(β− 1)Dy + 720
)

, (56)

Q4 = 8α2
(

α4 + 45α2 + 810
)

. (57)

For large η values, Equation (55) behaves as

F̄ = 3η2 + ∆ , (58)

∆ = (1/90)α4 − (81/10)Dyβ(β− 1)− (4/3)α2 + 1 . (59)

For β = 1, the exact condition ∆ = −3/5 can only be obtained for specific values of α,
as the dependence from Dy vanishes. For β 6= 1, instead, we can solve for Dy obtaining

Dy =
α4 − 120α2 + 144

729β(β− 1)
. (60)

In this general case, we have also

Dyy =
13α4 − 3180α2 + 5760 + (−9α4 + 2700α2 − 5184)β

2187β2(β− 1)
. (61)

Equations (60) and (61), together with Equations (50)–(53), fix the asymptotic behavior
of the response function up to the η4 order in the small-η limit and down to the η0 order in
the large-η one.

We note that the expressions for Dy and Dyy diverge at β = 1: This reflects the fact
that, as discussed above, for β = 1, it is not always possible to fulfill all the asymptotic
conditions. Nevertheless, all equations are well defined for any other value of β as well in
the limit β→ 1. In fact, the divergence in the denominator in this limit, the contribution Dy,
becomes negligibly small in Equation (40) as well as in Equations (52) and (53); moreover,
the linear combination 3βDyy − 4Dy is always well defined, since it does not diverge for
any β > 0.

Substitution of the asymptotic conditions into Equation (40) finally yields the general
yGGA response

F̄gen =
34560η8 + 432η6(45α2 − 16) + 8α2η4(α4 + 45α2 + 810) + 15α4η2(α2 + 72) + 45α6

45(α2 + 4η2)2(α2 + 16η2)
. (62)

Note that, remarkably, this formula displays no dependence on β. Thus, β can be used
to optimize the functional beyond the linear response regime. The value of α can instead
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be optimized by fitting to match as close as possible the exact Lindhard function. To this
purpose, we can minimize the quantity

σ =
∫

w(η)

∣∣∣∣ 1
F̄lind(η)

− 1
F̄(η)

∣∣∣∣dη , (63)

where F̄lind is the normalized Lindhard linear response function and

w(η) = e−µ(η−1)2
, (64)

with µ = 2, is a weighting function. The use of this weighting function allows to focus the
fit in the region close to η = 1 instead of the asymptotic ones that are already included by
construction. We remark that the results are only weakly dependent on the choice of µ.

Figure 1 reports the values of the errors with respect to the exact Lindhard function for
different values of α. We see that the best reproduction of the Lindhard function is achieved
for α = 3.31, with σ = 0.0513. However, a quite broad range of values allows us to attain
a low error; in particular, for α ∈ [2.26, 4.66], the response is always better than the one
obtained by the yuk2 functional [71].

1 2 3 4 5
α

0.06

0.08

0.1

0.12

0.14

σ

yuk2

Figure 1. Values of the error function σ (Equation (63)) for the function F̄gen for different values
of the α parameter. For comparison, the σ value corresponding to the yuk2 functional, ref. [71] is
also reported.

The linear response functions for various cases are reported in Figure 2. Inspection of
the plot shows that they are all quite similar, as already suggested by the considerations
above. For α = 3.31, we obtain at η = 1, where the Lindhard function shows a derivative
singularity, that 1/F̄ = 0.47, which is very close to the exact value 1/F̄ = 1/2 [5]. Actually,
it is also possible also to satisfy 1/F̄ = 1/2 exactly using α = 3.64, even if the global
accuracy is somehow smaller in this case (σ = 0.0527).
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η

0

0.2

0.4

0.6
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1

1
/F
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F
gen

Eq. (57) β=1

Eq. (57) β=2/3

0 1 2 3 4
η

-0.20

-0.10

0.00

0.10

1
/F

 -
 1

/F
L

in
d

Figure 2. Linear response functions as computed by Equations (55) and (62) [F̄gen] for α = 3.31. For
Equation (55), two different choices of β have been considered; for each one, the value of Dy has been
chosen such to minimize the error σ in Equation (63). The exact Lindhard and the yuk2 responses are
also reported for comparison. The inset shows instead the difference between the Lindhard function
and the various response functions reported in the plot.

3. Linear yGGA Functionals

We consider the simplest case of yGGA functional by taking functionals that have an
enhancement factor with the general form

FlinyGGA
s (p, q, y) = 1− G0 +

5
3

p + y (G0 + G(p, q)) . (65)

i.e., a linear dependence on y. Note that these are closely related with the yGGAs defined
in Ref. [71], which are recovered if G0 = 1 and β = 1. However, in this work, we lift
this restriction.

From Equation (65), we have that Fs(0, 0, 1) = 1 is satisfied by construction if G(0, 0) = 0
and Dqq = Gqq, Dp = 5/3 + Gp, Dqy = Gq, Dyy = 0, Dy = G0, where we have
used the short-hand notation Gi = ∂G(0, 0, 1)/∂i, and Gij = ∂G(0, 0, 1)/∂i∂j. Using
Equations (50)–(53), we then obtain

Gqq = 0 (66)

Gp = −40
27

+
4
α2 β(β− 1)G0 = −βGq . (67)

The simplest functional satisfying these conditions is the one with

G(p, q) =

(
40

27β
− 4

α2 (β− 1)G0

)
(q− βp) ≡ x (68)

G0 =
α2(α2 − 60)

108β(9β− 10)
. (69)

Equation (68) has been derived from Equation (54) using the fact that, for functionals
defined by Equation (65), Dyy = 0. The Equations (65), (68), and (69) define the yuk2β
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functional, which reproduces the Lindhard functional at small η up to fourth order and for
large η behaves as

F̄yuk2β → 3η2 + ∆yuk2β (70)

∆yuk2β = 1 +
(−2700β + 3180)α2

360(9β− 10)
+

(9β− 13)α4

360(9β− 10)
. (71)

Although the exact value ∆yuk2β = −3/5 can be obtained for specific values of α and
β, this condition does not have a big impact on the overall accuracy of the linear response.
We consider the general error indicator of the linear response of yuk2β with respect to the
Lindhard function (Equation (63)). Results for different values of the α and β are reported
as a colormap in Figure 3.

Figure 3. Error with respect to the Lindhard function (Equation (63)) for the yuk2β functional
at various values of the parameters α and β. The black dots denote the positions of the pairs of
parameters listed in Table 1.

Table 1. Considered values of α and β, with the corresponding values of G0, see Equation (69), Gp,
see Equation (67), the error defined in Equation (63), and the value of 1/F at η = 1.

α β G0 Gp σ 1/F̄(η = 1)

1.36 1 1 1.48 0.0791 0.385
3.31 1 4.97 1.48 0.1049 0.617
3.31 2 −0.31 0.85 0.0676 0.545
3.31 2/3 1.86 2.45 0.0758 0.567
2.34 5/9 1 2.98 0.0588 0.469

We find that, as seen in the previous section, there is a quite broad range of α values
that yield small errors (blue areas in the plot). Moreover, the errors are almost independent
on β, except for values β ≈ 1.1, where a discontinuity in the linear response behavior occurs.

Moreover, from the results of the previous section, we can fix α = 3.31, such that
G0 ≈ 4.484/[β(10− 9β)], which is shown in Figure 4.
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Figure 4. Value of G0 as a function of β for different values of α.

Note that G0 is positive up to β = 10/9, where it has a pole, and it has a minimum
at β = 5/9. We remark that instead setting G0 = 1 and β = 1, then Equation (68) readily
yields α = 1.36. Thus, the yuk2β functional immediately reduces to the yuk2 functional of
Ref. [71].

The yuk2β functional is just a simple ansatz recovering an accurate linear response
behavior. However, because it uses a linear dependence on p and q, it may display severe
drawbacks in real applications. In particular, the positivity of the Pauli KE density must be
ensured [38,92], which is not the case for Equation (65). In fact, the quantity

1 + w = 1− G0 + y(G0 + x) (72)

is not always positive. Thus, we define the yuk3β functional as

Fyuk3β
s =

5
3

p + T(w) , (73)

with T(w) being a positive function such that for w ≈ 0, we have T(w) = 1 + w + O(x3),
such as the one considered in Ref. [71]. Thus, lacking any quadratic term, the yuk3β has
the same linear response of yuk2β. In this way, although the functional Fyuk3β

s is not truly a
linear function of y, it practically behaves as a linear function of y because Dyy = 0. True
non-linear yGGA functionals, with Dyy 6= 0, are much more complicated, and they will be
considered elsewhere.

4. Computational Details

Densities and enhancement factors were computed in post-SCF fashion using the
orbitals of self-consistent Kohn–Sham calculations. All Kohn–Sham calculations have been
performed using an in-house developed code solving numerically the spherical symmetry
Kohn–Sham problem with the local density approximation being used for the exchange-
correlation functional.
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Neutral jellium spheres with N = 40, 92, 254 electrons and Wigner–Seitz radius rs = 2,
3, 4, 5, and 6 were considered. They are characterized by the positive background density

n+(~r) =

{
3/(4πr3

s ), r < R
0, r ≥ R .

(74)

The post-processing of the Kohn–Sham orbitals to obtain the quantities G(p, q), y, and
w has been carried out by an additional in-house software which evaluates the required
derivatives and integrals in real space using the same grid as the one used in the Kohn–
Sham calculations.

5. Results

We considered different pairs of α and β values for the y ingredient, as reported in
Table 1 (see also Figure 3). The first pair (α = 1.36, β = 1) is the one of the original yuk2
functional of Ref. [71]. The second, third, and fourth pairs consider the α value suggested by
Figure 1 and several values of β. The last pair considers the minimizing β value of Figure 4
and a corresponding α such that G0 = 1. All these pairs give a quite accurate description
of the HEG linear response: the highest accuracy is obtained for (α, β) = (3.31, 2) and
(2.34, 5/9), as reported in the last column of Table 1.

In Figure 5, we report, in panels (a), (b), (c) and (d) respectively, the electronic density,
the function x defined in Equation (68), as well as the values of y and w for a jellium sphere
with N = 254 electrons and rs = 4.

Looking at Figure 5, we see in panel (b) that for β ≥ 1, the values of x are negative in
the tail, as also discussed in Appendix C. Moreover, panel (c) shows that the ingredient
y is close to 1 inside the jellium spheres for all (α,β) pairs but in the tail, it diverges for
β ≥ 1. On the other hand, for β = 2/3, it reaches a constant (but it will slowly vanish in
very far regions), while for β ≥ 2/3, it soon decreases to zero, as discussed in Section 2.
Finally, panel (d) shows the ingredient w. Inside the sphere, the values of w are in the range
|w| < 0.3 for all the (α, β) combinations. The behavior in the tail follows the one of x but
for β = 1 and α = 3.31, there is a peak before the negative divergence.

These results indicate that for the total kinetic energy, which is mainly influenced by the
functional behavior inside the jellium sphere, all the cases considered here can be expected
to yield similar results, which are in line with the performance of the yuk3 functional [71].
On the other hand, for the potential, we have a contribution ∂Fs/∂y ∝ ∂Fs/∂w · ∂w/∂y.
However, this latter term for functionals with β < 1 is largely divergent (w(r) is diverging
but y(r) is not); similarly, it diverges in the (α = 3.31, β = 1) case, where w strongly
oscillates around r = 30 bohr. Thus, we can expect, for these values of the parameters,
major problems on the KE potential.

To understand better the role of β on the KE functional, we can perform a further
analysis of the “exact” Pauli KE enhancement factor

Fexact
p ≡ τKS

p (r)/τTF(r) , (75)

where τKS
p is the Pauli KE density corresponding to the Kohn–Sham positive-defined KE

density and τTF is the Thomas–Fermi density. Hence, we have computed Fexact
p for several

jellium clusters with different numbers of electrons (N = 40, 92, 254) and rs = 2, 3, 4, 5, and
6 on all grid points, and we have plotted it versus the corresponding values of w. In fact,
Equation (73) implies that that the Pauli enhancement factor can be written as a universal
single-valued function of w. However, this is an ansatz, which must be verified; if it is
correct, then we must obtain a unique value of Fp for each w, also for different systems.
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Figure 5. Electronic density (a) and KE ingredients (b–d) for a jellium sphere with N = 254 electrons
and rs = 4. The ingredients x, y, and w are reported for different choices of the β and α parameters.

Figure 6 shows the plot of Fexact
p vs. w for the various pairs of parameters considered in

this work. It is evident that the cases with β < 1 and the case with (α = 3.31, β = 1) do not
yield single-valued functions but rather display multiple branches of Fexact

p for all values
of w. This confirms that using these parameters, it is not possible to obtain an accurate
description of the kinetic functional. On the contrary, the yuk2 parameterization (α = 1.35,
β = 1) and the one with (α = 3.31, β = 2) show a nice single line for w ≥ 0. For negative w
values, they display a multi-valued behavior; however, for these cases, the w < 0 region
corresponds to the density tail region. Therefore, the effect, at least on the computation
of the energy, is minor. Thus, we can infer that both functionals will be accurate for the
kinetic energies (this is indeed the case for yuk2 [71]) but may yield some oscillations in the
asymptotic part of the potential because of the multi-valued behavior at w < 0. This latter
feature is possibly significantly reduced for (α = 3.31, β = 2) that displays the lowest grade
of multi-valuedness at negative w values.

In a future work, we will develop an approach that will allow us to obtain an analytical
F(w) function in order to build up an accurate KE functional and KE potential. However,
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the results reported in Figure 6 also indicate that the ansatz in Equation (73) may be not
accurate enough and further studies are required, in particular, to investigate the effect of
the non-linear term (y2), which is already important for the HEG linear-response and can
be even more important for the description of finite systems.
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Figure 6. Exact Pauli Kohn–Sham enhancement factor (Equation (75)) vs. the w ingredient as
computed on all grid points for several jellium spheres (see text for details). Each panel corresponds
to a different choice of the β and α parameters.

6. Conclusions

In this paper, we have investigated non-interacting kinetic energy functionals depend-
ing on a generalized Yukawa potential, i.e., a screened Coulomb potential of the electronic
density raised to the power of β. The use of this input ingredient allows us to introduce in
an efficient way non-local features into the functional.

In particular, we have derived the exact homogeneous electron gas linear response
behavior of generalized yGGA functionals and, by comparing to the Lindhard function, we
have derived exact asymptotic constraints for the functional.

In particular, it turned out that β = 1 is a very special case, and the Lindhard asymp-
totic constraints can only be satisfied for a specific value of the screening parameter (α).
Moreover, the final linear response of yGGA functionals satisfying the low and high-
wavevector Lindhard properties does not depend on β, which can be then used as an
additional degree of freedom to model systems beyond the linear-response regime.

We have used the developed theory to extend the work reported in Ref. [71] and
investigate in detail the simplest class of yGGA functionals, namely the linear yGGAs,
i.e., those yGGA functionals depending only linearly on y. We have found that although
this class of functionals can satisfy rather accurately the linear response constraints, it is
not flexible enough to perform very accurately for both the kinetic energy and potential
computation. This is mainly due to the fact that imposing the linear response behavior
implies, in these simple functionals, that the Pauli enhancement factor is a function of a
well-defined combination of the density ingredients (the w ingredient of Equation (72)), but
this is not sufficient to describe the non-local nature of the Pauli kinetic energy. Although
for some wise choices of the parameters, this effect can be minimized; this is an intrinsic
limitation of the linear yGGA functional class.
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Therefore, future work will focus on the development of more sophisticated functionals
forms using an explicit non-linear dependence on the Yukawa potential. The theoretical
framework established in this paper will possibly allow us to develop more efficient and
broadly applicable kinetic energy functionals.
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Appendix A. Weak Perturbation of y

To compute the perturbation of y defined in Equation (15), we first consider the
generalized Yukawa potential

uα(r) =
∫ nβ(r′)e−A(r)|r−r′ |

|r− r′| dr′ , (A1)

where we have set A = αk0n1/3
0 . Upon the density perturbation, this becomes

uα = nβ
0

∫ (
1 + e−ik·r′

(
nk
n0

))β
e−A

(
1+

nk
n0

)1/3
r′

r′
dr′ . (A2)

Expanding in series and keeping only terms up to second order, we find

uα ≈ nβ
0

[
I1 +

(
βI2 −

1
3

AI3

)
nk
n0

+

(
β(β− 1)

2
I4 +

A
18

(AI5 + 2I3)−
Aβ

3
I6

)(
nk
n0

)2
]

,

with

I1 ≡
∫ e−Ar′

r′
dr′ (A3)

I2 ≡
∫ e−ik·r′−Ar′

r′
dr′ (A4)

I3 ≡
∫

e−Ar′dr′ (A5)

I4 ≡
∫ e−2ik·r′−Ar′

r′
dr′ (A6)

I5 ≡
∫

r′e−Ar′dr′ (A7)

I6 ≡
∫

e−ik·r′−Ar′dr′. (A8)

Substituting the values of the integrals (see Appendix B), we find

uα ≈
4πnβ

0
A2 + 4πnβ

0

(
β

A2 + k2 −
2

3A2

)
nk
n0

+

+4πnβ
0

(
β(β− 1)

2
1

A2 + 4k2 +
5

9A2 −
2A2β

3(A2 + k2)2

)(
nk
n0

)2
. (A9)
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Now, we can consider the perturbation of y, that is

y =
3πα2

4k0(n0 + nk)
β−2/3 uα[n0 + nk](r) =

=
3πα2n2/3−β

0
4k0

(
1 +

nk
n0

)2/3−β

uα[n0 + nk](r) . (A10)

Using the result of Equation (A9) and expanding to second-order, we find

y ≈ 1− βk2

A2 + k2
nk
n0

+

+

[
β(β− 1)

2
A2

A2 + 4k2 +
2βA2k2 − 3β2 A2(A2 + k2)

3(A2 + k2)2 +
β(β + 1)

2

](
nk
n0

)2
. (A11)

Appendix B. Integrals for the Generalized Yukawa Expansion

For integral I1, I3 and I5, we use that

E[A, n] =
∫ ∞

0
(r′)2rne−Ar′dr′ =

Γ(3 + n)
A3+n . (A12)

Thus, I1 = 4πE[A,−1] = 4π
A2 , I3 = 4πE[A, 0] = 8π

A3 , I5 = 4πE[A, 1] = 24π
A4 .

To compute the I2, I4, and I6 integrals, we can choose the axis such that k is aligned
with the z axis; then, we have that k · r′ = kr′ cos θ. Hence, we can write

F[k, n] =
∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ ∞

0
dr′r′2(r′)ne−Ar′ e−ikr′ cos θ =

= 2π
∫ ∞

0
dr′r′2(r′)2e−Ar′

∫ π

0
dθ sin θe−ikr′ cos θ =

=
2π

ik

∫ ∞

0
(r′)nr′e−Ar′

(
eikr′ − e−ikr′

)
dr′ =

2π

ik
(E[A− ik, n]− E[A + ik, n])

=
4π

k
=[E[A− ik, n− 1]]. (A13)

Thus, I2 = F[k,−1] = 4π
A2+k2 and I6 = F[k, 0] = 8πA

(A2 + k2)2 .
The I4 integral is similar to the integral I2 with the substitution k→ 2k. Then,

I4 =
4π

A2 + 4k2 .

Appendix C. Asymptotics

For an exponential spherical density ρ(r) = A exp(−2Zr), where Z =
√
−2εH ,

we have

p → Z2 1
k2

0

1
ρ2/3 (A14)

q → Z(Zr− 1)
r

1
k2

0

1
ρ2/3 (A15)

so that
q− p→ −Z

r
1
k2

0

1
ρ2/3 = − p

rZ
. (A16)
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Thus, q− p is negative in the tail; i.e., q is very large in the tail but smaller than p. If
we consider q− βp with β > 1, then q− βp will be more negative. If we consider q− βp
with β < 1, then q− βp will be positive.
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