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Abstract: This paper presents a regularization framework that aims to improve the fidelity of
Tikhonov inverse solutions. At the heart of the framework is the data-informed regularization idea
that only data-uninformed parameters need to be regularized, while the data-informed parameters,
on which data and forward model are integrated, should remain untouched. We propose to employ
the active subspace method to determine the data-informativeness of a parameter. The resulting
framework is thus called a data-informed (DI) active subspace (DIAS) regularization. Four proposed
DIAS variants are rigorously analyzed, shown to be robust with the regularization parameter and
capable of avoiding polluting solution features informed by the data. They are thus well suited
for problems with small or reasonably small noise corruptions in the data. Furthermore, the DIAS
approaches can effectively reuse any Tikhonov regularization codes/libraries. Though they are
readily applicable for nonlinear inverse problems, we focus on linear problems in this paper in
order to gain insights into the framework. Various numerical results for linear inverse problems are
presented to verify theoretical findings and to demonstrate advantages of the DIAS framework over
the Tikhonov, truncated SVD, and the TSVD-based DI approaches.

Keywords: inverse problems; regularization; active subspaces; data-informed regularization

1. Introduction with Related Work and Novelties

Over the past few decades, the development of new regularization techniques has
played an important role in addressing the ill-posedness of inverse problems. A few ex-
ample applications include image reconstruction in X-ray tomography [1,2] and various
partial differential equation constrained inversion problems, for instance, inverse scattering
and parameter identification [3–7]. Popular techniques, such as Tikhonov regularization
and truncated singular value decomposition (truncated SVD), are ubiquitous in practical
inverse problems [8–10]. However, one particular challenge of Tikhonov-based regular-
ization strategies is the need to specify a suitable choice of the regularization parameter.
Suboptimal choices can lead to excessively smooth or unstable reconstructions. While
methods such as Morozov’s discrepancy principle, the L-curve criterion, and cross vali-
dation are popular for choosing a satisfactory regularization parameter, these are often
computationally expensive and may require the computation of multiple inverse solutions.
Even when the “right” regularization parameter is chosen, the smoothing effect leading to
smeared reconstructions is unavoidable. On the other hand, spectral-decomposition-based
methods, such as truncated SVD, aim to avoid regularizing data-informative features while
applying infinite regularization on the rest. It is, however, not trivial to determine how
many dominant modes should be retained. Furthermore, these SVD-typed approaches are
typically suitable only for linear inverse problems.
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Other regularization techniques have been proposed to combat the smoothing effect of
Tikhonov regularization. Total variation (TV) regularization is designed with an anisotropic
diffusion mechanism to ensure discontinuities and sharp interfaces in the inverse solution
to be maximally preserved [9–11]. One problem with TV regularization is that, due to
the non-differentiability of the TV functional, it could produce a staircasing effect [12].
To overcome this issue, smooth approximations and sophisticated optimization methods
have been developed [9,13]. One of the reasons why Tikhonov and TV regularizations are
popular is their convexity. This is a particularly appealing feature for inversion techniques
using optimization. Though less popular, non-convex regularization strategies [14–16]
are viable alternatives. However, inverse solutions with non-convex regularizations also
require advanced optimization methods, such as alternating direction method of multipliers
(ADMM) [17–19] or iteratively reweighted least squares (IRLS) [20].

In our previous work [21], inspired by the truncated SVD method, we put forward a
new regularization approach, called data-informed (DI) regularization. DI was designed to
overcome the ill-posed nature of inverse problems by placing regularization only where it
is necessary in order to preserve the fidelity of the reconstructions. This is accomplished
by a two-step process: first, find data-informed directions in the solution space, and then
apply Tikhonov regularization only in the data-uninformed directions. We theoretically
showed that DI is a valid regularization strategy. Numerically, we demonstrated that
the reconstruction accuracy is robust for a wide range of regularization parameter values
and DI outperforms both Tikhonov and truncated SVD (TSVD) for various inverse and
imaging problems. Since DI, as well as TSVD, exploits the SVD of the forward operator,
extension is necessary for nonlinear inverse problems. One straightforward extension
for the Newton-based optimizer is to apply the DI approach at each Newton iteration by
linearizing the forward operator around the current parameter estimate. However, this
approach can require significant additional computation, especially in high dimensions.

Meanwhile, one recent tool for studying sensitivity is the active subspace (AS) method
introduced in [22]. The active subspace is designed to study the sensitivity of a given
nonlinear function with respect to the input parameters. The key idea is to identify a
set of the directions in the input space that, on average, contribute most to the variation
of the function. The beauty of the approach is that it requires the computation of the
active subspace only once for any nonlinear input–output map. An application where
AS is particularly useful is dimension reduction [23–27]. Due to the computational cost
involved in dealing with high-dimensional parameter spaces in traditional Markov chain
Monte Carlo simulations (MCMC), the active subspace method was used to accelerate
MCMC [28]. The work in [29] combined the active subspace method and proper orthogonal
decomposition with interpolation to obtain a better reconstruction of the modal coefficients
when a small number of snapshots are used. More recently, the active subspace method
was adopted to develop neural network based surrogate models [30].

In this work, we equip the DI idea with the active space approach and we call this
combination the data-informed active subspace (DIAS) regularization strategy. The DIAS
method retains all of the DI advantages, including being robust with respect to the regu-
larization parameter, and avoids polluting solution features informed by the data while
estimating the data-informed subspace better than the original DI approach. Unlike DI or
Tikhonov, DIAS takes into account the uncertain nature of the inverse problem via the active
subspace using the prior distribution of the unknown parameter. More importantly, it is ap-
plicable not only for linear, but also seamlessly for nonlinear inverse problems. Indeed, the
active subspace, thanks to its global nature, is computed once at the beginning regardless
of the linear or nonlinear nature of the inverse problem under consideration. Furthermore,
the DIAS approach can effectively reuse any Tikhonov regularization codes/libraries. In
fact, DIAS regularization can be considered a special Tikhonov regularization once the
DIAS regularization operator is constructed. Table 1 summarizes the main advantageous
features of DIAS approaches over the classical Tikhonov regularization method and the DI
method [21].
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Table 1. Comparison of features between different approaches (3 = possess, 7 = not possess).

TSVD Tikhonov DI [21] DIAS

Solving ill-posed inverse problem 3 3 3 3

Parameter robustness/Avoiding
regularizing data-informed modes 7 7 3 3

Ordering data-informed modes
based on observational data 7 7 7 3

Readily aplicable to nonlinear in-
verse problems 7 3 7 3

Taking the uncertain nature of the
inverse problem into account 7 7 7 3

The paper is structured as follows. Section 2 briefly reviews the standard (uncentered)
active subspace method and discusses its centered variation. The relationship between
uncentered and centered active subspaces is then rigorously investigated. Each of these
active subspace approaches can be incorporated into the DI framework with either the
original data misfit or an approximate one. For linear inverse problems, Section 3 proposes
two DIAS regularization methods with approximate data misfit: one using centered active
subspaces (cDIAS-A) and the other using uncentered active subspaces (DIAS-A). An impor-
tant result is that the truncated SVD approach is a special case of cDIAS-A. Similarly, two
DIAS approaches with the original (full) data misfit—one using centered active subspaces
(cDIAS-F) and the other using uncentered active subspaces (DIAS-F)—are presented for
linear inverse problems in Section 4. It is in this section that the practical aspect of the
four DIAS variants is discussed. The full data misfit variants, DIAS-F and cDIAS-F, are
non-intrusive, while the approximate misfit counterparts are intrusive. We also show that
the DI approach in [21] is a special case of cDIAS-F. Various numerical results for linear
inverse problems are presented in Section 5 to expose the pros and cons of each of the DIAS
variants and to compare them with Tikhonov regularization. Section 6 concludes the paper
with future work.

2. Centered versus Uncentered Active Subspace Methods for Linear Inverse Problems

In this section, we first recall some results on the active subspaces (AS) method that are
useful for our developments. A detailed derivation of the active subspace can be consulted
in [28]. The main issue that we investigate is the difference between the uncentered AS
and the centered AS. To begin, let f (x) be a differentiable function from Rp to R and
its gradient vector be denoted as ∇ f (x) ∈ Rp. The key object in the AS method is the
uncentered covariance matrix C ∈ Rp×p defined by

C =
∫
∇ f (x)∇ f (x)Tρ(x)dx = W DW T , (1)

where ρ(x) is a probability density in Rp (we assume it to be a centered GaussianN (0, Γ) in
this paper, where Γ is the covariance matrix), and (W , D) are matrices containing eigenpairs
of C. The eigenvalue and eigenvector matrices can be partitioned as

D =

[
D1

D2

]
W =

[
W1 W2

]
,

where D1 is the diagonal matrix containing the r largest eigenvalues of C, and W1 the
corresponding eigenvectors. The active subspace —the subspace on which f (x) is most
sensitive on average—is defined to be the span of the columns of W1. This is in turn
determined by the r largest eigenvalues. Likewise, the inactive subspace—the subspace
on which f (x) is almost invariant on average—is defined by the span of the columns of
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W2. It is thus sensible to “ignore” the inactive subspace without compromising much
of the accuracy in computing f (x) (see [28] for a rigorous proof). If r � p, significant
computational gain can be achieved by focusing on only the active variables. One way to
eliminate inactive variables is to integrate them out, as we now describe. Any x ∈ Rp can
be written as

x = W1W T
1 x + W2W T

2 x = W1y + W2z,

where y = W T
1 x are called the active variables, and z = W T

2 x the inactive variables. The
density function ρ(x) can be therefore considered as the joint density between the active
and inactive variables:

ρ(x) = ρ(W1y + W2z) = ρ(y, z).

In the AS approach, one typically approximates f (x) using the active variables by
integrating out the inactive ones

f (x) ≈ g(y) =
∫

f (W1y + W2z)ρ(z|y) dz, (2)

where ρ(z|y) is the conditional density of z given y. Note that if ρ(x) = N (0, Γ), which
is the case in this paper, ρ(z|y) is trivial (see Section 3.1). The integral evaluation is less
straightforward, in fact, computationally prohibited, for nonlinear f (x), and it is typically
approximated using Monte Carlo sampling.

From a statistical perspective, the uncentered covariance matrix of the form (1) is not
common, though it has been investigated. Comparisons between centered and uncentered
covariance matrices have been carried out for general covariance matrices in the context of
principal component analysis [31–34]. We now address the difference between uncentered
and centered covariance matrices in the context of active subspaces. As we will show, more
can be said in this context by exploiting the structure of the inverse problems. To that end,
let us introduce the centered version of the AS covariance matrix

C̃ =
∫ [
∇ f (x)−∇ f (x)

][
∇ f (x)−∇ f (x)

]T
ρ(x)dx, (3)

where the gradient mean is given by

∇ f (x) =
∫
∇ f (x)ρ(x)dx.

For notational convenience, we will refer to the active subspace based on (1) as the
uncentered active subspace, and the one based on (3) as the centered active subspace.

To understand the advantages/disadvantages of uncentered AS and centered AS, we
restrict ourselves in the linear inversion setting. Consider the following additive noise
observational model

d = Ax + e,

with A ∈ Rn×p, e ∼ N (0, Λ), and the data d ∈ Rn. The inverse problem is to determine
x ∈ Rp given d. Posing this problem as a least squares problem in a weighted Euclidean
norm, we minimize the data misfit:

min
x

1
2
‖Ax− d‖2

Λ−1 .

To overcome an ill-conditioning issue due to the ill-posed nature of the inverse prob-
lem, we can employ the classical Tikhonov regularization approach:

min
x

1
2
‖Ax− d‖2

Λ−1 +
1
2
‖x‖2

Γ−1 , (4)
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where Γ−1 is a given weight matrix. In the context of Bayesian inverse problems, Γ

is typically chosen as the covariance of the prior distribution of x. Following [22], we
determine the active subspaces based on the data misfit, i.e.,

f (x) :=
1
2
‖Ax− d‖2

Λ−1 , (5)

whose gradient is
∇ f (x) = ATΛ−1(Ax− d).

Since we choose ρ(x) = N (0, Γ), it is easy to see that the uncentered covariance matrix
C in (1) can be written as [22]

C =
∫
∇ f (x)(∇ f (x))Tρ(x)dx = ATΛ−1

(
AΓAT + ddT

)
Λ−1 A.

Similarly, the mean of the gradient with respect to ρ(x) is

∇ f (x) =
∫

ATΛ−1(Ax− d)ρ(x) dx = −ATΛ−1d,

and thus the centered covariance matrix C̃ in (3) becomes

C̃ =
∫ [
∇ f (x)−∇ f (x)

][
∇ f (x)−∇ f (x)

]T
ρ(x)dx

= C−∇ f (x)
(
∇ f (x)

)T
= ATΛ−1 AΓATΛ−1 A.

In order to gain insights into the difference between centered and uncentered active
subspaces, for the rest of Section 2, we assume Γ = I. Let the full SVD of the noise
covariance whitened forward operator be Λ−

1
2 A = UΣV T . Since Λ−

1
2 d resides in the

column space of U, there exists β ∈ Rn such that

Λ−
1
2 d = Uβ.

Lemma 1. Let D := diag
(
λ1, . . . , λp

)
and D̃ := diag

(
λ̃1, . . . , λ̃p

)
be eigenvalue matrices of C

and C̃, respectively, such that λi ≥ λi+1 and λ̃i ≥ λ̃i+1.

• For k ≤ min{n, p} λ̃k = σ4
k , and λ̃k = 0 for n < k ≤ p.

• Define γ = ΣT β. For 2 ≤ k ≤ p, λ̃k ≤ λk ≤ λ̃k−1, and λ̃1 ≤ λ1 ≤ λ̃1 + γTγ.

Proof. The first assertion is obvious as

C̃ = VΣTΣΣTΣV T

using the SVD of Λ−
1
2 A. For the second assertion, we have

C = ATΛ−1
(

AAT + ddT
)

Λ−1 A

= VΣTUT
(

UΣΣTUT + UββTUT
)

UΣV T

= V
(

D̃ + γγT
)

︸ ︷︷ ︸
Θ

V T

= VΘV T .

Since C is a similarity transformation of Θ, we seek the relationship between the
spectra of Θ and C̃. Now, since Θ is a rank-one perturbation of the diagonal matrix
D̃, using a standard interlacing eigenvalue perturbation result (see, for example, ([35],
Section 5) and [36]) concludes the proof.
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Lemma 1 shows that the eigenvalues of C are not smaller than those of C̃, but this
does not reveal insights on how d could make a difference going from C̃ to C. To wit, let
us consider a special case of d = βσkuk, where uk is the k-th column of U and β is some
number, then it is straightforward to see that

C = Vdiag
{

λ̃1, . . . , λ̃i, . . . , λ̃k

(
1 + β2

)
, . . . , λ̃p

}
V T .

Now if β2 is sufficiently large such that λ̃k
(
1 + β2) > λ̃i where i ≤ r < k, then

λi = λ̃k
(
1 + β2). As a direct consequence, while vk is not part of the centered active

subspace, it is for the uncentered one. In other words, it is important to see that the
uncentered AS approach takes both the forward operator A and the data into account when
constructing the active subspace, while the centered AS approach is purely determined by
the spectrum of the forward operator. When k ≤ r, both approaches are similar. However,
the uncentered AS is expected to outperform the centered counterpart when k > r since
eigendirections, classified as inactive in the centered approach, are in fact active when
taking the data into account; we verify this fact later in Section 5. The proof of Lemma 1
also implies that, due to the symmetry of Θ, the eigenvectors of C are not only a reordering,
but also a rotation of the eigenvectors of C̃ in general since γγT is not necessarily diagonal.

Remark 1. Note that we can alternatively first perform the whitening to transform the inverse
problem to the standard setting with Λ = I and Γ = I, and then compute the active subspaces. This
simplifies the exposition. However, as shown in Appendix A, the active subspaces for the whitened
problem change, and the corresponding DIAS solutions are less accurate.

3. Data-Informed Active Subspace Regularization for Linear Inverse Problems:
Approximate Data Misfit

In our previous work [21], we proposed a data-informed (DI) regularization approach
for linear inverse problems. The workhorse behind the DI approach is the generalized
singular value decomposition taking advantage of the linear nature of the forward opera-
tor. In Section 2, we compare and contrast the centered and uncentered active subspace
approaches. In this section, inspired by the DI idea, we construct a data-informed active
subspace regularization approach for both centered and uncentered cases. We take advan-
tage of the linear structure to approximate the data misfit. We consider the full data misfit
in Section 4.

3.1. DIAS with Uncentered Active Subspace (DIAS-A)

The goal of this section is to explicitly derive the DIAS regularization for linear inverse
problems using the uncentered active subspace method. Suppose that the active subspace
W1 and the inactive subspace W2 are identified. The joint prior probability density ρ(x)
can be written as

ρ(x) = ρ(y, z) = cx exp
(
−1

2
‖x‖2

Γ−1

)
= cx exp

(
−1

2
[

yT zT ][ W T
1 Γ−1W1 W T

1 Γ−1W2

W T
2 Γ−1W1 W T

2 Γ−1W2

][
y
z

])
,

where cx is a normalization constant. It follows that the conditional probability ρ(z|y) is

ρ(z|y) = cz,y exp
(
−1

2
‖z− z̄‖2

W T
2 Γ−1W2

)
, (6)

where z̄ = −
(

W T
2 Γ−1W2

)−1
W T

2 Γ−1W1y, and cz,y is a normalization constant. From (2),
the AS approximation g(y) of the data misfit term f (x) in (5) is now simplified using (6)
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g(y) =
1
2

∫
‖A(W1y + W2z)− d‖2

Λ−1 cz,y exp
(
−1

2
‖z− z̄‖2

W T
2 Γ−1W2

)
dz,

=
1
2

∥∥∥∥A
(

I −W2

[
W T

2 Γ−1W2

]−1
W T

2 Γ−1
)

W1y− d
∥∥∥∥2

Λ−1
+ c2

where

c2 =
cz,y

2

∫
‖AW2(z− z̄)‖2

Λ−1 exp
(
−1

2
‖z− z̄‖2

W T
2 Γ−1W2

)
dz,

which is further simplified as

c2 =
cz,y

2
Trace

(∫
‖AW2(z− z̄)‖2

Λ−1 exp
(
−1

2
‖z− z̄‖2

W T
2 Γ−1W2

)
dz
)

=
cz,y

2

∫
Trace

(
‖AW2(z− z̄)‖2

Λ−1

)
exp

(
−1

2
‖z− z̄‖2

W T
2 Γ−1W2

)
dz

=
cz,y

2

∫
Trace

(
(z− z̄)TW T

2 ATΛ−1 AW2(z− z̄)
)

exp
(
−1

2
‖z− z̄‖2

W T
2 Γ−1W2

)
dz

=
cz,y

2

∫
Trace

(
W T

2 ATΛ−1 AW2(z− z̄)(z− z̄)T
)

exp
(
−1

2
‖z− z̄‖2

W T
2 Γ−1W2

)
dz

=
cz,y

2
Trace

(∫
W T

2 ATΛ−1 AW2(z− z̄)(z− z̄)T exp
(
−1

2
‖z− z̄‖W T

2 Γ−1W2

)
dz
)

=
c̃z,y

2
Trace

(
W T

2 ATΛ−1 AW2

(
W T

2 Γ−1W2

)−1
)

,

where we have used the commutativity of matrix trace and integral, and the invariance
of matrix trace under cyclic permutations. Here, c̃z,y is the product of cz,y and the constant
from the integration.

Since c2 is a constant, the inverse problem (4) can be equivalently written as

min
x

1
2
‖Mx− d‖2

Λ−1 +
1
2
‖x‖2

Γ−1 , (7)

where, for brevity, we have defined

M := A
(

I −W2

[
W T

2 Γ−1W2

]−1
W T

2 Γ−1
)

W1W T
1 .

It should be pointed out that we have used the relationship y = W T
1 x to write the

inverse problem in terms of the original parameter x.

Proposition 1. The term M can be simplified further as

M = A
(

I −W2

[
W T

2 Γ−1W2

]−1
W T

2 Γ−1
)

W1W T
1 = AW1W T

1 .

Proof. Let the singular value decomposition of Γ−
1
2 be Γ−

1
2 = RKRT . We have

Γ−
1
2 W1 = RKRTW

[
I
0

]
,

Γ−
1
2 W2 = RKRTW

[
0
I

]
.

(8)
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We can rewrite M as

M = A
(

I −W2

[
W T

2 Γ−1W2

]−1
W T

2 Γ−1
)

W1W T
1

= AW1W T
1 − AΓ

1
2 Γ−

1
2 W2

[
W T

2 Γ−
1
2 Γ−

1
2 W2

]−1
W T

2 Γ−
1
2 Γ−

1
2 W1W T

1 Γ−
1
2︸ ︷︷ ︸

T

Γ
1
2 .

(9)

Since W2 is a full column rank matrix, so is Γ−
1
2 W2. Thus[(

Γ−
1
2 W2

)T
Γ−

1
2 W2

]−1(
Γ−

1
2 W2

)T
=
{

W T
2 Γ−

1
2

}†
=
[
0 I

]
W T RK−1RT .

The second equality is simply the pseudo-inverse using the singular value decomposi-
tion. Substituting (8) into the T in the Equation (9) yields

T = RKRTW
[

0
I

][
0 I

]
W T RK−1RT RKRTW

[
I
0

][
I 0

]
W T RKRT = 0.

It is well known that the Tikhonov approach (7) applies regularization on all pa-
rameters and this is the reason why a Tikhonov solution is typically smeared out. As in
the DI approach [21], we argue that only data-uninformed parameters should be regular-
ized while the data-informed ones should remain untouched to preserve the fidelity of
inverse solutions.

In this paper, we treat the active parameters as the data-informed parameters and the
inactive parameters as the data-uninformed parameters. Recall that ρ(x) = N (0, Γ), thus
z = W T

2 x ∼ N
(

0, W T
2 ΓW2

)
. In particular, we replace the Tikhonov regularization in

the inverse problem (7) with the DIAS regularization, in which we regularize only the
inactive modes,

min
x

1
2
‖Mx− d‖2

Λ−1 +
1
2

∥∥∥W T
2 x
∥∥∥2

(W T
2 ΓW2)

−1 , (10)

which yields the following inverse solution:

xDIAS-A =

[
MTΛ−1M + W2

(
W T

2 ΓW2

)−1
W T

2

]−1(
MTΛ−1d

)
. (11)

3.2. Dias with Centered Active Subspace (cDIAS-A)

Let the eigenvalue decomposition of C̃ be

C̃ = V EV T , (12)

and similar to the uncentered AS, we partition the eigenvalue and eigenvector matrices as

E =

[
E1

E2

]
, V =

[
V1 V2

]
in which E1 is the diagonal matrix containing the r largest eigenvalues and V1 consists of
the corresponding eigenvectors. For notational convenience, we still denote the active and
inactive parameters as y and z, respectively. Whether they correspond to the uncentered or
the centered AS should be clear from the context.

It is easy to see that any parameter x ∈ Rp can be uniquely expressed as

x = ∇ f (x) + V1y + V2z = V1(y− y0) + V2(z− z0),
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where y0 := V T
1∇ f and z0 := V T

2∇ f . Note that the relationship between the active
and original parameters is given by y = V T

1 x + y0, and similarly z = V T
2 x + z0 for the

relationship between the inactive and original parameters.
Now following the same procedure as in Section 3.1, we can obtain the DIAS inverse

solution with centered AS:

xcDIAS-A =

[
GTΛ−1G + V2

(
V T

2 ΓV2

)−1
V T

2

]−1(
GTΛ−1d

)
, (13)

where

G := A
(

I − V2

[
V T

2 Γ−1V2

]−1
V T

2 Γ−1
)

V1V T
1 = AV1V T

1 .

The second equality can be achieved in the same manner as Proposition 1.

Proposition 2. If Γ = β2 I, then the cDIAS-A solution xcDIAS-A reduces to the truncated
SVD solution.

Proof. Given Γ = β2 I, then V in (12) is the right eigenvectors of Λ−
1
2 A. In this case, the

solution (13) reads

xcDIAS-A =

(
V1V T

1 ATΛ−1 AV1V T
1 +

1
β2

(
I − V1V T

1

))†
V1V T

1 ATΛ−1d

= V


 diag

(
1

σ2
i

)r

i=1
0

0 0

+

[
0 0

0 diag
(

β2)p
r+1

]V TV1V T
1 ATΛ−1d

= V

 diag
(

1
σ2

i

)r

i=1
0

0 diag
(

β2)p
r+1

[ diag(σi)
r
i=1 0

0 0

]
UTΛ−

1
2 d

= V

 diag
(

1
σi

)r

i=1
0

0 0

UTΛ−
1
2 d =

r

∑
i=1

uT
i Λ−

1
2 d

σi
vi,

where r is the dimension of the active subspace. This is exactly the solution of the truncated
SVD method of (10).

4. Data-Informed Active Subspace Regularization for Linear Inverse Problems:
Non-Approximate Data Misfit (DIAS-F)

Following the standard practice in the AS method, we intrusively replaced the original
data misfit with an approximate one in Section 3. Though this approach is clean and
significantly reduces the number of optimization variables to manage for linear inverse
problems, its intrusive nature requires a complete overhaul of the original inverse codes.
This section avoids this issue by considering a DIAS formulation without changing the
data misfit at the expense of working with the original high-dimensional parameter x. As
this approach does not approximate the data misfit, it could provide more robust solutions
as demonstrated numerically in Section 5.

The uncentered and centered DIAS formulations in this case simply read

min
x

1
2
‖Ax− d‖2

Λ−1 +
1
2

∥∥∥W T
2 x
∥∥∥2

(W T
2 ΓW2)

−1 , and

min
x

1
2
‖Ax− d‖2

Λ−1 +
1
2

∥∥∥V T
2 x
∥∥∥2

(V T
2 ΓV2)

−1 ,
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respectively. Thus, the inverse solution using the uncentered AS, analogous to (11), is

xDIAS-F =

(
ATΛ−1 A + W2

(
W T

2 ΓW2

)−1
W T

2

)−1
ATΛ−1d, (14)

and the centered AS solution, similar to (13), reads

xcDIAS-F =

(
ATΛ−1 A + V2

(
V T

2 ΓV2

)−1
V T

2

)−1
ATΛ−1d. (15)

Proposition 3. If Γ = β2 I, then the cDIAS-F solution (15) reduces to the DI solution proposed
in [21].

Proof. Let Ā = Λ−
1
2 A and d̄ = Λ−

1
2 d, then the cDIAS-F solution (15) becomes

xcDIAS-F =

(
ĀT Ā +

1
β2

[
I − V1V T

1

])−1
ĀT d̄.

which is exactly the DI solution in [21].

Theorem 1. Let λi be the i-th eigenvalue of the active subspace matrix C or C̃, and

rε := max{i : 1 ≤ i ≤ p and λi ≥ ε}, ε > 0.

Set LT L = W2

(
W T

2 ΓW2

)−1
W T

2 and LT L = V2
(
V T

2 ΓV2
)−1

V T
2 for the uncentered active

subspace and centered active subspace, respectively. Suppose that the nullspace of A is trivial, i.e.,
N (A) = {0}. Consider the inverse problem

min
x

1
2

∥∥∥Λ−
1
2 Bx−Λ−

1
2 d
∥∥∥2

2
+

1
2
‖Lx‖2

2, (16)

using the DIAS regularization approaches with rank-rε active subspace, where B = M, or G, or
A, which correspond to the DIAS-A, cDIAS-A, or (c)DIAS-F approaches, respectively. Define the

“reconstruction operator” [7,37], approximating the map from observations d to parameter x, as

Rε := (Hrε)−1BTΛ−
1
2 ,

where

Hrε = BTΛ−1B + LT L.

The following hold:

(i) The inverse problem with rank-rε DIAS approaches, i.e., the optimization problem (16), is
well-posed in the Hadamard sense.

(ii) DIAS techniques are regularization strategies [7,37] in the following sense:

lim
ε→0
RεΛ

− 1
2 Ax = x.

(iii) The rank-rε DIAS technique is an admissible regularization method.

Proof. The fact that Hrε is invertible for all approaches is clear.

(i) It is sufficient to show that the solution is continuous with respect to the observational
data. Indeed, we have

‖xDIAS‖2 ≤
∥∥∥(Hrε)−1

∥∥∥
2
‖A‖2

∥∥∥Λ−1
∥∥∥

2
‖d‖2 ≤

1
φ
‖A‖2

∥∥∥Λ−1
∥∥∥

2
‖d‖2
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where φ is the smallest singular value of Hrε . Note that, owing to the invertibility
of Hrε , φ is bounded away from 0 and approaches the smallest singular value of
ATΛ−1 A, which is larger than 0 due to the triviality of the nullspace of A.

(ii) The matrix inversion is a continuous mapping (which is the composition of continuous
maps, i.e., the matrix determinant and the matrix adjoint), thus

lim
ε→0
RεΛ

− 1
2 Ax =

(
lim
ε→0

(Hrε)−1
)

ATΛ−1 Ax =

(
lim
ε→0

Hrε

)−1
ATΛ−1 Ax

=
(

ATΛ−1 A
)−1

ATΛ−1Λ−
1
2 Ax = x,

where we have used the following facts

1. The rank of active subspace rε → p as ε→ 0, and thus LT L = 0.
2. As rε → p, we have B = A.

(iii) It is sufficient to show that

sup
y

{∥∥∥RεΛ
− 1

2 y− x
∥∥∥

2
:
∥∥∥Λ−

1
2 (Ax− y)

∥∥∥
2
≤ ε
}
→ 0 as ε→ 0,

for any x. We have∥∥∥RεΛ
− 1

2 y− x
∥∥∥

2
≤
∥∥∥RεΛ

− 1
2 Ax− x

∥∥∥
2
+
∥∥∥RεΛ

− 1
2 (Ax− y)

∥∥∥
2

≤
∥∥∥(Hrε)−1BTΛ−1 A− I

∥∥∥
2
‖x‖2 + ‖Rε‖2 ε

≤
∥∥∥(Hrε)−1

∥∥∥
2

(∥∥∥BTΛ−1 A− BTΛ−1B
∥∥∥

2
+
∥∥∥LT L

∥∥∥
2

)
‖x‖2

+
ε

φ
‖B‖2

∥∥∥Λ−
1
2

∥∥∥
2

≤ 1
φ
(σ(ε) + γ(ε))‖x‖2 +

ε

φ
‖B‖2

∥∥∥Λ−
1
2

∥∥∥
2
,

where σ(ε) is the maximum singular value of BTΛ−1 A− BTΛ−1B, γ(ε) is the maxi-
mum eigenvalue of LT L. We note that, as ε→ 0, σ(ε)→ 0 and γ(ε)→ 0.

5. Numerical Results

We now test the proposed DIAS approaches against the Tikhonov method on a variety
of popular linear inverse problems. In particular, we consider one-dimensional (1D)
deconvolution, various benchmark problems from [38], and X-ray tomography. In all linear
inverse problems, we assume Λ = δ2 I and Γ = β2 I. Under this assumption, we have

α = β2

δ2 . Furthermore, by Propositions 2 and 3, the cDIAS-A and cDIAS-F methods become
the truncated SVD (TSVD) and the DI approaches, respectively. Thus, for clarity we use
TSVD and DI in the places of cDIAS-A and cDIAS-F for all examples. Additionally, by a%
additive white noise we mean additive Gaussian noise with the standard deviation of a%
of the maximum value of synthetic data. In the 1D deconvolution problem, we numerically
investigate the difference in the inverse solutions, using the uncentered AS approaches and
the centered AS approaches. In particular, we highlight the reordering and rotation effect
of the uncentered AS induced by the data d (see Section 2 for a theoretical discussion).

5.1. 1D Deconvolution Problem

We consider the one-dimensional deconvolution problem (see, for example, [9,39])

d(sj) =
∫ 1

0
a(sj, t)x(t) dt + e(sj), j = 1, . . . , n,
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where a(s, t) = 1√
2πµ2

exp
(
− 1

2µ2 (t− s)2
)

is a Gaussian convolution kernel with µ = 0.05,

sj =
j
n (0 ≤ j < n), n = 1000, and e is 5% additive white noise. The exact solution, which

we aim to reconstruct from the noisy data d, is given as

x(t) = 10(t− 0.5) exp
[
−50(t− 0.5)2

]
− 0.8 + 1.6t, t ∈ [0, 1].

Figure 1a shows the projected components of the true solution xt in the uncentered
active eigenspace W1 and the centered active eigenspace V1. In the uncentered eigenspace,
the true solution lies almost entirely in the first eigenmode, while it predominantly lies
in the second and sixth modes of the centered eigenspace. The relative error between
projection xr with r—dimensional AS and the true solution xt is shown in Figure 1b. It
can be seen that the uncentered AS provides more accurate projection, even with one
active direction (r = 1). The result also shows that the centered AS needs at least 10 active
directions to start being comparable to the uncentered counterpart in terms of accuracy.
These numerical observations verify the reordering and rotating results of Lemma 1.
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(a) Components of xt in V1, W1
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(b) Error in xr relative to xt

Figure 1. 1D deconvolution problem. (a): uncentered AS subspace versus centered AS subspace in
representing the true solution. (b): relative error of DIAS-A and TSVD solutions as a function of
active subspace dimension r.

The uncentered AS eigenvector reordering and rotating effects induced by the data d
are presented in Table 2, where we compute the cosine of the angle between the centered
and uncentered active modes. As can be seen, w1 is slightly rotated from v2. That is,
compared to the centered AS method, the uncentered AS, under the influence of the data,
reorders the eigenvectors of the forward operator so that v2 is in the first position and
slightly rotates it to align better with the directions in which the data are informative. The
most significant shortcoming of the DI method and others using the basis V is that they
misclassify v1 as the most data-informed direction, while for the data under consideration,
v2 is much more informative. Indeed, the relative error in Figure 1b shows that the true
parameter is almost orthogonal to v1.
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Table 2. cos
(

wi, vj

)
between first ten eigenvectors in W1 and V1.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

w1 −0.01 0.97 0 −0.02 0 0.22 0 −0.01 0 −0.02

w2 1 0.01 0 0 0 0 0 0 0 0

w3 0 0 1 0 0 0 0 0 0 0

w4 0 0.02 0 1 0 −0.01 0 0 0 0

w5 0 0 0 0 1 0 0 0 0 0

w6 0 −0.22 0 0.01 0 0.97 0 −0.01 0 −0.01

w7 0 0 0 0 0 0 −1 0 0 0

w8 0 0.01 0 0 0 0.01 0 1 0 0

w9 0 0 0 0 0 0 0 0 1 0

w10 0 0.02 0 0 0 0.01 0 0 0 1

Figure 2 presents solutions for the 1D deconvolution problem with various com-
binations of active subspace dimension r and regularization parameter α. For the one-
dimensional active subspace r = 1, the TSVD method is not able to reconstruct the solution
since the first mode of V1 contributes very little to the true solution. On the contrary,
DIAS-A yields a reasonable solution, as its first mode is the most data-informative one. For
large dimensional active subspace, the DIAS-A and TSVD solutions are almost the same.
These observations are consistent with the discussion following Lemma 1. Recall that the
uncentered eigenvectors are a reordering and rotation of the centered ones. By considering
a sufficiently large number of modes to be data informed, the subspaces spanned by V1 and
W1 become more similar. This can also be clearly seen in Table 2 along the diagonal. Notice
that vi ≈ wi except for the first two modes. This is because the first two eigenvectors are
swapped and slightly rotated. Furthermore, inherited from the DI approach [21], DIAS-A,
and TSVD (in fact cDIAS-A) solutions are almost invariant with respect to the regularization
parameter. This is not surprising since the DIAS approach, by design, regularizes only the
data-uninformed modes. Its solution should remain unaffected if sufficient data-informed
modes are taken into account.

Figure 2 also shows that the DIAS-F, DI, and Tikhonov solutions are indistinguishable
for small regularization parameter regardless of whether r = 1 or r = 10. This is due
to two reasons: (1) the DIAS approaches and Tikhonov regularize inactive modes in the
same way, and (2) Tikhonov regularization has little effect on the active modes when the
regularization parameter is small, thus having little impact on the inverse solution. The
situation changes for larger regularization parameters, especially for r = 10. Both DIAS-F
and DI, by leaving the active parameters untouched, are insensitive to the regularization
while Tikhonov oversmooths the solution by heavily regularizing the active parameters.

Another important observation that Figure 2 conveys is the difference among DIAS
approaches with centered and uncentered active subspaces. For r = 1, the uncentered
approaches DIAS-A and DIAS-F outperform the centered counterparts TSVD and DI,
especially for large regularization parameters. In other words, uncentered approaches
are more robust to the regularization parameter. The reason is that uncentered methods
do not penalize the data-informed direction w1 while the centered ones—without taking
data into account—regularize v2, the most data-informative direction in the basis V . As
discussed in Section 2, for sufficiently large active subspace dimension r = 10, all the DIAS
solutions are similar since all methods end up spanning the same subspace. However, at
the optimal regularization parameter α = 1, determined by the L-curve method [38], the
DIAS-F solution is visibly closer to the ground truth than TSVD and Tikhonov.
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Figure 2. Solutions for 1D deconvolution problem with different active subspace dimensions r = 1, 10
and different regularization parameter values α = 10−4, 1, 104.

5.2. Benchmark Problems

In this section, we apply the DIAS regularization approach with centered AS and
uncentered AS methods to six benchmark problems from regularization tools [38]. We briefly
describe the Shaw benchmark [40] here, and we refer the readers to [38] for the descriptions
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of other benchmark problems. It is in fact a deconvolution problem in which the kernel is
given as

a(s, t) = (cos(s) + cos(t))
(

sin(u)
u

)2
,

where u = π(sin(s) + sin(t)), and the true solution is given by

x(t) = a1 exp
(
−c1(t− t1)

2
)
+ a2 exp

(
−c2(t− t2)

2
)

,

where a1 = 2, c1 = 6, t1 = 0.8, a2 = 1, c2 = 2, t2 = −0.5. For all benchmark problems, the
domain [0, 1] is divided into 1000 subdomains. These problems provide good examples
to study the robustness and accuracy properties of the DIAS approaches. Observational
data for each problem are corrupted with 1% additive white noise. Figure 3 measures
the relative error between the ground truth xt and its projection xr on both centered and
uncentered active subspaces with various values of the active subspace dimension r. For
Shaw, heat, gravity, and Phillips problems, projecting the exact solution on the uncentered
AS results in a lower error than on the centered AS. For the Deriv2 and Foxgood problems,
the results are identical for both centered and uncentered AS. The reason is that the data
for these two problems do not provide new information and thus the active subspaces are
entirely determined by the forward operator A.

Figures 4–9 show the following: (1) top row—relative errors in the inverse solutions
for different regularization methods for two values of regularization parameter (αoptimal
and 500× αoptimal); (2) middle row—inverse solutions with Tikhonov regularization and
DIAS regularizations with one dimensional active subspace (r = 1) for two values of regu-
larization parameter; and (3) bottom row—inverse solutions with Tikhonov regularization
and DIAS regularizations with optimal active subspace dimension for two values of the
regularization parameter. Here, the optimal regularization parameters are chosen based on
the L-curve method with Tikhonov regularization [38], and the optimal AS dimension is
found experimentally for each method. It turns out that the optimal AS dimension is the
same for all methods.

Around the optimal AS dimension (top rows of all figures), regardless of what the reg-
ularization parameter is, all DIAS regularizations have similar accuracy and they are more
accurate than Tikhonov, as expected. As can be seen in the middle rows, when the active
subspace dimension is from r = 1 to r = 6, less than the optimal dimension roptimal = 7
for the Shaw problem, the full data misfit methods outperform the approximated misfit
counterparts. We provide the reason only for the Shaw problem, as it is the same for others.
When taking r = 1, the approximate misfit approaches completely remove six other active
modes, which are misclassified as inactive, in addition to removing the truly inactive modes.
The inverse solutions thus lack the important contribution from these modes, leading to
inaccurate reconstructions. Even when the active subspace is chosen to be too small, the
full misfit methods only regularize the misclassified modes rather than eliminating them
from the solution entirely.

The results also show that the DIAS regularizations with full data misfit are at least as
good as Tikhonov regularization with αoptimum and are more accurate with 500× αoptimum.
Again, the reason is that for a reasonably small regularization parameter, the smoothing ef-
fect from Tikhonov regularization does not change the solution significantly. On the bottom
rows where the AS dimensions are optimal, DIAS solutions are similar and outperform the
Tikhonov counterparts for both values of regularization parameters.

From middle to bottom rows, the DIAS solutions with approximate data misfit change
from worse to comparable to the DIAS solutions with original data misfit, and thus from
worse to more accurate than Tikhonov solutions. This is not surprising: Equation (2)
shows that as the active subspace dimension increases, the error due to the data misfit
approximation decreases. On the other hand, for the same reasons as in the deconvolution
problem, the uncentered AS methods (DIAS-A and DIAS-F) are more accurate than the
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corresponding centered AS counterparts (TSVD and DI) for all problems with any active
subspace dimension and with any regularization parameter.
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Figure 3. The comparison between centered AS and uncentered AS in recovering the true solution xt.
xr is the projection of xt in the active subspaces.

Note that for these benchmarks, we take 500× αoptimal as a large regularization pa-
rameter case to show that DIAS regularization is robust with respect to the choice of
regularization parameter while Tikhonov is not. The DIAS solutions are much more ac-
curate than the Tikhonov solutions, as the latter overregularizes all modes in this case.
Additionally, we observe that the full data misfit approaches become similar to the approx-
imate misfit ones as the regularization parameter increases. To see why, we recall from
Equation (7) that the only difference between approximate and full misfit approaches is
the removal of the inactive variables in the former. When the regularization parameter
approaches infinity, it annihilates the contribution of the inactive subspace in the inverse
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solution. In fact, they behave like TSVD in the limit and we know that TSVD is equivalent to
applying infinite regularization on the truncated modes [21]. Thus both approaches would
yield identical solutions in the limit. For the case we consider here, the regularization is
sufficiently large for us to already see this asymptotic behavior.
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Figure 4. Shaw problem, αoptimal = 1.35× 10−2. Comparison of different DIAS regularizations and
Tikhonov regularization. Top row: relative errors in the inverse solutions for different regularization
methods for two values of regularization parameter. Middle row: inverse solutions with DIAS
regularizations with one-dimensional active subspace and Tikhonov regularization for two values
of regularization parameter. Bottom row: inverse solutions with DIAS regularizations with the
optimal dimension active subspace (roptimal = 7) and Tikhonov regularization for two values of
regularization parameter.
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Figure 5. Gravity, αoptimal = 0.138. Comparison of different DIAS regularizations and Tikhonov
regularization. Top row: relative errors in the inverse solutions for different regularization methods
for two values of regularization parameter. Middle row: inverse solutions with DIAS regularizations
with one-dimensional active subspace and Tikhonov regularization for two values of regularization
parameter. Bottom row: inverse solutions with DIAS regularizations with the optimal dimension
active subspace (roptimal = 8) and Tikhonov regularization for two values of regularization parameter.
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Figure 6. Deriv2, αoptimal = 6.6× 10−4. Comparison of different DIAS regularizations and Tikhonov
regularization. Top row: relative errors in the inverse solutions for different regularization methods
for two values of regularization parameter. Middle row: inverse solutions with DIAS regularizations
with one-dimensional active subspace and Tikhonov regularization for two values of regularization
parameter. Bottom row: inverse solutions with DIAS regularizations with the optimal dimension ac-
tive subspace (roptimal = 15) and Tikhonov regularization for two values of regularization parameter.
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Figure 7. Heat, αoptimal = 3.35× 10−3. Comparison of different DIAS regularizations and Tikhonov
regularization. Top row: relative errors in the inverse solutions for different regularization methods
for two values of regularization parameter. Middle row: inverse solutions with DIAS regularizations
with one-dimensional active subspace and Tikhonov regularization for two values of regularization
parameter. Bottom row: inverse solutions with DIAS regularizations with the optimal dimension ac-
tive subspace (roptimal = 22) and Tikhonov regularization for two values of regularization parameter.



Computation 2022, 10, 38 21 of 32

αoptimal

1 2 3 4 5 6 7 8 9 10 11

AS dimension r

0

20

40

60

80

100

R
e
la

ti
v

e
 E

rr
o

r 
(%

)

Tikonov

DIAS-A

TSVD

DIAS-F

DI

r = 1, αoptimal

0 0.5 1

t coordinate

-0.05

0

0.05

0.1

0.15

0.2

0.25

In
v

e
rs

e
 s

o
lu

ti
o

n

Exact

Tikonov

DIAS-A

TSVD

DIAS-F

DI

roptimal, αoptimal

0 0.5 1

t coordinate

-0.05

0

0.05

0.1

0.15

0.2

0.25

In
v

e
rs

e
 s

o
lu

ti
o

n

Exact

Tikonov

DIAS-A

TSVD

DIAS-F

DI

500× αoptimal

1 2 3 4 5 6 7 8 9 10 11

AS dimension r

0

20

40

60

80

100

R
e
la

ti
v

e
 E

rr
o

r 
(%

)

Tikonov

DIAS-A

TSVD

DIAS-F

DI

r = 1, 500× αoptimal

0 0.5 1

t coordinate

-0.05

0

0.05

0.1

0.15

0.2

0.25

In
v

e
rs

e
 s

o
lu

ti
o

n

Exact

Tikonov

DIAS-A

TSVD

DIAS-F

DI

roptimal, 500× αoptimal

0 0.5 1

t coordinate

-0.05

0

0.05

0.1

0.15

0.2

0.25

In
v

e
rs

e
 s

o
lu

ti
o

n

Exact

Tikonov

DIAS-A

TSVD

DIAS-F

DI

Figure 8. Phillips, αoptimal = 0.175. Comparison of different DIAS regularizations and Tikhonov
regularization. Top row: relative errors in the inverse solutions for different regularization methods
for two values of regularization parameter. Middle row: inverse solutions with DIAS regularizations
with one-dimensional active subspace and Tikhonov regularization for two values of regularization
parameter. Bottom row: inverse solutions with DIAS regularizations with the optimal dimension
active subspace (roptimal = 8) and Tikhonov regularization for two values of regularization parameter.
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Figure 9. Foxgood, αoptimal = 1.7× 10−2. Comparison of different DIAS regularizations and Tikhonov
regularization. Top row: relative errors in the inverse solutions for different regularization methods
for two values of regularization parameter. Middle row: inverse solutions with DIAS regularizations
with one-dimensional active subspace and Tikhonov regularization for two values of regularization
parameter. Bottom row: inverse solutions with DIAS regularizations with the optimal dimension
active subspace (roptimal = 3) and Tikhonov regularization for two values of regularization parameter.

5.3. X-ray Tomography

X-ray tomographic reconstruction is another well-known linear inverse problem. A
more detailed description of this problem can be found in [9]. Synthetic data are generated
with 1%, 3% and 5% white noise added to be realistic. Tikhonov solutions using the optimal
regularization parameter α = 1.3× 105, obtained by the L-curve method [9], are compared
with DIAS approaches.
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Figure 10 depicts the eigenvalues of C and C̃. While the first eigenvalue of the
uncentered active subspace matrix is significantly larger than the first eigenvalue of the
centered active subspace matrix, this only hints that w1 is more important than any of the
vectors in V . Figure 11 shows that there is indeed a striking difference between the first
eigenvector of the two active subspaces. Visual inspection of the eigenvectors w1 and v1
makes it obvious that w1 contributes significantly to the solution, while the contribution of
v1 to the solution is much less pronounced.
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Figure 10. The spectrum of C (Uncentered Active Subspace) and C̃ (Centered Active Subspace), noise
level 1%.

Eigenvector w1 Eigenvector w2 Eigenvector w6 Eigenvector w9
7.2× 1018 4.480× 1015 1.82× 1015 9.7× 1014

Eigenvector v1 Eigenvector v2 Eigenvector v6 Eigenvector v9
2.58× 1016 4.414× 1015 1.71× 1015 9.2× 1014

Figure 11. Eigenvectors of uncentered AS wi and centered AS vi, i = 1, 2, 6, 9 and their corresponding
eigenvalues, noise level 1%.

The Tikhonov solutions with different regularization parameters and the original im-
age are shown in the Figure 12 for the case of 1% noise. Clearly, underregularization results
in noisy solutions and overregularization yields overly smoothed and blurry solutions.

Table 3 and Figure 13 show the relative error and the reconstructed images for the
underregularization case. The approximated misfit methods (DIAS-A and TSVD) remove
the inactive variables so they are not prone to noise pollution amplified by inverting
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the small singular values corresponding to these data-uninformed modes. This has a
regularization effect known as regularization by truncation. Since the full misfit approaches
and Tikhonov capture all modes, their solutions are much more vulnerable to noise in
the underregularization regime. For optimal regularization case in Table 4 and Figure 14,
the full misfit methods DIAS-F and DI are more accurate than their approximate misfit
counterparts for small active subspace dimensions, while all methods give similar results
when the active subspace dimension is sufficiently large. For the overregularization case
in Table 5 and Figure 15, the approximate and full misfit approaches provide comparable
solutions, as they both behave like the TSVD method. Moreover, DIAS regularization
solutions are robust to the regularization parameter as opposed to the Tikhonov solution.
Another observation is that DIAS methods perform poorly when the active subspace
dimension is taken to be too large (r = 12,000). This is not surprising since as r → p, all
regularization is removed and the problem becomes ill-posed again.

α = 102 αoptimal = 1.3× 105 α = 108 True image

Figure 12. Solutions for X-ray tomography using Tikhonov regularization with regularization param-
eters α =

{
102, 1.3× 105, 108} and the original image (right-most), noise level 1%.

Table 3. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for underregu-
larization case with α = 102, noise level 1%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.31 36.13 27.39 22.74 35.36

TSVD 84.58 56.50 40.17 29.10 22.98 35.36

DIAS-F 389.15 389.16 389.15 389.16 389.13 389.01

DI 389.15 389.16 389.15 389.17 389.13 389.01

Tikhonov 389.15

Table 4. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for optimal
regularization case with αoptimal = 1.3× 105, noise level 1%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.31 36.13 27.39 22.74 35.36

TSVD 84.58 56.50 40.17 29.10 22.98 35.36

DIAS-F 21.35 21.22 21.08 21.05 22.17 35.39

DI 21.36 21.33 21.24 21.19 22.21 35.39

Tikhonov 21.36
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Figure 13. DIAS solutions for X-ray tomography problem with underregularization parameter
α = 102, noise level 1%.
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Figure 14. DIAS solutions for X-ray tomography problem with optimal regularization parameter
αoptimal = 1.3× 105, noise level 1%.
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Figure 15. DIAS solutions for X-ray tomography problem with overregularization parameter α = 108,
noise level 1%

To better understand the robustness of the DIAS approaches to various noise levels,
we perform a sensitivity analysis, increasing the noise levels to 3% and 5%. One might
expect that the DIAS method would be especially sensitive to noise since it is a data-driven
approach. The following discussion shows, however, that the DIAS approaches maintain
their advantages, even in the presence of significant noise. The results with higher noise
levels are presented in Tables 6–8 for 3%, and Tables 9–11 for 5%. It can be observed
that approximately the first 500 modes of the active subspace are not perturbed by noise
(1%, 3% and 5%). For example, at r = 500, the relative error of DIAS-A and TSVD are
approximately 49% and 56%, respectively, for all noise levels. Meanwhile, when r = 5000,
the corresponding figures for both approaches in the cases of 1%, 3% and 5% are (27.39%,
29.10%), (33.95%, 35.10%) and (43.49 % and 44.39%), respectively. This is consistent with
the well-known fact that higher modes of the active subspace (corresponding to smaller
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eigenvalues) contain more noise. In other words, as the noise level increases, the 5000-th
mode moves to the inactive side of the space because it becomes dominated by noise rather
than useful information.

Table 5. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for overregular-
ization case with α = 108, noise level 1%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.31 36.13 27.39 22.74 35.36

TSVD 84.58 56.50 40.17 29.10 22.98 35.36

DIAS-F 74.29 48.65 35.91 27.32 22.73 35.36

DI 78.08 55.6 39.89 29.01 22.97 35.36

Tikhonov 80.77

Table 6. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for underregu-
larization case with α = 102, noise level 3%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.42 37.32 33.95 48.46 97.10

TSVD 84.58 56.57 41.05 35.10 48.53 97.10

DIAS-F 371.83 371.82 371.81 371.80 371.81 372.87

DI 371.83 371.83 371.83 371.81 371.81 372.88

Tikhonov 371.83

Table 7. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for underregu-
larization case with α = 1.35× 105, noise level 3%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.42 37.32 33.95 48.46 97.10

TSVD 84.58 56.57 41.05 35.10 48.53 97.10

DIAS-F 33.99 32.24 30.89 32.77 48.42 97.10

DI 34.17 33.56 32.11 33.30 48.46 97.10

Tikhonov 34.17

Table 8. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for underregu-
larization case with α = 108, noise level 3%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.42 37.32 33.95 48.46 97.10

TSVD 84.58 56.57 41.05 35.10 48.52 97.10

DIAS-F 78.77 49.34 37.30 33.95 48.46 97.10

DI 83.68 56.47 41.02 35.09 48.52 97.10

Tikhonov 95.19
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Table 9. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for underregu-
larization case with α = 102, noise level 5%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.54 39.03 43.49 77.18 161.65

TSVD 84.58 56.69 42.62 44.39 77.22 161.62

DIAS-F 326.77 326.77 326.78 326.77 326.69 332.71

DI 326.77 326.77 326.78 326.78 326.69 332.71

Tikhonov 326.77

Table 10. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for underregu-
larization case with α = 1.35× 105, noise level 5%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.54 39.03 43.49 77.18 161.65

TSVD 84.58 56.69 42.62 44.39 77.22 161.62

DIAS-F 43.55 38.73 35.93 43.08 77.19 161.65

DI 44.05 41.73 38.07 43.73 77.22 161.62

Tikhonov 44.06

Table 11. Relative error (%) of inverse solutions by DIAS and Tikhonov regularization for underregu-
larization case with α = 108, noise level 5%.

Method
Number of Dimensions of Active Subspace

r = 1 r = 500 r = 2000 r = 5000 r = 10,000 r = 12,000

DIAS-A 79.47 49.54 39.03 43.49 77.18 161.65

TSVD 84.58 56.69 42.62 44.39 77.22 161.61

DIAS-F 79.21 49.52 39.02 43.49 77.18 161.64

DI 84.25 56.66 42.61 44.38 77.22 161.61

Tikhonov 98.06

6. Conclusions

We have presented four different data-informed regularization approaches for linear
inverse problems using active subspaces (DIAS): two with approximate data misfit, and
two with full data misfit. We rigorously showed the connection between the centered and
uncentered active subspaces and the consequences on the performance of the correspond-
ing DIAS approaches. For linear inverse problems, we showed that the TSVD and the
DI regularization methods are members of DIAS regularization. Regularizing only the
inactive directions is fundamental to the success of the DIAS approaches. All four DIAS
regularization methods are robust to a wide range of regularization parameter values and
outperform Tikhonov regularization for many choices of regularization parameter. The
uncentered DIAS approaches are more robust and more accurate than their centered coun-
terparts (the TSVD and DI approaches). Among DIAS regularizations methods, DIAS-F
(uncentered active subspace with the original data misfit) has the best compromise: it is a
data-informed non-intrusive approach.

By data-informed, we mean that the method balances the information encoded in
the forward operator and information gained from the particular realization of the data.
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By non-intrusive, we mean that the method provides the ability to reuse existing inverse
codes with minor modification only on the regularization. Various numerical results
have demonstrated that the DIAS-F approach is the most effective method presented. In
particular, excellent results can be obtained from DIAS-F with only a one-dimensional data
informed subspace.

For problems with significant noise in the data, DIAS regularization methods could
result in noisy reconstructions unless a small number of active directions are taken, since the
less data-informed directions, reflecting the noise in the data, still need some regularization
to smooth out the noise. Ongoing work is to equip the DIAS regularization approach with a
mechanism to combat high noise scenarios while ensuring the fidelity of inverse solutions.
Another appealing feature of the DIAS framework is that it is applicable not only for linear,
but also seamlessly for nonlinear inverse problems. Detailed numerical investigations
and rigorous analysis of the DIAS approach for nonlinear inverse problems are part of
ongoing work.
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Appendix A. Dias Regularization with Whitened Active Subspaces

One can alternatively whiten the inverse problem to reduce to the standard form. Let
us define the following whitening transformation: x = Γ−

1
2 x̃, x̃ ∼ N (0, I), Ã = Λ−

1
2 AΓ

1
2 ,

and d̃ = Λ−
1
2 d.

The whitened inverse problem reads

min
x̃

1
2

∥∥∥Ãx̃− d̃
∥∥∥2

+
1
2
‖x̃‖2,

The corresponding misfit function and its gradient are given as

f (x̃) =
1
2

∥∥∥Ãx̃− d̃
∥∥∥2

,

∇x̃ f (x̃) = Ã
T(

Ãx̃− d̃
)

.

By simple algebraic manipulations, we obtain

Cx̃ =
∫
∇x̃ f (x̃)(∇x̃ f (x̃))Tρ(x̃) dx̃ = Ã

T(
ÃÃ

T
+ d̃d̃

T)
Ã = Γ

1
2 CΓ

1
2 ,

C̃x̃ = Γ
1
2 C̃Γ

1
2 .

(A1)

We only consider the DIAS regularization with full misfit (similar derivation can be
done for approximate misfit). The uncentered and centered DIAS solutions in this case are
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x̃DIAS-F =
(

Ã
T

Ã + α
(

I − W̃1W̃ T
1

))−1
Ã

T
d̃,

x̃cDIAS-F =
(

Ã
T

Ã + α
(

I − Ṽ1Ṽ T
1

))−1
Ã

T
d̃.

The 1D deconvolution DIAS inverse solutions with non-identity regularization, in-
spired by the relax boundary prior covariance in [41], show that the whitened active
subspace is less accurate (Figure A1).
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Figure A1. The relative error of original active subspace and whitened active subspace in the
overregularization case.
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