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Abstract: In this paper, we introduce a penalized version of the geometric mean. In analogy with the
Mazziotta Pareto Index, this composite indicator is derived as a product between the geometric mean
and a penalization term to account for the unbalance among indicators. The unbalance is measured in
terms of the (horizontal) variability of the normalized indicators opportunely scaled and transformed
via the Box–Cox function of order zero. The penalized geometric mean is used to compute the
penalized Human Development Index (HDI), and a comparison with the geometric mean approach
is presented. Data come from the Human Development Data Center for 2019 and refer to the classical
three dimensions of HDI. The results show that the new method does not upset the original ranking
produced by the HDI but it impacts more on countries with poor performances. The paper has the
merit of proposing a new reading of the Mazziotta Pareto Index in terms of the reliability of the
arithmetic mean as well as of generalizing this reading to the geometric mean approach.

Keywords: composite indicator; aggregation method; Human Development Index

1. Introduction

In recent years, there is an increasing interest in well-being measurement through
composite indicators which are obtained combining individual indicators into a single
index, based on an underlying model of the multidimensional concept that is being mea-
sured [1]. In the debate about composite indicators, the choice of the aggregation method is
the core issue. Indeed, each aggregation method has a corresponding aggregation function,
namely the transformation of the indicators used to obtain the composite indicator. Usually,
there are two criteria used for choosing among different aggregation functions. The first
is related to the importance of the single indicator and the second addresses the issue of
compensability or substitutability among indicators. The importance of an indicator is
measured by the marginal contribution of the indicator computed as the partial derivative
of the aggregation function with respect to the indicator, when the aggregation function is
differentiable. The compensability refers to the possibility of offsetting the low value of an
indicator with a high value of another indicator.

This paper addresses the problem of indicator aggregation through a non-compensative
approach by means of a penalization factor that captures the unbalance among indicators.
The aim of the paper is twofold. Firstly, in line with the interpretation of arithmetic mean
as a least-squares estimate for the data values transformed by the Box–Cox function of
order one as in Berger and Casella [2], we propose a new reading of the so-called Mazziotta
and Pareto Index (hereafter, MPI) [3] in terms of the Box–Cox transformation of order
one. Secondly, we propose a generalization of the formula obtained for the MPI to obtain
a penalized version of the geometric mean. Specifically, the penalized geometric mean
is obtained as the product between the geometric mean and a penalization factor that
depends on the (horizontal) variance of the normalized indicators opportunely scaled and
transformed via the Box–Cox function of order zero. Roughly speaking, the penalization
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factor is a correction term to the geometric mean, which accounts for the unbalance among
indicators. In fact, under the Box Cox transformation, the penalization factor is the variance
of the scaled normalized indicators obtained by dividing the normalized indicators by
their geometric mean. This is the reason why the penalization factor can be interpreted
as a reliability measure for the geometric mean. Hence, the higher the unbalance among
indicators, the higher the penalization.

The method presented here to penalize the geometric mean can be easily applied to
every generalized means considering the appropriate Box–Cox transformation. In this
paper, we make a first attempt to bridge two strands of the scientific literature concerning
the use of generalized means as aggregation operators, that is: the composite indicator
construction and the information theory [4].

To illustrate the appealing of our proposal, we focus on the construction of the Human
Development Index (HDI). The index emerged in the first Human Development Report
(HDR), which was published by the United Nations Development Programe in 1990. (All
editions are available at: https://hdr.undp.org/en/global-reports, accessed on 28 February
2022.) The index is computed annually for more than 170 countries by combining three
dimensions: longevity, knowledge, and access to resources. The longevity aspect is captured
by life expectancy at birth. The knowledge pillar is represented by a measure of educational
achievement, which is measured as a weighted sum of expected year of schooling (adult
literacy) and of mean year of schooling. Finally, the resource dimension is represented by
an adjusted real purchasing power parity: GDP per capita.

The paper is organized as follows: in Section 2, we discuss the problem of compen-
sation and balance among indicators and we review the relevant literature. In Section 3,
we propose a new reading for the Mazziotta Pareto Index. In Section 4, we introduce the
penalized geometric mean and we present the theoretical framework. In Section 5, we
apply the penalized geometric mean to compute the “penalized” Human Development Index
(pHDI) and we compare HDI with pHDI in terms of the corresponding rankings. Section 6
concludes and suggests possible extensions. Proofs of some propositions of Section 4 are
collected in the Appendix A.

2. Literature Review
2.1. Compensability and Balance among Indicator

The simplest aggregation approach makes use of the arithmetic mean. Despite its
ease of interpretation, the arithmetic mean suffers from two main drawbacks: the fully
compensability or perfect substitutability and the (possible low) reliability. The perfect
substitutability allows for unbalances among indicators without considering any penaliza-
tion for the unbalance. This means that different distributions of indicator values can yield
similar or equal value of the composite indicator. Therefore, the unbalance gives rise to a
loss of information about the multidimensional nature of the phenomenon under investi-
gation. In this sense, the fully compensability and the unbalance have negative effects on
the composite indicator and, for this reason, deserve consideration. On the other hand, it
should be recalled that the arithmetic mean is a central tendency measure whose reliability
depends strongly on the dispersion of the data around it. Usually, when the sample size is
large enough, the dispersion is measured in terms of the standard deviation of data from
the mean. The smaller/larger the standard deviation, the larger/smaller the mean value
reliability. In the context of composite indicators, the dispersion to be considered is the
horizontal dispersion—that is, the dispersion measured across indicators—to distinguish
from the vertical dispersion—that is, the dispersion across units.

The next paragraphs will be devoted to review the main aspects of compensabil-
ity and balance among indicators and to provide a summary of the methods used for
computing HDI.

When the computation of a composite indicator is based on a linear (weighted) ag-
gregation rule, full compensability among the individual indicators is always assumed.
This implies that there is substitutability among the different aspects and, consequently,
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poor performance in one aspect can be completely compensated by surplus in another one.
However, for a hypothetical well-being indicator, could life expectancy be compensated by
income? Thus, a complete compensability among indicators is often not desirable.

The literature accounts for several non-compensative approaches. For instance, to rank
countries, when we use as a composite index the minimum value among the (normalized)
indicators, any improvements in the other indicators cannot modify the value of the final
index. However, this approach is not without drawbacks, since it does not consider the
unbalance among indicators. Moreover, two countries with very different profiles but
with a common minimum will display the same value of the index and ranked at the
same position.

Among the non-compensative approaches, the family of aggregation functions based
on generalized means of power α, α ∈ R, plays a crucial role. For example, the geometric
mean (α = 0) is used to compute the Human Development Index [5], whereas the Human
Poverty Index for developing countries (HPI-1) computed by UNDP [6] is obtained using
the generalized mean of power α = 3.

The non-compensative aggregation methods, as like the generalized means, overcome
only partially the drawbacks of the arithmetic mean approach, penalizing the unbalance
among indicators. Specifically, in the geometric mean approach, the marginal increase in the
value of an indicator is much higher when the absolute value of the indicator is low. In this
way, the performance of the high indicators is penalized, and the improvements in the weak
indicators are encouraged. However, it should be noted that the penalization introduced by
the geometric mean considers only partially the unbalance issue. The following example
could clarify the point. Let us consider a composite indicator obtained as the geometric
mean of two indicators whose normalized values range between e0 and e1. The normalized
values z1 = e0 and z2 = e1 yield the same composite indicator value e0.5 that would be
obtained with z1 = z2 = e0.5. Therefore, despite its non-compensative nature, the geometric
mean approach attributes the same value of composite indicator to two pairs of indicator
values that have very different distributions and horizontal dispersions.

In particular, we note that the use of the geometric mean is not decisive to fully
balance the contributions of the single indicators. The reason for this weakness is that the
geometric mean is strongly related to the arithmetic mean via Box–Cox transformation
of order zero [7]. In fact, if we take the arithmetic mean of the logarithm of the indicator
values, we get the same as if we take the logarithm of their geometric mean. Thereby,
in the transformed space, the geometric mean suffers from the same drawbacks of the
arithmetic mean.

A first attempt to consider the unbalance among indicators is made by Casadio
Tarabusi and Palazzi [8] that uses the concave average approach to build the aggregation
function of the Sustainability Development Index. This function is obtained as the weighted
average of a strictly concave parametric transformation of the normalized indicators, whose
parameters adjust the intensity of the unbalance penalization. More recently, Casadio
Tarabusi and Guarini [9] combine non-linearly the weighted arithmetic mean and the
Min function in a parametric aggregation function, called Mean-Min function, with the
purpose of mediating the minimum penalization (represented by the arithmetic mean)
and the maximum penalization (represented by the Min function). Moreover, the authors
introduce a measure of compensation between a couple of indicators, called Marginal Rate of
Compensation (MRC), in order to evaluate the proportion of marginal increase (decrease) of
an indicator compensated by a marginal decrease (increase) of another indicator (keeping
the remaining variables unchanged).

In the scientific literature, many other non-compensatory aggregation methods are
suggested. According to El Gibari et al. [10], the construction of a composite indicator
involves multi-criteria decision-making (MCDM) theory. They classify the different MCDM
methods in five different categories: (i) elementary methods; (ii) value and utility-based
methods; (iii) data envelopment analysis-based methods; (iv) distance functions-based
methods; and (v) the outranking relation approach. In the first category, the Simple Additive
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Weighting (SAW) and the Weighted Product (WP) imply a total compensation in the case of
the SAW method and a partial compensation in the case of the WP method. According
to Lai et al. [11], the main advantage of those methods is that they can reduce complex
problems by simple conditions. The second category refers to methods that assign a real
number to each alternative and determine a preference order for the alternatives based on
decision-makers’ value judgements [12]. The Data Envelopment Analysis (DEA)-based
methods use a linear programming as instrumental variable to evaluate the efficiency
of a set of comparable units. DEA allows for full compensation among the criteria [13].
The distance function method requires the definition of a reference point and a function
that measures the deviation between the values of each indicator and their corresponding
reference levels [14]. Finally, the outranking relation approach demands a comparison
between pairs of options to compare alternatives, in order to state if a given alternative is at
least as good as another one. According to El Gibari et al. [10], the two most used methods
in this last category are the ELECTRE (Elimination and Choice Expressing Reality [15]) and
PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations [16]).
Greco et al. [17] identify these two methods as the two main types of non-compensatory
aggregation techniques.

The literature includes also the so-called Mixed Strategies. The name derives from the
fact that it cannot fit into one category or another, since they use a combination of different
approaches for solving the aforementioned issues [17]. This is the case of the Mazziotta
Pareto method [18].

The Mazziotta Pareto Index (MPI) derives from the Method of Penalties by Coefficient of
Variation proposed by the same authors to measure the health infrastructure endowment
under the assumption of non-substitutability of the indicators. The MPI uses as aggregation
function the arithmetic mean adjusted by a penalization coefficient that accounts for the
(horizontal) variability of (opportunely standardized) indicators in relation to the mean,
with the purpose of penalizing the unbalanced distribution of the indicators.

A newer variant of the index allows for comparisons over time [19]. The Adjusted
MPI (AMPI) method uses a different normalization procedure from a modified z-score to a
rescaling method. In addition, it allows for choosing reference points, the so-called goalposts,
e.g., to fix to 100 the average in a given year to facilitate the interpretation of results.

2.2. The Human Development Index

To illustrate the proposed method, we focus on one of the most famous composite
indicators defined by means of a geometric mean, namely the Human Development Index,
and we compute its corresponding penalized version.

In the original formulation, the HDI was computed as the arithmetic mean of the
three dimensions: life expectancy, education, and GDP per capita. In 2010, the arithmetic
mean has been replaced by the geometric mean [5]. There are at least two advantages
in the use of the geometric mean instead of the arithmetic mean. Firstly, the geometric
mean reduces the level of substitutability between dimensions. Secondly, the geometric
mean ensures that a 1% decline in one dimension has the same impact on the aggregate
index as a 1% decline in another dimension. Over the years, many modifications of the
geometric mean approach have been proposed. For instance, Noorbakhsh [20] proposes
to modify the normalization process. Paul [21] suggests to overcome what he defines as
the problem of underestimation of achievement at the higher level by assigning higher
weights to each of the physical indicators at the margin. Others scholars have proposed to
modify the indicators; for instance, Jha et al. [22] propose to modify the health dimension
to account for a morbidity situation, and Prados de la Escosura [23] suggests to modify
the non-income dimensions by applying a convex achievement function. The HDI has
also been investigated from a theoretical point of view. For instance, Chakravarty [24]
axiomatically characterizes a family of measures of achievement that reduces to HDI as a
special case. Finally, Alkire and Forster [25] propose a multiplicative modification of the



Computation 2022, 10, 64 5 of 17

HDI that accounts for the inequality by introducing a multiplicative inequality measure
based on the Atkinson inequality family.

3. A New Reading of the Mazziotta Pareto Index

According to the Method of Penalties by Coefficient of Variation [18,26] denoting by xij the
value of the indicator j relative to the i-th unit, i = 1, 2, . . . , n, j = 1, 2, . . . , m, the normalized
value of the indicator j relative to the i-th unit is obtained standardizing xij to have a mean
of 100 and standard deviation of 10, as follows:

zij = 100±
xij −Mxj

Sxj

10, i = 1, 2, . . . , n, j = 1, 2, . . . , m, (1)

where Mxj and Sxj are, respectively, the mean and the standard deviation of the j-th
indicator. Starting from the normalized indicators (1), the MPI relative to the i-th unit is
defined as:

MPI±i = µi

(
1±

S2
i

µ2
i

)
, i = 1, 2, . . . , n, (2)

where

µi =
1
m

m

∑
j=1

zij, i = 1, 2, . . . , n, (3)

is the arithmetic mean of the normalized indicators for unit i, and

S2
i =

1
m

m

∑
j=1

(zij − µi)
2, i = 1, 2, . . . , n, (4)

is the (biased) sample variance of the normalized indicators zij for unit i, i = 1, 2, . . . , n.
The term 1± S2

i /µi in (2) penalizes the arithmetic mean µi to account for the (horizontal)
variability of the normalized indicators. The addition of this penalization has two main
effects: firstly, it makes the MPI not fully compensable; secondly, it discriminates between
units with the same arithmetic mean using a criterion that deals with the reliability of the
arithmetic mean itself. In fact, the MPI penalizes more the units with larger (horizontal)
variability and, as a consequence, with smaller arithmetic mean reliability. We recall that
the ± sign in (2) depends on the type of phenomenon considered; if increasing variations
of the indicator correspond to positive variations of the phenomenon (positive polarity),
we choose the sign −, otherwise (negative polarity), we choose the sign +.

We propose a new reading of the Mazziotta Pareto Index, with the twofold purpose
of interpreting the penalization term in (2) as a measure of the error committed using
the arithmetic mean instead of the normalized indicators, and of extending this idea to
generalized means. In this paper, we focus on the geometric mean, but the generalization
proposed here can be applied to all the other generalized means and it will be surely an
object of further research.

In order to understand the new reading of the Mazziotta Pareto Index, it is necessary
to introduce the interpretation of the arithmetic mean proposed by Berger and Casella [2],
according to which the generalized means can be derived as least square estimates of data
transformed via a Box–Cox function [7] Specifically, according to Berger and Casella, the
arithmetic mean µi in (14) can be read as the solution of the following optimization problem:

min
a∈R

F(a), (5)
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where

F(a) =
1
m

m

∑
j=1

(h1(zij)− h1(a))2, a ∈ R, (6)

and h1(x) is the Box–Cox transformation of order one defined as:

h1(x) = x− 1, x ∈ R. (7)

That is, µi, as a solution of (5), is the preimage under h1 of the least squares estimate of the
normalized indicators transformed via the function h1, i.e.,

µi = h−1
1

(
1
m

m

∑
j=1

h1(zij)

)
, i = 1, 2, . . . , n. (8)

Under the Box–Cox transformation h1, the error made approximating the normalized
indicators relative to the i-th unit with µi is the value of function (6) at the optimum µi, and
it coincides with the (biased) sample variance of zij, j = 1, 2, . . . , m, i.e.,

F(µi) =
1
m

m

∑
j=1

(h1(zij)− h1(µi))
2 =

1
m

m

∑
j=1

(zij − µi)
2 = S2

i , i = 1, 2, . . . , n. (9)

The reliability of µi depends on the size of (9). It should be pointed out that every unit i,
i = 1, 2, . . . , n, has a corresponding error S2

i whose size depends strongly on µi. Thereby,
the errors relative to units with different means are not comparable.

In order to overcome this difficulty, we consider the scaled normalized indicators
obtained dividing the normalized indicators relative to the i-th unit by the corresponding
arithmetic mean µi, i.e.,

z̃ij =
zij

µi
, i = 1, 2, . . . , n. (10)

It is simple to see that the arithmetic mean, µ̃i, of the scaled values z̃ij, j = 1, 2, . . . , m, is
equal to one for every unit i, i = 1, 2, . . . , n. Under the Box–Cox transformation h1, the
error made approximating the scaled normalized indicators z̃ij relative to the i-th unit with
µ̃i = 1 is:

S̃2
i =

1
m

m

∑
j=1

h1(z̃ij)
2 =

1
m

m

∑
j=1

h1

( zij

µi

)2
, i = 1, 2, . . . , n. (11)

The error in (11) coincides with the (biased) sample variance of the scaled normalized
indicators z̃ij transformed via the function h1. Note that (11) is independent from the size of
µ̃i (that is the same for each unit) and allows for a comparison between units with different
means. The higher the value of S̃2

i , the higher the loss of information caused by considering
µi instead of the normalized indicators zij, no matter the value of µi.

Note that:

S̃2
i =

S2
i

µ2
i

, i = 1, 2, . . . , n, (12)

is the squared coefficient of variation of zij, j = 1, 2, . . . , m. Moreover, the MPI relative to
the i-th unit defined in (2) can be rewritten as follows:

MPI±i = µi h−1
1 (±S̃2

i ), i = 1, 2, . . . , n. (13)
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Equation (13) proposes a new reading of the penalization term appearing in the MPI
Formula (2), according to which the penalization term is nothing more than the preimage
under h1 of±S̃2

i . The larger the error S̃2
i (and, as a consequence, smaller the reliability of µi),

the smaller (in the case of positive polarity) or larger (in the case of negative polarity) the
value of MPI. Therefore, the idea is to discriminate between units with the same arithmetic
mean but different arithmetic mean reliability, attributing smaller (in the case of positive
polarity) or larger (in the case of negative polarity) MPI value to the units for which the
arithmetic mean is less reliable.

4. The Penalized Geometric Mean

According to the interpretation of Berger and Casella illustrated in the previous
section, the composite indicator relative to the i-th unit given by the geometric mean of the
normalized indicators zij:

µ0,i =

(
m

∏
j=1

zij

) 1
m

, i = 1, 2, . . . , n, (14)

can be expressed as a preimage of the least squares estimate of the normalized indicators
transformed via the Box–Cox function of order zero, h0, as follows:

µ0,i = h−1
0

(
1
m

m

∑
j=1

h0(zij)

)
, i = 1, 2, . . . , n, (15)

where h0 is defined as:

h0(x) = ln x, x ∈ R+. (16)

In analogy with the interpretation of MPI in Section 3, we define the penalized geo-
metric mean as follows:

GM±i = µ0,i h−1
0

(
±S̃2

0,i

)
= µ0,i exp{±S̃2

0,i}, i = 1, 2, . . . , n, (17)

where

S̃2
0,i =

1
m

m

∑
j=1

h0

( zij

µ0,i

)2
=

1
m

m

∑
j=1

(
ln zij − ln µ0,i

)2, i = 1, 2, . . . , n, (18)

is the (biased) sample variance of the scaled normalized indicators ẑij = zij/µ0,i,
j = 1, 2, . . . , m, transformed via the function h0.

The penalized geometric mean (17) is obtained multiplying the geometric mean µ0,i
with the penalization factor h−1

0 (±S̃2
0,i) with the purpose of discriminating between units

with same geometric mean but different geometric mean reliability, attributing smaller (in
the case of positive polarity) or larger (in the case of negative polarity) value to the units
for which the geometric mean is less reliable. Analogously to the MPI, the reliability of the
geometric mean µ0,i is measured in terms of the reliability of the arithmetic mean of h0(ẑij),
j = 1, 2, . . . , m.

Proposition 1. The penalized geometric mean (17) satisfies the following properties:

1. GM+
i ≥ µ0,i ≥ GM−i .

2. GM+
i = GM−i = µ0,i, if and only if S̃0,i = 0.

3. GM+
i = GM−i exp

{
2 S̃2

0,i

}
.
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4. Given two units k and h (k 6= h) with µp,k = µp,h, we have:

GM−k > GM−h iff S̃2
0,h > S̃2

0,k,

GM+
k > GM+

h iff S̃2
0,k > S̃2

0,h.

5. Given two units k and h (k 6= h) we have:

GM−k > GM−h iff µ0,k > µ0,h exp
{

S̃2
0,k − S̃2

0,h

}
,

GM+
k > GM+

h iff µ0,k > µ0,h exp
{

S̃2
0,h − S̃2

0,k

}
.

Proof. The proof follows easily from (8).

The following propositions list some properties of GM±i as a function of zik,
i = 1, 2, . . . , n and k = 1, 2, . . . , m.

Proposition 2. For i = 1, 2, . . . , n and k = 1, 2, . . . , m the penalized geometric mean (17) satisfies
the following properties:

1.
∂GM−i

∂zik
≥ 0 for zik ≤ z−i and has a local maximum at the point z−i ,

2.
∂GM+

i
∂zik

≥ 0 for zik ≥ z+i and has a local minimum at the point z+i ,

where z±i = µ0,i exp
{
∓ m

2(m− 1)

}
.

Proof. See Appendix A.

Recalling that the geometric mean µ0,i is an increasing function of zik, i = 1, 2, . . . , n,
k = 1, 2, . . . , m, for any values of zik ≥ 0, Proposition 2 establishes that for increasing zik, the
penalization term exp{−S̃2

0,i} beyond the threshold value z−i has a negative effect on the
penalized geometric mean greater than the growth of the geometric mean. Analogously, for
decreasing zik, the penalization term exp{S̃2

0,i} beyond the threshold value z+i has a positive
effect on the penalized geometric mean greater than the reduction of the geometric mean.
Note that when z−i ≥ 1 the penalized geometric mean, GM−i is an increasing function of
zik for any k = 1, 2, . . . , m.

Thus, following Casadio Tarabusi and Guarini [9], for the penalized geometric mean,
we compute the Marginal Rate of Compensation (MRC).

Proposition 3. The MRC of the penalized geometric mean (17) between variables zik and zih is
given by:

MRC±kh,i =

(
zih
zik

)m± 2(m− 1) ln
(

zik
µ0,i

)
m± 2(m− 1) ln

(
zih
µ0,i

)
. (19)

Proof. See Appendix A.

The MRC between variables zik, zih represents the proportion of the marginal increase
(decrease) of zik compensated by the marginal decrease (increase) of zih ceteris paribus. We
can note that, similarly to the geometric mean, when zik ≤ z−i for the penalized geometric
mean GM−i the decrease (increase) of zih required to compensate for an increase (decrease)
of zik is larger the smaller the value of zik. Moreover, as zik approaches zero, MRC+

kh,i and
MRC−kh,i degenerate, respectively, to +∞ and to −∞.
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5. Empirical Findings

For the purpose of illustrating the effect of introducing the penalization factor in the
geometric mean, in what follows, we apply the penalized geometric mean approach (17) to
compute a penalized version of the United Nations’ Human Development Index (HDI) for the
year 2019. The HDI is a composite indicator obtained aggregating by means of a geometric
mean the life expectancy, education, and per capita income indicators.

Thus, we compare the classical HDI and its penalized version, which we call pHDI. The
pHDI is obtained from HDI using (17). It should be noted that since the HDI has positive
polarity, we use the penalized geometric mean GM−.

Below, we briefly summarize the procedure used to construct the HDI, moving from
the normalization step to the computation of the geometric mean. Then, we compute the
penalization factor as defined in (17) and, consequently, the pHDI.

The data used in our analysis come from the United Nations Development Programme
(UNDP) dataset (http://hdr.undp.org/en/data, accessed on 1 February 2021). Data refer
to 2019 and cover 189 countries around the world.

5.1. The HDI: A Brief Introduction and Its Computation

Among the huge list of composite indicators, the HDI is one of the most-known
indicators. Since 1990, it is annually computed for almost all countries around the world,
and it is defined as a combination of three dimensions: namely, Health, Education and
Economic dimensions. Before 2010, the HDI was computed as the arithmetic mean of the
three dimensions. From 2010, in order to overcome some drawbacks of the arithmetic mean
approach, as like the perfect substitutability of the indicators and the dependence from the
reference value used for normalizing the indicators, the HDI is computed aggregating the
three dimensions through the geometric mean. This new approach has the advantage of
providing rankings invariant to the normalization reference and is only partially affected
by the substitutability of the indicators as well as of preserving the ease of computation.

To define HDI, four variables, belonging to three dimensions, are used. Specifically, the
Health dimension is captured by the Life Expectancy at birth (LE), the Education dimension is
given by the Education Indicator (EI), computed as arithmetic mean between the Mean Years
of Schooling (MYS) and the Expected Years of Schooling (EYS), and, finally, the Income Indicator
(II), computed in terms of the GNI per capita (PPP ( purchasing power parity) international
dollars), represents the Economic dimension (see Table 1).

Table 1. Variables used to compute the HDI.

Variable Definition Unit Range

LE Life expectancy at birth years 53.3–84.9
EYS Expected years of schooling years 5.0–22.0
MYS Mean years of schooling years 1.6–14.2

GNIpc GNI per capita (PPP international dollars) dollars 754.0–131,032.0

The first step to perform to compute the HDI consists in normalizing the variables in
order to obtain indicators in the same range, that is [0, 1]. Following the classical approach,
all the variables are normalized according to a sort of max-min method. In particular,
denoting by xi,LE, xi,EYS, and xi,MYS, respectively, the values of the LE, EYS, and MYS
variables for the i-th unit, we normalize the LE to obtain the LEI indicator that represents
the Health domain as follows:

LEIi =
xi,LE − 20
85− 20

, i = 1, 2, . . . , 189. (20)

In this way, for any i = 1, 2, . . . , 189, LEIi ranges in [0, 1]; it is equal to 1 when Life
Expectancy at birth is 85 years, and it is equal to 0 when Life Expectancy at birth is 20 years.

http://hdr.undp.org/en/data
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Analogously, for the Education domain, we normalize the two indicators. We denote
by nEYS and nMYS the normalized EYS and MYS, respectively, which were obtained
according to the following formula relative to the i-th unit:

nEYSi =
xi,EYS − 0

18− 0
, i = 1, 2, . . . , 189, (21)

and

nMYSi =
xi,MYS − 0

15− 0
, i = 1, 2, . . . , 189. (22)

For the MYS and EYS variables, the minimum and maximum values are, respectively,
0 and 15 years and 0 and 18 years, since there is consensus that school-age children are
expected to go for at least 15 years, and the expected amount of schooling years is 18.
In this way, 15 mean years of schooling equals one, and 18 years of expected schooling
equals one. Countries having EYS values greater than 18 are arbitrarily set equal to 18. (In
the dataset, only 10 countries have such a value, namely Australia (22), Belgium (19.8),
Denmark (18.9), Finland (19.4), Iceland (19.1), Ireland (18.7), Netherlands (18.5), New
Zealand (18.8), Norway (18.1) and Sweden (19.5).)

The Education dimension, EI, is computed as the arithmetic mean between the nor-
malized MYS and EYS variables as follows:

EIi =
nMYSi + nEYSi

2
, i = 1, 2, . . . , 189. (23)

Finally, the I I is computed by using the logarithm of the GNI per capita, that is:

I Ii =
ln(GNIpci)− ln(100)
ln(75, 000)− ln(100)

, i = 1, 2, . . . , 189. (24)

II is equal to 1 when the GN per capita is $75,000, and it is equal to 0 when the GNI
per capita is $100. As for EYS, countries having GNIpc values greater than $75,000 are
arbitrarily set equal to this maximum value (In our dataset; only three countries have
GNIpc values greater than $75,000: namely Liechtenstein ($131,032), Qatar ($92,418), and
Singapore ($88,155).).

Table 2 reports descriptive statistics for the four variables LE, EYS, MYS, GNIpc.

Table 2. Descriptive statistics for the variables used to compute the HDI.

Variable Mean St. Dev Median CV Skew Kurtosis

LE 72.71 7.39 74.0 10.16% −0.55 −0.41
EYS 13.33 2.94 13.2 22.06% −0.11 0.08
MYS 8.73 3.08 9.0 35.28% −0.31 −0.99

GNIpc 20, 219.76 21, 229.08 12, 707.0 104.99% 1.76 3.90

All the original indicators, except for the income variable (GNIpc), have a negative
but near to zero skewness, meaning that for LEI, EYS and MYS, the distribution is not far
from a normal distribution.

Figure 1 displays the three indicators (LEI, EI and I I) after the normalization process
and the aggregation for the education domain. The three normalized indicators exhibit a
different distribution. For instance, for the Health dimension (LEI), fixing the minimum
at 20 years produces a new standardized distribution with 0.51 as the minimum value, in
contrast with the Education dimension (EI) that achieves 0.25.

Table 3 reports descriptive statistics for the three normalized indicators.
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Figure 1. (a) Distribution of the Health indicator (LEI). (b) Distribution of the Education indicator
(EI). (c) Distribution of the Economic indicator (I I).

Table 3. Descriptive statistics for the normalized indicators used to compute the HDI.

Indicator Mean St. Dev Median Min Max Range Skew Kurtosis CV

Health (LEI) 0.81 0.11 0.83 0.51 1.00 0.49 −0.55 −0.41 13.58%
Education (EI) 0.66 0.17 0.68 0.25 0.95 0.69 −0.35 −0.77 25.76%
Economic (I I) 0.71 0.17 0.73 0.31 1.00 0.69 −0.24 −0.89 23.94%

Although they have different distributions, the three normalized indicators have
high levels of correlation: 0.8176 for the Health and Education indicators, 0.8412 for the
Economic and Health indicators, and 0.8653 for the Education and Economic indicators.

The HDI for the i-th country is computed as the geometric mean of the three normal-
ized indicators LEI, EI and I I as follows:

HDIi =
3
√

LEIi · EIi · I Ii, i = 1, 2, . . . , 189. (25)

As discussed in the previous sections, the main advantage of the geometric mean is
that a poor performance in any dimension is directly reflected in the final value of the
indicator. In other words, a low achievement in one dimension is not linearly compensated
for by a higher achievement in another dimension. In this way, the level of substitutability
between dimensions is reduced and, more importantly, a 1% decline in the indicator of
one dimension has the same impact on the HDI as a 1% decline in another one; that is, life
expectancy, education and income have the same importance.

5.2. The Computation of the pHDI

Before computing the pHDI through the penalized geometric mean in (17), we check
the assumption of Proposition 2. For each country i, we compute its own threshold

value, defined as z−i = µ0,i exp
{

m
2(m− 1)

}
, i = 1, 2, . . . , 189. Since here, we have m = 3

indicators, the threshold value is z−i = µ0,i e
3
4 , i = 1, 2, . . . , 189. The threshold values

associated to the countries range in [0.84, 2.03], with a mean value of 1.53 and a standard
deviation of 0.32.

Thus, we look for the countries whose threshold value is lower than 1. Only 11
countries have the threshold value lower than 1; these are: Burkina Faso (27), Burundi (28),
Central African Republic (33), Chad (34), Eritrea (55), Mali (107), Mozambique (118), Niger
(125), Sierra Leone (153), South Sudan (159), and Yemen (187) (in brackets, the ranking
according to the geometric mean). Thus, for those countries, we check if all the values of
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the indicators constituting the pHDI are less than the threshold value. None of the countries
suffers from this limitation.

The computation of the pHDI, based on Equation (17), requires the determination,
for each country of the penalization factor exp{−S̃2

0,i}, i = 1, 2, . . . , 189. The penalization
factors associated to the countries range from 0.8500307 (for Eritrea) to 0.9999778 (for
Kazakhstan), with a mean value of 0.9807745. As displayed in Figure 2, the distribution of
the penalization factor is not symmetric, and 87.83% of its values fall in the range [0.95, 1].

Figure 2. Distribution of the penalization factor.

5.3. A Comparison between the Two Approaches

Table 4 reports descriptive statistics for the geometric mean and the penalized geomet-
ric mean approaches. The HDI and the pHDI display similar mean values (0.72 and 0.71,
respectively) and the same maximum value (0.96) even if the penalized HDI, pHDI, has a
wider range than HDI (the minimum value for pHDI is 0.34 compared with 0.39 for HDI).

Table 4. Descriptive statistics for two methods.

Comp Ind Mean St. Dev Median Min Max Range Skew Kurtosis CV

HDI 0.72 0.15 0.74 0.39 0.96 0.56 −0.32 −0.92 20.83%
pHDI 0.71 0.16 0.74 0.34 0.96 0.62 −0.37 −0.85 22.54%

To better compare the values of the two composite indicators, we analyze their distri-
butions (see Figures 3 and 4).

Figure 3. Frequency histogram of HDI and pHDI.
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Figure 4. Density distribution of HDI and pHDI.

Descriptive statistics, as well as distribution comparison, show a similarity in the
distribution of HDI and pHDI, meaning that the addition of the penalization factor in
the HDI does not change the distributional feautures. However, since there are (even
if small) differences in the range of the two indicators, we compare the corresponding
rankings. Firstly, we compute the Spearman’s rank correlation coefficient, which is a simple
non-parametric measure of rank correlation, and we test it (Spearman’s rank correlation
test). We find a correlation value of ρ = 0.9984554, and the test suggests that ρ is not equal
to 0 with a p-value < 2.2× 10−16.

Then, we compute differences in the ranking position obtained using HDI and pHDI. A
positive value of this difference means that country occupies a position according to the HDI
better than the position occupied according to pHDI. What emerges is that 42 countries, i.e.,
22.22% of the sample, do not change their ranking positions. The percentage of countries
that are better ranked by the HDI with respect to its penalized version is 43.39% and,
consequently, 34.39% of countries display an opposite behavior. On average, the absolute
value of the difference between ranking positions is about two positions.

Table 5 reports the ranking positions of the countries with higher (positive and nega-
tive) differences between the two methods.

Table 5. Countries with higher ranking position differences.

Country HDI pHDI Difference

Maldives 95 110 −15
Syrian Arab Republic 151 161 −10

Qatar 45 53 −8
Lebanon 92 100 −8

Cuba 70 77 −7

Armenia 81 75 6
Mongolia 99 93 6
Lesotho 165 159 6

Guinea-Bissau 177 170 7
Nigeria 161 153 8

To investigate in depth the size of the penalization factor, we plot its values as a
function of the HDI ranking position (see Figure 5). The plot reveals that the size of the
penalization is higher for high ranked countries; this means that the greater the HDI ranking
position of the country, the greater the penalization suffered using pHDI instead of HDI.

The greater impact, which corresponds to the smaller values for penalization fac-
tor, is attributed to Eritrea, that in the original ranking of HDI occupies the position
180, whereas the smaller impact is achieved by Kazakhstan with a penalization factor of
0.999977836 (ranked 51 in the HDI ranking) followed by Germany with a penalization
factor of 0.999975672 (ranked 6 in the HDI ranking).
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Figure 5. Penalization factor vs. HDI ranking.

Finally, in order to investigate the role of the aggregation method used, we study
the relationship between HDI and pHDI using as benchmarks two other versions of the
HDI obtained aggregating the Health, Education, and the Income indicators with the
generalized mean of order p = −1 (the harmonic mean) and p = 1 (the arithmetic mean).
We have chosen the harmonic mean because this approach, as with the pHDI, introduces
a downward penalization for unbalanced indicator values. Specifically, in Figure 6, we
plot the values of three versions of the HDI obtained with the harmonic mean (p = −1, in
green), the arithmetic mean (p = 1, in black) and the penalized geometric mean (in red)
versus the values of the HDI obtained with the geometric mean. In Figure 7, we plot the
ranking positions obtained with the harmonic mean version of the HDI (p = −1, in green),
with the arithmetic mean version of the HDI (p = 1, in black) and with the pHDI (in red).
In both the figures, to highlight the difference of the three HDI versions with respect to the
geometric mean version, we plot the strength line of equality.

Figure 6. Scatter plot of the harmonic mean version (in green), the arithmetic mean version (in black)
of the HDI and the pHDI values (in red) vs. the HDI values.

Figure 6 shows that the penalization introduced in the pHDI gives values of the
composite indicator that are less than those produced by the harmonic mean approach,
especially for the countries with lower values of HDI. Contrarily, the countries with larger
values of HDI have similar values for the other versions of the HDI. This behavior is
confirmed by Figure 7, where we can see that the HDI top-ranked countries are closer to
the line of equality, meaning that the top ranked countries are less influenced by the choice
of the aggregation method. All these findings reveal that, differently from those at the



Computation 2022, 10, 64 15 of 17

bottom and in the middle, the countries on the top of the HDI ranking have highly balanced
values of the indicators constituting the HDI; moreover, the pHDI penalizes more than the
harmonic mean approach.

Figure 7. Scatter plot of the ranking obtained with the harmonic mean version of HDI (in green), with
the arithmetic mean version of HDI (in black) and with the pHDI (in red) vs. the ranking obtained
with HDI ranking.

6. Conclusions

A composite indicator is a mathematical combination of a set of indicators. The crucial
aspect is the choice of the aggregation function to use. There is not universal agreement on
the aggregation method to use even if the criterion that must guide the choice is the ease
of computation.

The simplest aggregation function is the arithmetic mean. Despite its ease of compu-
tation, it has the major drawback due to substitutability between indicators. A possible
way to overcome this limitation consists of introducing, for each unit, a penalization factor
that accounts for the horizontal variability among indicators. This is the idea behind the
Mazziotta and Pareto aggregation method. Keeping this idea in mind, in this paper, we
propose a theoretical method for penalizing the geometric mean, by means of a penalization
term that measures the horizontal variability among the normalized indicators opportunely
transformed applying the Box–Cox function of order zero. The introduction of a penaliza-
tion allows capturing the unequal distribution of achievements within the country and,
consequently, gives a more accurate picture of the differences among countries.

The empirical part highlights our proposal by comparing the classical HDI with its
penalized version, namely the pHDI, for 189 countries in 2019. The comparison between
the two methods reveals that the new method does not upset the ranking provided by the
geometric mean and impacts more for countries with poor performances. The method
proposed here to penalize the geometric mean could be generalized for any member of the
family of generalized means. This awaits further research.
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Appendix A

In this appendix, we prove Propositions 2 and 3 of Section 4.

Proof of Proposition 2. The first-order derivative of GM±i with respect to zik is:

∂GM±i
∂zik

= GM±i

[
∂ ln µ0,i

∂zik
±

∂S̃2
0,i

∂zik

]
. (A1)

The derivative of ln µ0,i with respect to zik is:

∂ ln µ0,i

∂zik
=

1
m zik

. (A2)

The derivative of S̃2
0,i with respect to zik is:

∂S̃2
0,i

∂zik
=

1
m zik

[
2(m− 1)

m
ln
(

zik
µ0,i

)]
. (A3)

Substituting (A2), (A3) into (A1), we obtain that:

∂GM±i
∂zik

= GM±i
1
m

1
zik

[
1± 2(m− 1)

m
ln
(

zik
µ0,i

)]
. (A4)

For m ≥ 2, the first-order derivative of GM±i with respect to zik vanishes at the point:

z±i = µ0,i exp
{
∓ m

2(m− 1)

}
(A5)

and

∂GM−i
∂zik

≥ 0, f or zik ≤ z−i ,

∂GM+
i

∂zik
≥ 0, f or zik ≥ z+i . (A6)

The second-order derivative of GM±i with respect to zik is:

∂2GM±i
∂z2

ik
=

GM±i
(m zik)2

[
g(zik)

2 −m g(zik)∓
2(m− 1)2

m

]
(A7)

where:

g(zik) = 1± 2(m− 1)
m

ln
(

zik
µ0,i

)
. (A8)

From (A7) and (A8), noting that g(z±i ) = 0, we can conclude that z−i and z+i are, respectively,
a local maximum for GM−i and a local minimum for GM+

i .

Proof of Proposition 3. By definition, the MRC of the penalized geometric mean (8) be-
tween variables zik, zih is:

MRC±kh,i =

∂GM±i
∂zik

∂GM±i
∂zih

(A9)

The proof follows easily substituting (A4) into (A9).
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