
Citation: Junaidi; Nur, D.; Hudson, I.;

Stojanovski, E. Estimation Parameters

of Dependence Meta-Analytic Model:

New Techniques for the Hierarchical

Bayesian Model. Computation 2022,

10, 71. https://doi.org/10.3390/

computation10050071

Academic Editor: Karlheinz Schwarz

Received: 4 March 2022

Accepted: 28 April 2022

Published: 4 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Estimation Parameters of Dependence Meta-Analytic Model:
New Techniques for the Hierarchical Bayesian Model
Junaidi 1,* , Darfiana Nur 2, Irene Hudson 3 and Elizabeth Stojanovski 4

1 Statistics Study Program, Mathematics and Natural Sciences Faculty, Tadulako University,
Palu 94118, Indonesia

2 EECMS, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia;
darfiana.nur@curtin.edu.au

3 STEM, School of Science, RMIT University, Melbourne, VIC 3001, Australia; irene.hudson@rmit.edu.au
4 School of Information and Physical Sciences, Newcastle University, Callaghan, NSW 2308, Australia;

elizabeth.stojanovski@newcastle.edu.au
* Correspondence: sutan_jun@yahoo.co.uk

Abstract: Dependence in meta-analytic models can happen due to the same collected data or from the
same researchers. The hierarchical Bayesian linear model in a meta-analysis that allows dependence
in effect sizes is investigated in this paper. The interested parameters on the hierarchical Bayesian
linear dependence (HBLD) model which was developed using the Bayesian techniques will then
be estimated. The joint posterior distribution of all parameters for the hierarchical Bayesian linear
dependence (HBLD) model is obtained by applying the Gibbs sampling algorithm. Furthermore,
in order to measure the robustness of the HBLD model, the sensitivity analysis is conducted using
a different prior distribution on the model. This is carried out by applying the Metropolis within
the Gibbs algorithm. The simulation study is performed for the estimation of all parameters in the
model. The results show that the obtained estimated parameters are close to the true parameters,
indicating the consistency of the parameters for the model. The model is also not sensitive because of
the changing prior distribution which shows the robustness of the model. A case study, to assess the
effects of native-language vocabulary aids on second language reading, is conducted successfully in
testing the parameters of the models.

Keywords: hierarchical Bayesian linear; dependence meta-analytic; sensitivity analysis; Gibbs
sampling; metropolis within Gibbs

1. Introduction

The dependent structures in a meta-analysis are useful when a correlation between
two or more studies under consideration exists as a result of the same data or having
common researchers. The extended three-level of meta-analytic models which assumes
dependence effect sizes was illustrated by [1,2]. Dependence sources that occur within
and across studies were described by [2] when studies were clustered in research groups
or countries. They succeeded in accounting for the sampling covariance which indicates
dependence within studies in a meta-analysis because the obtained effect sizes of the
three-level model gave very similar results to the three-level model of raw data. In line
with [2], regarding the use of a three-level meta-analysis model, [1] showed the benefits of
a structural equation modeling approach over the multilevel approach to accommodate
the dependence on effect sizes. Moreover, he stated that effect sizes can be dependent for
various reasons such as reported studies on the same construct or given by participants
from the same cultural group.

An increasing variety of Bayesian methods for estimating parameters have been
developed in meta-analysis for the dependent structure [3–6]. The authors of [3] used a
Bayesian approach to calculate the joint distribution of network meta-analysis by applying
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a Gaussian copula with binomial marginal. The model was then applied to the data of
safety education and the provision of safety equipment for injury prevention. The prior
distribution, a log-Cholesky parameterization, was selected as an alternative strategy
due to the difficulty of using the informative prior. The authors of [4] developed the
hierarchical Bayesian delta-splitting model in a meta-analysis using the Bayesian approach.
The estimation of parameters was conducted by calculating the joint posterior of the model.
The R code was implemented in their study to confirm the stability and consistency of the
model parameters. Even though several estimated parameters that were obtained were
not exactly what they expected, the overall conclusion was acceptable due to the stability
and convergence of the results. The hierarchical Bayesian delta splitting (HBDS) model is
developed by [5], who separated the variance–covariance matrix into several dependency
groups. The joint posterior distributions of all parameters for the HBDS model were then
derived by [4] using the Metropolis within Gibbs to estimate the parameters. In this present
paper, we theoretically calculate the joint posterior distributions of all parameters for the
HBLD by using the Gibbs sampler and the Metropolis within Gibbs techniques [7–9]. These
techniques are applied to develop the HBLD model, while [5] used an analytical method
to estimate the interested parameters of the model. The joint posterior distribution of the
HBLD model, which is obtained by the multiplication of the likelihood and prior(s), is
derived as the main work in this paper. The authors of [5] also did not conduct a sensitivity
analysis for the model to measure the robustness of the model. In this paper, changing
prior distributions on the model is conducted to show the robustness of the model.

This paper is organized as follows. The HBLD model is provided in Section 2. The
approaches used to formulate the joint posterior distribution of the models are discussed
in Section 3. The formulation is derived by the multiplication of the likelihood with the
prior(s). The details of the derivation are given in this section. A simulation study for
the model is then conducted, in which the dependence assumptions are imposed on the
variance–covariance matrix. This simulation study is discussed in Section 4. The data
obtained from the simulation study is used to determine and evaluate the performance of
known parameters for the HBLD model. The Gibbs sampler algorithm [10,11] is developed
to estimate the parameters of interest for the HBLD model. The application of the model
in assessing the effects of native-language vocabulary aids on second-language reading
comprehension [5] is also given in this section. A prior sensitivity analysis is carried out to
assess the robustness of the HBLD model using different prior distributions, as detailed
in Section 5. In order to assess the sensitivity of the model, an analytical form of the joint
posterior distribution is formulated. A combination of the Gibbs sampler algorithm and the
Metropolis–Hastings algorithm, called the Metropolis within Gibbs algorithm [10,11], is
developed to estimate the parameters of interest for the model. This approach was applied
by [12] to approximate the joint posterior distribution of parameters for the fisheries
dynamics model. The Metropolis within Gibbs algorithm is needed, as the conditional
posterior distributions of some parameters for the model are in non-standard forms [11,12].
The simulated data presented in Section 4 are also used to estimate parameters for use
in assessing the sensitivity of the model. Section 5 presents the application of the model
in assessing the effects of native-language vocabulary aids on second-language reading
comprehension [5]. The results obtained from the HBLD model are compared with the
results given in [5], with the expectation that the parameter estimates would have at
least the same or better performance. Finally, the conclusion of this paper is provided in
Section 6.

2. Literature Review

Meta-analisys is a statistical method used to obtain an overall conclusion by combin-
ing results from several research studies [13,14]. Heterogeneity in meta-analysis which
occurs due to clinical treatment such as the duration of treatment or residuals of treat-
ment effect between studies was investigated by [13,15,16]. The authors of [17] stated that
the heterogeneity between sudies in meta-analysis can be accomodated by the use of the
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random-effect models. The choice of meta-analytic models such as fixed-effect, random-
effect or Mantel-Haenzel model is very crucial and should be conducted carefully because
it can be effected the overall conclusion [18]. Moreover, [19] used Bayesian approaches to
asses heterogeniety in studies. The Bayesian hierarchcial of meta-analytic models were
applied by [20–22] to asses the interested parameters of models from the given case studies.
However, the all studies that have been presented above assume the independent between
studies while the authors of [4,5] developed the meta-analytic models by regarding the
dependency of within and between studies.

2.1. Original HBLD Model and Data

The original HBLD model given by [5,23], which can be used to obtain an overall
conclusion from a meta-analysis of several studies in which a dependence structure occurs
due to the use of the same data at the sampling level and the same laboratory or researcher
at the hierarchical level, is as follows:

θ̃ = Xβ + δ + ε

= θ′ + ε

δ ∼ N
(

0, τ2 I
)

ε ∼ N(0, V)

θ′
∣∣β, τ ∼ N

(
Xβ, τ2 I

)
β|τ ∼ N(b, D)

D = diag
(

d2
1, · · · d2

p

)
where θ̃ is a vector of effect size estimates, θ′ is the vector of the underlying effect sizes
being estimated in each study, X is the n × p design matrix representing known (covariate)
differences between studies, β is a vector of parameters representing the effects of the
different covariates (or unknown parameters to be estimated), δ is the vector of the random
deviation of Xβ from θ′, and ε is the vector of sampling errors for each study.

Thirteen experiments from 18 studies were reviewed by [5] to investigate the effects
of native-language (L1) vocabulary aids on second-language (L2) reading comprehension.
The dependence structure was formed on the resulting effect size estimates due to multiple
study reports from some conducted experiments. The dependence at a hierarchical level in
the proposed meta-analysis model [5] produced covariates on the effect size estimates. A
summary of the results of the studies in this meta-analysis is given in [5].

2.2. The Hierarchical Bayesian Linear Dependence (HBLD) Model

The model proposed by [23] and [5] is revisited by assuming that θ̃, θ′, and β follow a
multivariate normal distribution. The HBLD model is given as follows:

θ̃ ∼ MVN
(
θ′, V

)
ε ∼ N (0, V)

θ′ ∼ MVN
(

Xβ, τ2 I
)

δ2 ∼ N
(

0, τ2 I
)

β ∼ MVN (b, D)

τ2 ∼ IG(q, r) (1)

where θ̃n×1 is a vector of effect size estimates given by θ̃ =
(

θ̃1, θ̃2, . . . , θ̃n

)T
.
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The vector θ′n×1 of the underlying effect sizes whose components are estimated
separately in each study (i = 1, 2, . . . , n) has the form of:

θ′=
(
θ′1, θ′2, . . . , θ′n

)T

The n × p design matrix X represents the known (covariate) differences between the
studies, and has the form:

X =


x1,1 x1,2 . . . x1,p
x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p


n×p

where p is the number of covariates.
βp×1 is the vector of hyperparameters which represents the effects of the different co-

variates (or unknown parameters to be estimated) and has the form of β =
(

β0, β1, . . . , βp−1
)T .

The vector δn×1 of random deviation of Xβ from θ′ satisfies θ′ = Xβ + δ, where
δ = (δ1, δ2, . . . , δn)

T . Finally, εn×1 is the vector of sampling errors within each study,
ε = (ε1, ε2, . . . , εn)

T .
The HBLD model in Equation (1) includes the hyperparameters β and τ2 which

have a multivariate normal distribution and inverse gamma distribution, respectively.
These particular prior distributions are chosen for mathematical convenience so that the
posterior distribution of all parameters can be obtained by using the standard techniques
of derivation.

3. Bayesian Analysis

The formulation of the joint posterior distributions of all parameters for the mod-
els is derived in this section. Bayesian methods are applied to estimate the interested
parameters [24–26].

3.1. Posterior Analysis of HBLD Model Using Gibb Sampler

The parameters in the HBLD model are estimated using the Gibbs sampler algorithm.
The joint posterior distribution of all parameters for this model is approximated using
the conditional posterior distributions of the parameters. R code is used to generate
the parameters.

Using the Bayes theorem [27,28], the joint posterior distribution of all parameters for
the HBLD model is derived by the multiplication of the joint likelihood with priors as
shown below:

P(θ′, β, τ2
∣∣∣θ̃(l)) ∝ P(θ̃

∣∣θ′, β, τ2) × P
(
θ′, β, τ2) =

P(θ̃
∣∣θ′, β, τ2) × P(θ′|β , τ2)× P(β

∣∣τ2)× P
(
τ2) ,

(2)

where P(θ̃
∣∣θ′, β, τ2) is the joint likelihood distribution, P(θ′|β , τ2) is the conditional prior

distribution of θ′ given β and τ2, P(β
∣∣τ2) is the conditional prior distribution of β given τ2,

and P
(
τ2) is a prior distribution for parameter τ2.

The Gibbs sampler algorithm can only be used to sample from the joint posterior
distribution if the conditional posterior distributions are available in standard form [10,29].

Recall from (2) that the joint likelihood and prior distributions of the HBLD model are
as follows:

P(θ̃
∣∣∣θ′, β, τ2) = (2π)−

n
2 |V|−

1
2 exp

{
−1

2

(
θ̃ − θ′

)T
V−1

(
θ̃ − θ′

)}
(3)

where:
θ̃ =

[
θ̃1 θ̃2 θ̃3 θ̃4 θ̃5 . . . θ̃n

]T
,
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θ′ =
[

θ′1 θ′2 θ′3 θ′4 θ′5 . . . θ′n
]T ,

and the dependency is introduced via the variance–covariance matrix V, whose form, for
example, is as follows:

V =



Var(V1) 0 0 0 0 . . . 0
0 Var(V2) Cov(V2, V3) 0 0 . . . 0
0 Cov(V3, V2) Var(V3) 0 0 . . . 0
0 0 0 Var(V4) 0 . . . 0
... 0 0 0 Var(V5) . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . Var(Vn)


In the following, the prior distributions of each parameter are discussed.

3.1.1. Conditional Prior Distribution of θ′ Given β and τ2

Using Equation (2), the conditional prior probability density function of θ′, given β
and τ2, can be written as:

P(θ′|β , τ2) = (2π)−
n
2

∣∣∣τ2 I
∣∣∣− 1

2 exp
{
−1

2
(
θ′ − Xβ

)T
(

τ2 I
)−1(

θ′ − Xβ
)}

(4)

where τ2 In×n is the variance–covariance matrix of θ′.

3.1.2. Conditional Prior Distribution of β Given τ2

Using Equation (2), due to the conditional prior probability density function of β being
independent of τ2, it can be written as:

P(β) = (2π)−
p
2 |D|−

1
2 exp

{
−1

2
(β− b)T D−1(β− b)

}
, (5)

where

D =


d2

1 0 . . . 0
0 d2

2 . . . 0
...

...
. . .

...
0 0 . . . d2

p


p×p

,

d1, . . . , dp are arbitrary real numbers and b is a vector of the arbitrary real numbers of
size p × 1.

3.1.3. Conditional Prior Distribution of τ2

Using Equation (2), the prior probability density function of τ2 can be written as an
inverted gamma distribution with parameters (q, r):

P
(

τ2
)
=

rq

Gamma(q)

(
τ2
)−q−1

e−r/τ2
; q > 0 and r > 0. (6)

Using (3)–(6), the joint posterior distribution of all parameters for the HBLD model is
given by:

P(θ′, β, τ2
∣∣∣θ̃) = (2π)−

n
2 |V|−

1
2 exp

{
−1

2

(
θ̃ − θ′

)T
V−1

(
θ̃ − θ′

)}

× (2π)−
n
2

∣∣∣τ2 I
∣∣∣− 1

2 exp
{
−1

2
(
θ′ − Xβ

)T
(

τ2 I
)−1(

θ′ − Xβ
)}
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× (2π)−
p
2 |D|−

1
2 exp

{
−1

2
(β− b)T D−1(β− b)

}
× rq

Gamma(q)

(
τ2
)−q−1

e−r/τ2
(7)

In what follows, the conditional posterior distribution of each parameter (given the
other parameters) is derived using the joint posterior distribution of all parameters given
in Equation (7).

3.1.4. Conditional Posterior Distribution of θ′ Given β and τ2

Using Equation (7), as detailed in the Appendix A, the conditional posterior distribu-
tion of θ′ derived by considering θ′ to be a random variable, whereas β, τ2 are considered
to be constants, such that:

f (θ′|β , τ2) ∝ (2π)−
n
2 |V|−

1
2 exp

{
−1

2

(
θ̃ − θ′

)T
V−1

(
θ̃ − θ′

)}

× (2π)−
n
2

∣∣∣τ2 I
∣∣∣− 1

2 exp
{
−1

2
(
θ′ − Xβ

)T
(

τ2 I
)−1(

θ′ − Xβ
)}

(8)

In summary, the conditional posterior distribution, θ′|β , τ2, is the multivariate nor-
mal distribution with mean µθ′ and the variance–covariance matrix, Λθ′ as given in
Equations (A3) and (A4), respectively (see Appendix A). Furthermore, the distribution
θ′|β , τ2 may now be rewritten in the form θ′1, θ′2, . . . , θ′n |β , τ2 ∼ Nn(µθ′ , Λθ′ ) where n is the
number of studies.

The conditional posterior distribution of:

θ′i

∣∣∣θ′(−i), β , τ2 (9)

where θ′(−i) =
(
θ′1, θ′2, . . . , θ′i−1, θ′i+1, . . . θ′n−1, θ′n

)
, the vector parameter excluding θ′i , can now

be derived using Theorem 3.31 of [30]. Recall [30] (p. 183), suppose that θ′ ∼ Nn(µθ′ , Λθ′)
is partitioned into m and (n–m) components of the forms:

θ′ =

(
θ′i

θ′(−i)

)
n×1

µ =

(
(µθ′)i
(µθ′)−i

)
n×1

and:

Λθ′ =

(
(Λθ′)i,i (Λθ′)i,−i
(Λθ′)−i,i (Λθ′)−i,−i

)
n×n

,

where θ′i and θ′(−i) are the 1 × 1 and (n − 1) × 1 matrices, respectively. The sizes of the
matrices (µθ′)i and (µθ′)−i are 1 × 1 and (n − 1) × 1, respectively.

As in [30] (Theorem 3.31), assuming that (Λθ′)i,i is positive definite, it then follows
that the conditional posterior distribution of θ′i , given θ′(−i) is a variate normal distribution
with the parameters:

µθ′i |θ
′
(−i)

= E
[

θ′i
∣∣θ′(−i)

]
= (µθ′)i + (Λθ′)i,−i(Λθ′)

−1
−i,−i

(
θ′(−i) − (µθ′)−i

)
(10)

and:
Λθ′i |θ

′
(−i)

= Cov
[

θ′i
∣∣θ′(−i)

]
= (Λθ′)i,i − (Λθ′)i,−i(Λθ′)

−1
−i,−i(Λθ′)−i,i (11)

In summary, the conditional posterior distribution given in (9) is the normal distribu-
tion with mean and variance as shown in Equations (10) and (11), respectively.
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3.1.5. Conditional Posterior Distribution of β given θ′ and τ2

The conditional posterior distribution of β given θ′ and τ2 is derived by considering β
to be a random variable and θ′ and τ2 to be constants. Using Equation (7), as detailed in
the Appendix A, the conditional posterior distribution of β

∣∣θ′, τ2 is:

f (β
∣∣∣θ′, τ2) ∝ (2π)−

n
2

∣∣∣τ2 I
∣∣∣− 1

2 exp
{
−1

2
(
θ′ − Xβ

)T
(τ2 I)

−1(
θ′ − Xβ

)}

× (2π)−
p
2 |D|−

1
2 exp

{
−1

2
(β− b)T D−1(β− b)

}
(12)

In summary, the conditional posterior distribution β
∣∣θ′, τ2 is a multivariate normal distribu-

tion with mean µβ and a variance–covariance matrix, Λβ, as given in Equations (A7) and (A8),
respectively (see Appendix A). Furthermore, the distribution β

∣∣θ′, τ2 may now be rewritten
in the form β0, β1, . . . , βp−2, βp−1

∣∣θ′1, θ′2, . . . , θ′n, τ2 ∼ Np(µβ, Λβ), where p is the number of
covariates. The conditional posterior distribution of:

βk

∣∣∣θ′1, . . . , θ′n, β(−k) , τ2 (13)

where β(−k) =
(

β0, β1, . . . , βk−1, βk+1, . . . , βp−1
)
, the vector parameter excluding k, can

now be derived using Theorem 3.31 of [30]. Similar to the previous process which was
conducted for θ′, the vector parameter of β, which is normally distributed, β ∼ Np

(
µβ, Λβ

)
is partitioned into q and (r–q) components. β is partitioned into βk and β(−k) matrices with
the size 1 × 1 and (r − 1) × 1 respectively. µ is partitioned into matrices

(
µβ

)
k and

(
µβ

)
−k

with the size 1 × 1 and (r − 1) × 1, respectively, and:

Λβ =

( (
Λβ

)
k,k

(
Λβ

)
k,−k(

Λβ

)
−k,k

(
Λβ

)
−k,−k

)
p×p

As in [30] (Theorem 3.31), assuming that
(
Λβ

)
k,k is a positive definite, it then follows

that the conditional posterior distribution of βk, given β(−k) is a variate normal distribution,
with the parameters:

µβk |β(−k)
=E
[

βk|β(−k)

]
=
(
µβ

)
k +

(
Λβ

)
k,−k

(
Λβ

)−1
−k,−k

(
β(−k) −

(
µβ

)
−k

)
(14)

and:
Λβk |β(−k)

=Cov
[

βk|β(−k)

]
=
(
Λβ

)
k,k −

(
Λβ

)
k,−k

(
Λβ

)−1
−k,−k

(
Λβ

)
−k,k (15)

In summary, the conditional posterior distribution given in (13) is the normal distribu-
tion with mean and variance as shown in Equations (14) and (15), respectively.

3.1.6. Conditional Posterior Distribution of τ2 Given θ′ and β

Using Equation (7), the conditional posterior distribution of τ2|θ′, β is derived by
assuming that τ2 is a random variable and θ′, β are constants:

f (τ2 ∣∣θ′, β) ∝ (2π)−
n
2

∣∣∣τ2 I
∣∣∣− 1

2 exp
{
−1

2
(
θ′ − Xβ

)T
(

τ2 I
)−1(

θ′ − Xβ
)}

× rq

Gamma(q)

(
τ2
)−q−1

e−r/τ2

= (2π)−
n
2

∣∣∣τ2 I
∣∣∣− 1

2 exp
{
− 1

2τ2 [
(
θ′1 − (Xβ)1

)2
+
(
θ′2 − (Xβ)2

)2
+ . . . +

(
θ′n − (Xβ)n

)2
]

}
× rq

Gamma(q)

(
τ2
)−q−1

e−r/τ2
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= (2π)−
n
2
[(

τ2
)n]− 1

2
exp
{
− 1

2τ2 ∑n
i=1

(
θ′i − (Xβ)i

)2
}
× rq

Gamma(q)

(
τ2
)−q−1

e−r/τ2

∝
(

τ2
)− n

2 rq

Gamma(q)

(
τ2
)−q−1

exp

− r + ∑n
i=1(θ′i−(Xβ)i)

2

2
τ2



∝
rq

Gamma(q)

(
τ2
)−(q+ n

2 )−1
exp

− r + ∑n
i=1(θ′i−(Xβ)i)

2

2
τ2



=
rq

Gamma(q)

(
τ2
)−(q+ n

2 )−1
exp

− r + ∑n
i=1(θ′i−(Xβ)i)

2

2
τ2


In summary, the conditional posterior distribution τ2|θ′, β is an inverse gamma

distribution with the shape and scale given as follows:

τ2

∣∣∣∣∣θ′, β ∼ IG

(
q +

n
2

, r +
∑n

i=1
(
θ′i − (Xβ)i

)2

2

)
(16)

where IG denotes an inverse gamma distribution.

3.2. Gibbs Sampler Algorithm for the HBLD Model

The parameters of interest are given in Equations (4)–(6).
The Gibbs sampler algorithm for the present model comprises steps 1 to 5:

1. Let θ′(0), β(0) and τ2(0) denote the starting point of a Markov chain. The value of these
starting points can be randomly drawn from a starting distribution or simply chosen
deterministically. Let j = 1, 2, . . . , t, where t is the number of iterations, i = 1, 2, . . . , n,
n is the number of studies and k = 0, 1, . . . , p − 1, for p is the number of covariates.

2. θ
′(j)
i , given θ

′(j−1)
(−i) , β

(j−1)
0 , . . . , β

(j−1)
p−1 and τ2(j−1), is generated using θ

′(j)
i

∣∣∣θ′(j−1)
(−i) ,

β
(j−1)
0 , . . . , β

(j−1)
p−1 , τ2(j−1) ∼ N

(
µθ′i

, Λθ′i

)
, where µθ′i

and Λθ′i
are defined in

Equations (14) and (15), respectively. µθ′ and Λθ′ are defined in Equations (12) and (11).

3. β
(j)
k , given θ

′(j)
1 , . . . , θ

′(j)
n , β

(j−1)
(−k) and τ2(j−1), is generated using β

(j)
k

∣∣∣θ′(j)
1 , . . . , θ

′(j)
n , β

(j−1)
(−k) ,

τ2(j−1) ∼ N
(
µβk , Λβk

)
, where µβk and Λβk are defined in Equations (A1) and (A2),

respectively. µβ and Λβ are defined in Equations (19) and (20).

4. τ2(j), given θ
′(j)
1 , . . . , θ

′(j)
n , β

(j)
0 , . . . , β

(j)
p−1, is generated using τ2(j)

∣∣∣θ′(j)
1 , . . . , θ

′(j)
n , β

(j)
0 , . . . ,

β
(j)
p−1 ∼ IG

q + n/2 , r +
∑n

i=1

(
θ
′(j)
i −X β

(j)
k

)
2

2
.

5. Steps 2–4 are repeated until the chains reached convergence.

4. Empirical Results

Simulated data and case studies used to estimate the parameters are presented in this
section. Simulated data is obtained by conducting a simulation study [4,15].

4.1. Simulation Study

A simulation study for the HBLD model is conducted to confirm the validity of the
programming. This simulation is carried out assuming that the variance–covariance matrix
V in the model is dependent. The steps involved in conducting the simulation study can be
described as follows.

1. We fix the value of a positive real number (τ2).
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2. We fix matrices bp×1 and Dp×p where p is the number of covariates. We then generate
the vector of parameters βp×1 from the multivariate normal distribution. The mean is
bp×1 and the variance–covariance matrix is Dp×p.

3. We construct the matrix
(
Xn×p

)
and identity matrix (In×n). We then generate pa-

rameters θ′n×1 from the multivariate normal distribution, with mean Xn×pβp×1 and
variance–covariance matrix τ2 I.

4. Finally, we fix the variance–covariance matrix (Vn×n). We then generate the effect size
vector (θ̃) from the multivariate normal distribution, with mean θ′n×1 and variance–
covariance matrix (Vn×n).

Following the given steps, the simulation study is conducted to simulate 10,000 ran-
dom samples. Thirty studies (n = 30) and eight covariates (p = 8) are simulated to obtain
the so-called simulated effect sizes. Studies that assumed dependence are studies 2 and 3;
studies 5 and 6; studies 10, 11, and 12; studies 17 and 18; studies 22 and 23; and studies
28 and 29. By fixing the prior density of τ2, matrices b and D, covariate matrix X and the
variance–covariance matrix v, and the true mean parameter (β0 or intercept) of the model
are generated.

The values of the simulated parameters τ2, β0, . . . , β7, θ′1, . . . , θ′30 and θ̃1, . . . , θ̃30 are
given in Table 1. Furthermore, the simulated parameters τ2, β0, . . . , β7 and θ′1, . . . , θ′30 are
considered to be the true values of the parameters, while θ̃1, . . . , θ̃30 are considered to
be the simulated effect sizes for each study. The simulated effect sizes are used in later
sections. The estimation of parameters using the Gibbs sampler algorithm is discussed in
the following sections, using this simulated data.

Table 1. The true values of τ2, β0, . . . , β7, θ′1, . . . , θ′30 and results of the simulated effect sizes (θ̃1, . . . ,
θ̃30) for the HBLD.

True Value of τ2

τ2 = 1.2

True value of β0, . . . , β7

β0 = 1.0275 β1 = 0.9212 β2 = 0.8836 β3 = 0.0710
β4 = 1.2837 β5 = 1.0231 β6 = 0.8390 β7 = 1.0911

True value of θ′1, . . . , θ′30

θ′1 = 4.3449 θ′2 = 6.1647 θ′3 = 4.3748 θ′4 = 4.8439
θ′5 = 8.5522 θ′6 = 8.6170 θ′7 = 7.6657 θ′8 = 4.4449
θ′9 = 6.8181 θ′10 = 5.0117 θ′11 = 5.1228 θ′12 = 6.9209
θ′13 = 4.3826 θ′14 = 4.8544 θ′15 = 8.0901 θ′16 = 7.9717
θ′17 = 7.7095 θ′18 = 4.3726 θ′19 = 5.0682 θ′20 = 4.9958
θ′21 = 4.4190 θ′22 = 4.3480 θ′23 = 4.3539 θ′24 = 4.8056
θ′25 = 8.6780 θ′26 = 8.6407 θ′27 = 7.6830 θ′28 = 4.4835
θ′29 = 5.0045 θ′30 = 5.0403

Simulated effect sizes of θ̃1, . . . , θ̃30

θ̃1 = 4.3774 θ̃2 = 6.1514 θ̃3 = 4.4040 θ̃4 = 4.8722
θ̃5 = 8.6103 θ̃6 = 8.6298 θ̃7 = 7.6647 θ̃8 = 4.4720

θ̃9 = 6.7828 θ̃10 = 5.0561 θ̃11 = 5.1507 θ̃12 = 6.9661
θ̃13 = 4.4138 θ̃14 = 4.8214 θ̃15 = 8.0288 θ̃16 = 7.9404
θ̃17 = 7.6861 θ̃18 = 4.3559 θ̃19 = 5.0994 θ̃20 = 5.0429
θ̃21 = 4.3912 θ̃22 = 4.3873 θ̃23 = 4.3688 θ̃24 = 4.8764
θ̃25 = 8.6233 θ̃26 = 8.6188 θ̃27 = 7.6678 θ̃28 = 4.4819
θ̃29 =5.0411 θ̃30 = 5.0351

4.1.1. Estimation of Parameters

The parameters for the HBLD model, which were estimated using the simulated data
(θ̃1, . . . , θ̃30), are given in Table 1. It is expected that the estimated values would be close to
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the true values. The Gibbs sampler formulation is used to approximate the joint posterior
distribution of parameters for the HBLD model. A cycle of 50,000 iterations is executed,
but only the last 10,000 iterations are of use in determining the convergence of the chains
of parameters.

The Geweke test [31], the Heidelberger and Welch test (H–W) [32], and the Raftery
and Lewis test (R–L) [33] are the diagnostic tests used to determine whether the chains of
parameters in the HBLD model have converged. The results of the MCMC convergence
diagnostics using CODA and the values of the estimated parameters are presented in
Table 2.

Table 2. The MCMC convergence diagnostics for τ2, β0, . . . , β7 using the Geweke, H–W, and R–L
tests (the simulated effect sizes).

Test Variable Geweke H–W R–L

τ2
z-score

−0.348

Stationarity test: passed
p-value: 0.867

Half-width test: passed
Half-width: 0.021

Dependence factor (I)

1.49

β0

z-score

−0.2721

Stationarity test: passed
p-value: 0.8316

Half-width test: passed
Half-width: 0.0641

Dependence factor (I)

1.28

β1

z-score

−1.0362

Stationarity test: passed
p-value: 0.3383

Half-width test: passed
Half-width: 0.0486

Dependence factor (I)

1.65

β2

z-score

−1.0351

Stationarity test: passed
p-value: 0.0643

Half-width test: passed
Half-width: 0.0706

Dependence factor (I)

1.08

β3

z-score

−0.4734

Stationarity test: passed
p-value: 0.1425

Half-width test: passed
Half-width: 0.0623

Dependence factor (I)

1.77

β4

z-score

0.5459

Stationarity test: passed
p-value: 0.5384

Half-width test: passed
Half-width: 0.0391

Dependence factor (I)

1.68

β5

z-score

0.5796

Stationarity test: passed
p-value: 0.5736

Half-width test: passed
Half-width: 0.0744

Dependence factor (I)

2.56

β6

z-score

−0.5616

Stationarity test: passed
p-value: 0.5231

Half-width test: passed
Half-width: 0.0751

Dependence factor (I)

1.08

β7

z-score

−0.7367

Stationarity test: passed
p-value: 0.7495

Half-width test: passed
Half-width: 0.0352

Dependence factor (I)

2.84

The z-score for τ2 is −0.348 for the Geweke test. As this value is between −2 and 2,
it could be concluded that the chains of parameters have reached convergence at a 5%
significance level. The stationarity test for τ2 is passed with a p-value of 0.867 for the H–W
diagnostic test, under the null hypothesis that the MCMC chain is stationary. Furthermore,
the half-width test is passed as the ratio between the half-width and the mean is lower than
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eps = 0.1 for the H–W test. This also suggested that the chains of parameters have reached
convergence. The R–L test shows that the dependence factor (I) for τ2 is lower than 5.0,
indicating that the sample is less correlated, confirming the convergence. The z-scores for
β0, . . . , β7 are all between −2 and 2 for the Geweke diagnostic test. The stationarity tests for
β0, . . . , β7 are passed with p-values greater than 0.05, suggesting that the null hypothesis of
being stationary is not rejected for each parameter. The half-width tests of all parameters
are passed as their values are less than the product of eps (0.1) with the corresponding
sample mean for each parameter. The dependence factors (I) for the R–L diagnostic test are
all below 5.0, which suggests that the sample is less correlated. All of these results together
suggest that the chains of parameters have converged.

4.1.2. Estimation Results

Having confirmed the convergence of MCMC, the estimated values of τ2, β0, . . . , β7
and θ′1, . . . , θ′30, together with corresponding 95% credible intervals (CI) and standard
deviations (SD) are presented below. This data will be used to draw conclusions about
the parameters for the model. Table 3 shows the results of parameter estimates obtained
using the Gibbs sampler algorithm under the assumption of a dependence structure on
the model.

Table 3. Estimated parameters for the HBLD model using the Gibbs sampler algorithm (simu-
lated data).

True Value Estimated Value of τ2with the 95% CI and SD

τ2 = 1.2 τ̂2 = 1.17 with (0.4911, 2.4756) and 0.5304
Estimated value of β0, . . . , β7 with the 95% CI and SD

Parameter estimates 95 % CI SD

β0 = 1.0275 β̂0 = 0.9488 (−3.0529, 5.086) 2.0928
β1 = 0.9212 β̂1 = 1.0829 (−1.3224, 3.461) 1.2063
β2 = 0.8836 β̂2 = 1.0041 (−4.7594, 6.696) 2.9126
β3 = 1.0701 β̂3 = 1.0365 (−1.8536, 3.911) 1.4685
β4 = 1.1283 β̂4 = 1.1428 (−0.6644, 2.947) 0.9185
β5 = 1.0231 β̂5 = 1.0100 (−2.4272, 4.338) 1.7186
β6 = 0.8390 β̂6 = 1.0321 (−4.6317, 6.568) 2.8615
β7 = 1.0911 β̂7 = 1.0252 (−0.4668, 2.517) 0.7603

θ′1, . . . , θ′30 Estimated value of θ′1, . . . , θ′30 with the 95% CI and SD

θ′1 = 4.3449 θ̂′1 = 4.349 (2.145, 6.535) 1.1095
θ′2 = 6.1647 θ̂′2 = 6.081 (3.563, 8.586) 1.2684
θ′3 = 4.3748 θ̂′3 = 4.385 (2.491, 6.223) 0.9371
θ̃4 =4.8439 θ̂′4 = 4. 864 (3.012, 6.739) 0.9396
θ′5 = 8.5522 θ̂′5 = 8.641 (6.578, 10.646) 1.0190
θ′6 = 8.6170 θ̂′6 = 8.641 (7.221, 10.046) 0.7154
θ′7 = 7.6657 θ̂′7 = 7.624 (5.763, 9.500) 0.9375
θ′8 = 4.4449 θ̂′8 = 4.453 (2.000, 6.997) 1.2566
θ′9 = 6.8181 θ̂′9 = 6.754 (3.823, 9.767) 1.5146
θ′10 = 5.0117 θ̂′10 = 5.050 (2.739, 7.391) 1.1675
θ′11 = 5.1228 θ̂′11 = 5.170 (3.609, 6.710) 0.7923
θ′12 = 6.9209 θ̂′12 = 6.948 (5.237, 8.691) 0.8780
θ′13 = 4.3826 θ̂′13 = 4.416 (2.316, 6.545) 1.0711
θ′14 = 4.8544 θ̂′14 = 4.816 (2.480, 7.086) 1.1663
θ′15 = 8.0901 θ̂′15 = 8.004 (5.467, 10.610) 1.2948
θ′16 = 7.9717 θ̂′16 = 7.895 (5.233, 10.560) 1.3355
θ′17 = 7.7095 θ̂′17 = 7.655 (5.507, 9.779) 1.0880
θ′18 = 4.3726 θ̂′18 = 4.362 (2.355, 6.352) 1.0209
θ′19 = 5.0682 θ̂′19 = 5.105 (3.413, 6.857) 0.8603
θ′20 = 4.9958 θ̂′20 = 5.046 (3.191, 6.888) 0.9230
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Table 3. Cont.

True Value Estimated Value of τ2with the 95% CI and SD

θ′21 = 4.4190 θ̂′21 = 4.396 (3.105, 5.717) 0.6644
θ′22 = 4.3480 θ̂′22 = 4.388 (2.714, 6.050) 0.8451
θ′23 = 4.3539 θ̂′23 = 4.367 (2.161, 6.559) 1.1104
θ′24 = 4.8056 θ̂′24 = 4.875 (2.543, 7.324) 1.1895
θ′25 = 8.6786 θ̂′25 = 8.621 (6.908,10.327) 0.8661
θ′26 = 8.6407 θ̂′26 = 8.614 (7.219, 9.975) 0.7026
θ′27 = 7.6830 θ̂′27 = 7.634 (6.102, 9.158) 0.7738
θ′28 = 4.4835 θ̂′28 = 4.480 (1.850, 7.127) 1.3389
θ′29 = 5.0045 θ̂′29 = 5.033 (3.023, 7.089) 1.0234
θ′30 = 5.0403 θ̂′30 = 5.017 (3.610, 6.440) 0.7170

As can be seen from Table 3, the estimated value of τ2 is close to the true value. This
indicates that the point estimate for τ2 is consistent. Moreover, from the first and second
columns of Table 3, the estimated values of some parameters β′s are not very close to the
true values. Some standard deviations are quite large compared to their point estimates.
This indicated that the data is spread out over a large range of values. However, all of
the estimated values of βs and their corresponding true values lay within their credible
interval. This indicated that 95% of the true value will lie within the range. For example,
the estimated value of τ2 is 1.17, associated with the 95% CI (0.4911, 2.4756). This is close to
the true value of τ2 (1.2). The estimated value of the intercept (β̂0) is 0.9488, associated with
its 95% CI (−3.0529, 5.086). This shows that the true value of the intercept, β0 (1.0275), lay
within the 95% credible interval of β̂0. From Table 3, the CIs for the estimated parameter βs
all include zero, which suggests that there is no significant difference between the means of
the two covariates which is fixed in the simulation study.

The marginal posterior densities of β0, β1, β2, β3, β4, β5, β6, and β7, which are shown
in Figure 1 and labelled V1, V2, V3, V4, V5, V6, V7, and V8, respectively, are unimodal
and symmetric. Figure 2 displays the trace plots of β0, . . . , β7. These figures show that
the final 10,000 iterations for the chains of parameters are relatively stable with very small
fluctuations only, confirming convergence.
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Figure 3 shows that the density of τ2 is right-skewed with a mean value of 1.17 as
τ2 is an inverse gamma distribution. The trace plot of τ2 is displayed in Figure 4. This
figure shows that the chains of τ2 mixed relatively well with small fluctuations, confirming
the convergence.
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4.2. Case Study: Application of the HBLD Model to the Native Language Vocabulary Data

The HBLD model is applied to data obtained by [5]. The parameters for the models
are approximated using the algorithm formulas given in Section 3.2. The dependence
assumption is imposed on the variance–covariance matrix, V, at the sampling level of the
model due to the use of the same data by two or more studies. A similar code to that used
to estimate the parameters for the simulated data in Section 4.1 is executed. The results
obtained using the Gibbs sampler algorithm are compared to the results obtained by [5] in
order to assess the consistency of the parameters. The effect size of each study is calculated
using the formula given by [5]. A dependence assumption is imposed at the sampling level
of the model. This causes several off-diagonal entries of the variance–covariance matrix V
to be non-zero.

4.2.1. Estimation of Parameters

A total of 50,000 iterations are executed, but only the last 10,000 iterations are used
to determine the convergence of parameters. The MCMC convergence diagnostics using
CODA are performed to test for the convergence of each parameter. A side by side
comparison of the values of the intercept (β0) and τ2 obtained using the Gibbs sampler
algorithm with the results obtained by [5] can be made using Table 4.

In this section, the convergence diagnostic tests for τ2, β0, . . . , β5 are presented. This
is followed by the estimation results for the parameters. β0, the intercept parameter, is
referred to as the estimation of the population mean effect size. The estimation of this
parameter of interest is the primary objective of this case study.

The Geweke, H–W, and R–L tests are the MCMC diagnostic tests performed to de-
termine the convergence of the parameters. The results of these tests of convergence for
the parameters are given in Table 4 and are used to conclude whether the parameters
achieved convergence.

Table 4 shows that the z-score of τ2 is −1.527. As this value lay between −2 and 2,
it could be concluded that τ2 has reached convergence. The p-value of τ2 is 0.42. This
confirms that the null hypothesis of τ2 is not rejected. The stationarity and half-width tests
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are passed for the H–W diagnostic. The dependence factor (I) for the R–L test is 3.4 lower
than 5, indicating less correlated samples. It is likely that the convergence of the chains for
τ2 has been achieved. The z-scores of parameters (β0, . . . , β5) are between −2 and 2 for the
Geweke diagnostic tests, confirming that the chains of parameters reached convergence
at a 5% significance level. The p-value of the βs are less than 0.95, indicating that the null
hypothesis is not rejected. Moreover, the stationarity tests for all parameters are passed
after discarding 50% of the chains. The half-width tests are also passed. The dependence
factors (I) of all variables are lower than 5 for the R–L diagnostic test, suggesting that the
sample is less correlated. Together, all of these diagnostic tests indicate that the chains for
β0, . . . , β5 have converged.

Table 4. MCMC convergence diagnostics for values of τ2, β0, . . . , β5 obtained by using the Gibbs
sampler algorithm. Tests used included Geweke, H–W, and R–L tests.

Test Variable Geweke H-W R-L

τ2
z-score

−1.527

Stationarity test: passed
p-value: 0.204

Half-width test: passed
Half-width: 0.0086

Dependence factor (I)

3.4

β0

z-score

0.2917

Stationarity test: passed
p-value: 0.483

Half-width test: passed
Half-width: 0.0012

Dependence factor (I)

1.23

β1

z-score

−0.2912

Stationarity test: passed
p-value: 0.834

Half-width test: passed
Half-width: 0.0066

Dependence factor (I)

1.14

β2

z-score

−0.8820

Stationarity test: passed
p-value: 0.465

Half-width test: passed
Half-width: 0.0039

Dependence factor (I)

2.21

β3

z-score

−0.3594

Stationarity test: passed
p-value: 0.720

Half-width test: passed
Half-width: 0.0048

Dependence factor (I)

1.21

β4

z-score

0.1667

Stationarity test: passed
p-value: 0.804

Half-width test: passed
Half-width: 0.0034

Dependence factor (I)

1.17

β5

z-score

−0.3995

Stationarity test: passed
p-value: 0.769

Half-width test: passed
Half-width: 0.0047

Dependence factor (I)

1.18

4.2.2. Estimation Results

The parameter estimates for τ2 β0, . . . , β5, and their associated credible intervals and
standard deviations are presented in Table 5. The point estimate of τ2 obtained by [5] is
0.3054, associated with a 95% credible interval of (−0.0643, 0.6750). This is relatively close
to the value obtained using the Gibbs sampler algorithm (0.3106), and its 95% credible
interval (0.0764, 0.8201). The width of the credible interval given by [5] is 0.7393. This
is similar to the credible interval obtained using the Gibbs sampler algorithm (0.7437).
The credible interval for τ2 obtained by [5] includes zero. This indicates that there is no
significant difference between the means of the effect sizes θ′ in the data set. Moreover,
the credible interval for τ2 obtained by the use of the Gibbs sampler does not include zero.
This is reasonable because τ2 has an inverse gamma distribution whose scale is greater
than zero. The standard deviation for τ2 obtained by [5] is 0.1848, which is smaller than the
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standard deviation obtained using the Gibbs sampler (0.207). This shows that Stevens and
Taylor’s data is less spread out and more precise.

Table 5. Parameter estimates for the HBLD model using the Gibbs sampler for the case study.

Estimate Result of τ2 with the 95% CI and SD

τ̂2 = 0.3106, CI (0.0764, 0.8201), SD = 0.207 (Gibbs sampler)
τ̂2 = 0.3054, CI (−0.0643, 0.6750), SD = 0.1848 ([5])

Estimates results of β0, . . . , β5 with the 95% CI and SD

Parameter estimates 95 % CI SD

β̂0 = 0.5756 (G-S)
β̂0 = 0.5769 ([5])

(0.4037, 0.7444) (G-S)
(0.2659, 0.8879) (Stevens [5])

0.0866 (G-S)
0.1555 ([5])

β̂1 = −0.9469 (−1.9459, 0.1328) 0.5264
β̂2 = −0.2432 (−0.7733, 0.2608) 0.2623

β̂3 =0.2985 (−0.3606, 0.9554) 0.3347
β̂4 = 0.3710 (−0.1175, 0.8474) 0.2442
β̂5 = 0.5545 (−0.0827, 1.2247) 0.3329

The point estimate of the intercepts (β0) obtained using the Gibbs sampler algorithm is
similar to the result obtained by [5]. However, its credible interval is narrower than Steven’s
results. This indicates that the more precise results are obtained for the population mean
effect size (intercepts) when the Gibbs sampler algorithm is applied. From the application of
the model to the data, it could be concluded that (β0 = 58%) the native-language vocabulary
aids are effective as second language reading comprehension aids. From Table 5, the
CIs for estimated parameters β1, . . . , β5 are wider and all included the null value of a
difference of 0%. We will not exclude the possibility that the covariates have any effect on
the native-language (L1) vocabulary aids on second-language (L2) reading comprehension.

The density plot displayed in Figure 5a shows that the marginal posterior density
of β0 (intercept) is symmetric. This indicates that β0 is normally distributed. Moreover,
the trace plot displayed in panel (b) of Figure 5 shows that the last 10,000 iterations in the
estimation of β0 have relatively good mixing, suggesting that the chains have converged.
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Figure 5. (a) Density plot of β0 and (b) trace plot of β0 (case study).

Figure 6 shows that the density plot of τ2 (panel a) is a right-skewed distribution. This
potentially occurs since the conditional posterior distribution of τ2 is the inverse gamma
distribution. In addition, the trace plot of τ2 (panel b) does not show good mixing. This
suggests that the chains converged slowly.
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5. Prior Sensitivity Analysis

The sensitivity analysis of the HBLD model is conducted by changing the prior
distribution of the model. The inverse gamma distribution on the variance of the model
will be replaced using the log-logistic distribution.

5.1. Sensitivity Analysis of the HBLD Model

The authors of [34,35] stated that the results obtained using Bayesian models are
potentially sensitive to the choice of prior distributions and hence a sensitivity analysis
should always be performed to assess the robustness of models. This section presents an
estimation of parameters for the HBLD model obtained using a different prior distribution
on the variance component (τ2) of the effect size (θ′) for the model. The use of a different
prior distribution allowed an assessment of the sensitivity of the model. One possible prior
distribution that can be placed on τ2 is the log-logistic distribution [5,35].

Rewriting (1) using the log-logistic distribution as the prior τ2 gives:

θ̃ ∼ MVN
(
θ′, V

)
ε ∼ N (0, V)

θ′ ∼ MVN
(

Xβ, τ2 I
)

δ2 ∼ N
(

0, τ2 I
)

β ∼ MVN (b, D)

τ2 ∼ log-logistic (c0, γ) (17)

where c0 and γ are the median and shape of τ2, respectively. In Equation (17), the log-
logistic distribution used for p

(
τ2) is defined by:

P
(

τ2
)
=

c0

(c0 + τ2)2 , τ2 > 0 (18)

where c0 =
√

N
tr{[diag(V)]−1}

, N is the number of studies (or sub-studies) and γ = 1.

This particular selection was used by [36] and [5]. Using (3)–(5) and (18), it can be
seen that the joint posterior distribution of all parameters for the current HBLD model is
given by:

P(θ′, β, τ2
∣∣∣θ̃(l)) = (2π)−

n
2

∣∣∣V(l)

∣∣∣− 1
2 exp

{
−1

2

(
θ̃(l) − θ′

)T
V−1
(l)

(
θ̃(l) − θ′

)}

× (2π)−
n
2

∣∣∣τ2 I
∣∣∣− 1

2 exp
{
−1

2
(
θ′ − Xβ

)T
(

τ2 I
)−1(

θ′ − Xβ
)}

× (2π)−
p
2 |D|−

1
2 exp

{
−1

2
(β− b)T D−1(β− b)

}
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× c0

(c0 + τ2)2 (19)

Using Equation (19), the conditional posterior distributions of θ′, given β and τ2,
f (θ′|β , τ2), and β, given θ′ and τ2, f (β

∣∣θ′, τ2) , are obtained using a similar mathematical
procedure to the one presented in Section 4.1. This approach allows the Gibbs sampler to
be used to approximate f (θ′|β , τ2) and f (β

∣∣θ′, τ2) by iteratively sampling from the full
conditional distributions, as given in Equations (8) and (16). Unfortunately, the conditional
posterior distribution for τ2 could not be simplified for this model. This is due to the fact
that the product of the prior distributions of p(β

∣∣τ2) and p
(
τ2) is in a non-standard form.

This suggests that it is not possible to apply the Gibbs sampler algorithm to estimate τ2.
The authors of [11,28] stated that for complex models, conditional distributions are

often available for some parameters, but not for others. In this situation, a combination of
the Gibbs sampler and Metropolis–Hastings algorithms offers an alternative approach that
can be used to generate a Markov Chain for the estimation of the joint posterior distribution
of all parameters for the models. More generally, [12] stated that when the conditional
posterior distributions of parameters are in non-standard form, it is enough to sample each
full conditional by using a Metropolis–Hastings step. This approach is known as Metropolis
within Gibbs, or, alternatively, as single-component Metropolis–Hastings sampling [11].

5.1.1. Posterior Analysis of the HBLD Model Using Metropolis within Gibbs

The Metropolis within Gibbs [11,12] is used to approximate the joint posterior distribu-
tion of all parameters for the HBLD model given in Equation (19). The Gibbs sampler has
already been used to approximate f (θ′

∣∣β, τ2 ) and f
(

β
∣∣θ′, τ2 ) (see the conditional posterior

of θ′ given β and τ and conditional posterior of β given θ′ and τ2). This section describes
the use of the Metropolis–Hastings algorithm to estimate τ2, f

(
τ2 |θ′, β

)
.

Similar steps to those used with the Gibbs sampler algorithm (steps 1, 2, and 3 but
not 4), are used to approximate the joint posterior distribution of all parameters for the
HBLD model given in (19), as follows:

Steps 1, 2, and 3 are similar to the steps given in Section 3.2.
Step 4:

τ2(j) given θ
′(j)
1 , . . . , θ

′(j)
n , β

(j)
0 , . . . , β

(j)
p−1 is generated using the Metropolis–Hastings

algorithm by implementing the following steps:

(a) It is proposed that τ2∗ ~Gamma (δ + τ2(j−1), ω + τ2(j−1)).

The proposed distribution for τ2∗ is:

Jτ

(
τ2∗
)
=

1(
ω + τ2(j−1)

)(δ+2τ(j−1))
/
(

δ + τ2(j−1)
)(τ2∗

)(δ+τ2(j−1)−1)
exp

(
− τ2∗

ω + τ2(j−1)

)
, (20)

where δ + τ2(j−1) > 0 and ω + τ2(j−1) > 0 are shape and scale, respectively, and τ2∗ ε (0, ∞).

(b) The acceptance ratio for the parameter τ2 is as follows:

rτ =
P
(

θ′(j), β(j)τ2∗
∣∣∣θ̃(l))

P
(

θ′(j), β(j), 2τ(j−1)
∣∣∣θ̃(l)) ×

Jτ

(
τ2(j−1)

)
Jτ

(
τ2∗)

rτ ∝
(2π)−

n
2
∣∣τ2∗ I

∣∣− 1
2 exp

{
− 1

2

(
θ′(j) − Xβ(j)

)T(
τ2∗ I

)−1
(

θ′(j) − Xβ(j)
)}

(2π)−
n
2
∣∣τ2(j−1) I

∣∣− 1
2 exp

{
− 1

2
(
θ′(j) − Xβ(j)

)T(
τ2(j−1) I

)−1(
θ′(j) − Xβ(j)

)}
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×

c0

(c0+τ2∗)
2

c0(
c0+τ2(j−1)

)2

×

1(
ω+τ2(j−1)

)(δ+τ2(j−1)
)
Γ
(

δ+τ2(j−1)
)
(

τ2(j−1)
)(δ+τ2(j−1)−1)

exp
(
− τ2(j−1)

ω+τ2(j−1)

)
1(

ω+τ2(j−1)
)(δ+τ2(j−1)

)
Γ
(

δ+τ2(j−1)
) (τ2∗)(δ+τ2(j−1)−1)exp

(
− τ2∗

ω+τ2(j−1)

)

rτ =

(2π)−
n
2
∣∣τ2∗ I

∣∣− 1
2 exp

{
− 1

2

(
θ′(j) − Xβ(j)

)T(
τ2∗ I

)−1
(

θ′(j) − Xβ(j)
)}

(2π)−
n
2
∣∣τ2(j−1) I

∣∣− 1
2 exp

{
− 1

2
(
θ′(j) − Xβ(j)

)T(
τ2(j−1) I

)−1(
θ′(j) − Xβ(j)

)} ×
c0

(c0+τ2∗)2

c0

(c0+τ2(j−1))
2

×

(
τ2(j−1)

)(δ+τ2(j−1)−1)
exp
(
− τ2(j−1)

ω+τ2(j−1)

)
(
τ2∗)(δ+τ2(j−1)−1)exp

(
− τ2∗

ω+τ2(j−1)

) (21)

(c) The parameter U is sampled from U ∼ Uniform (0, 1).

If rτ > U, then τ2(j)
= τ2∗ otherwise τ2(j)

= τ2(j−1)
.

Step 5. Steps 2, 3, and 4 are repeated until the chains reach convergence.
A sensitivity analysis is conducted using the simulated data given in Section 4.1. The

proposed MCMC algorithm, namely the Metropolis within Gibbs algorithm as formulated
above, is used to estimate the parameters for the current HBLD model. The estimates
obtained using the Metropolis within Gibbs algorithm are compared to the results obtained
using the Gibbs sampler algorithm to determine the sensitivity of the model when the prior
distribution for τ2 is performed.

5.1.2. Estimation of Parameters

In order to determine the sensitivity of the model, the parameters are estimated using
the simulated data θ̃1, . . . , θ̃30, as presented in Table 1. The formulation obtained using
the Metropolis within Gibbs algorithm for the HBLD model is used to estimate these
parameters. A cycle of 60,000 iterations is executed, but the only last 10,000 iterations are
used to determine the convergence of the parameters.

The results of the MCMC convergence diagnostics using CODA and the point esti-
mates found for all parameters are discussed in Table 6.

Table 6. The MCMC convergence diagnostics for τ2, β0, . . . , β7 using the Geweke, H–W, and R–L
tests (the simulated effect sizes) by using log-logistic distribution for τ2.

Test Variable Geweke H-W R-L

τ2
z-score

−1.702

Stationarity test: passed
p-value: 0.29

Half-width test: passed
Half-width: 0.0275

Dependence factor (I)

26.9

β0

z-score

−0.0771

Stationarity test: passed
p-value: 0.479

Half-width test: passed
Half-width: 0.0658

Dependence factor (I)

1.23

β1

z-score

0.4396

Stationarity test: passed
p-value: 0.266

Half-width test: passed
Half-width: 0.0492

Dependence factor (I)

2.92

β2

z-score

1.38061

Stationarity test: passed
p-value: 0.968

Half-width test: passed
Half-width: 0.0700

Dependence factor (I)

1.12
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Table 6. Cont.

Test Variable Geweke H-W R-L

β3

z-score

−0.9961

Stationarity test: passed
p-value: 0.536

Half-width test: passed
Half-width: 0.0701

Dependence factor (I)

2.96

β4

z-score

−0.3347

Stationarity test: passed
p-value: 0.469

Half-width test: passed
Half-width: 0.0415

Dependence factor (I)

2.73

β5

z-score

−0.5931

Stationarity test: passed
p-value: 0.435

Half-width test: passed
Half-width: 0.0708

Dependence factor (I)

1.64

β6

z-score

0.5017

Stationarity test: passed
p-value: 0.488

Half-width test: passed
Half-width: 0.0766

Dependence factor (I)

1.16

β7

z-score

0.2488

Stationarity test: passed
p-value: 0.143

Half-width test: passed
Half-width: 0.0356

Dependence factor (I)

2.63

The R–L diagnostic test shows that the dependence factor (I) for τ2 is higher than 5.0,
indicating that the sample is highly correlated. However, the z-score for τ2 (−1.702) is
between −2 to 2 for the Geweke test, confirming the convergence at a 5% significance level.
The p-value of τ2 is 0.29 for the H–W diagnostic test, indicating that the null hypothesis
of the MCMC chain is not rejected. The half-width test is also passed for the H–W test.
This suggests that the chains of parameters have reached convergence. The z-scores for
β0, . . . , β7 are between −2 and 2 for the Geweke diagnostic tests. The stationarity tests for
β0, . . . , β7 are passed with p-values greater than 0.05, indicating that the null hypothesis of
the MCMC chains being stationary is not rejected. The half-width tests of all parameters
are passed as their values are less than the product of eps (0.1) with the corresponding
sample mean for each parameter. The dependence factors (I) for the R–L diagnostic test are
below 5.0, which indicates that the samples are less correlated. All of these results together
confirm that the chains of parameters have converged.

5.1.3. Estimation Results

The estimated values of τ2, β0, . . . , β7, and θ′1, . . . , θ′30, with their corresponding 95%
credible intervals (CI) and standard deviations (SD), are given below. This data is used to
describe conclusions about the parameters for the model. Table 7 shows the results of the
parameter estimates obtained by using a log-logistic distribution for τ2 on the model.

As can be seen from Table 7, the estimated value of τ2 is 1.03, corresponding with
its standard deviation (0.4416), which is close to the true values. This indicates that 95%
of the true value will lie within the range. In the first and second columns of Table 7, the
estimated values of some parameters βs are not very close to the true values. Some standard
deviations are quite big compared to their point estimates. This indicates that the data is
spread out over a large range of values. However, all of the estimated values of βs and their
corresponding true values lay within their credible intervals, indicating the consistency of
the parameters. For example, the estimated value of the intercept (β̂0) is 0.9752, associated
with its 95% CI (−3.2394, 5.074). This shows that the true value of the intercept, β0 (1.0275),
lay within the 95% credible interval of β̂0. From Table 7, the CI’s for estimated parameter
βs all include zero, which suggests that there is no significant difference between βs.
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Table 7. Estimated parameters for the HBLD model using the Metropolis within Gibbs algorithm
(simulated data).

True Value Estimated Value of τ2with the 95% CI and SD

τ2 = 1.2 τ̂2 = 1.03 with (0.3366, 2.0239) and 0.4416
Estimated value of β0, . . . , β7 with the 95% CI and SD

Parameter estimates 95 % CI SD

β0 = 1.0275 β̂0 = 0.9752 (−3.2394, 5.074) 2.1101
β1 = 0.9212 β̂1 = 1.0745 (−1.2130, 3.387) 1.1644
β2 = 0.8836 β̂2 = 1.0145 (−4.5127, 6.652) 2.8453
β3 = 1.0701 β̂3 = 0.9565 (−1.9272, 3.881) 1.4831
β4 = 1.1283 β̂4 = 1.1468 (−0.6747, 2.914) 0.9084
β5 = 1.0231 β̂5 = 0.9792 (−2.3408, 4.316) 1.6892
β6 = 0.8390 β̂6 = 1.0569 (−4.5968, 6.699) 2.8607
β7 = 1.0911 β̂7 = 1.0242 (−0.3861, 2.477) 0.7322

θ′1, . . . , θ′30 Estimated value of θ′1 , . . . , θ′30 with the 95% CI and SD

θ′1 = 4.3449 θ̂′1 = 4.352 (2.330, 6.390) 1.0198
θ′2 = 6.1647 θ̂′2 = 6.088 (3.744, 8.465) 1.2088
θ′3 = 4.3748 θ̂′3 = 4.404 (2.634, 6.233) 0.8922
θ̃4 =4.8439 θ̂′4 = 4. 834 (3.080, 6.598) 0.8933
θ′5 = 8.5522 θ̂′5 = 8.591 (6.633, 10.528) 1.9829
θ′6 = 8.6170 θ̂′6 = 8.628 (7.243, 9.985) 0.7009
θ′7 = 7.6657 θ̂′7 = 7.644 (5.842,9.400) 0.9081
θ′8 = 4.4449 θ̂′8 = 4.461 (2.073, 6.826) 1.1911
θ′9 = 6.8181 θ̂′9 = 6.742 (3.762, 9.671) 1.4920
θ′10 = 5.0117 θ̂′10 = 5.021 (2.895, 7.151) 1.0734
θ′11 = 5.1228 θ̂′11 = 5.159 (3.649, 6.688) 0.7769
θ′12 = 6.9209 θ̂′12 = 6.950 (5.280, 8.637) 0.8628
θ′13 = 4.3826 θ̂′13 = 4.407 (2.388, 6.413) 1.0017
θ′14 = 4.8544 θ̂′14 = 4.759 (2.567 6.922) 1.0826
θ′15 = 8.0901 θ̂′15 = 8.003 (5.578, 10.464) 1.2199
θ′16 = 7.9717 θ̂′16 = 7.865 (5.360, 10.309) 1.2489
θ′17 = 7.7095 θ̂′17 = 7.682 (5.671, 9.710) 1.0331
θ′18 = 4.3726 θ̂′18 = 4.361 (2.423, 6.267) 0.9815
θ′19 = 5.0682 θ̂′19 = 5.068 (3.473, 6.697) 0.8142
θ′20 = 4.9958 θ̂′20 = 5.024 (3.243, 6.827) 0.8984
θ′21 = 4.4190 θ̂′21 = 4.383 (3.127, 5.644) 0.6412
θ′22 = 4.3480 θ̂′22 = 4.380 (2.802, 5.975) 0.8066
θ′23 = 4.3539 θ̂′23 = 4.358 (2.217, 6.440) 1.0441
θ′24 = 4.8056 θ̂′24 = 4.824 (2.593, 7.017) 1.0996
θ′25 = 8.6786 θ̂′25 = 8.629 (6.993,10.270) 0.8288
θ′26 = 8.6407 θ̂′26 = 8.609 (7.258, 9.958) 0.6854
θ′27 = 7.6830 θ̂′27 = 7.645 (6.147, 9.132) 0.7550
θ′28 = 4.4835 θ̂′28 = 4.459 (1.893, 6.928) 1.2707
θ′29 = 5.0045 θ̂′29 = 5.018 (3.117, 6.941) 0.9602
θ′30 = 5.0403 θ̂′30 = 5.008 (3.655, 6.379) 0.6928

The marginal posterior densities of β0, β1, β2, β3, β4, β5, β6, and β7, which are shown
in Figure 7 and labelled V1, V2, V3, V4, V5, V6, V7, and V8, respectively, are unimodal
and symmetric. Figure 8 displays the trace plots of β0, . . . , β7. These figures show that the
final 10,000 iterations for the chains of parameters were relatively stable with very small
fluctuations only, confirming convergence.
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Figure 9 shows that the density of τ2 is right-skewed with a mean value of 1.03 as
τ2 is a log-logistic distribution. The trace plot of τ2 is displayed in Figure 10. This figure
shows that the chains of τ2 mixed relatively well with small fluctuations, confirming the
convergence. In addition, the acceptance rate for τ2 is 44%, indicating that the chain moves
rapidly across the whole distribution without getting stuck in any one place.
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Comparison values of the intercept (β0) and τ2 obtained by using different prior
distributions for τ2 are shown in Table 8. The standard deviation for the intercept (β0)
obtained by the use of the log-logistic distribution is similar to the standard deviation
obtained by the use of the inverse gamma distribution (2.09). This indicates that the
use of different prior distributions for τ2 on the model is insensitive to the intercept (β0).
Furthermore, the standard deviation obtained by using the inverse gamma distribution
for the parameter τ2 is 0.53 when the log-logistic distribution is smaller (0.44). The lower
standard deviation obtained by the use of the log-logistic distribution indicates the precision
of the estimated parameter. It can also be concluded that the parameter of τ2 is insensitive
by the use of different prior distributions.

Table 8. Comparison of parameter estimates β0 (intercept) and τ2 between the use of the Gibbs
sampler algorithm and the Metropolis within Gibbs (simulated data).

Parameters True Value
Gibbs Sampler Algorithm (Inverse Gamma) Metropolis within Gibbs (Log-Logistic)

Mean with CI SD Mean with CI SD

β0(intercept) 1.0275 0.9488
(−3.0529, 5.086) 2.09 0.9752

(−3.2394, 5.074) 2.11

τ2 1.2 1.17
(0.4911, 2.4756) 0.53 1.03

(0.3366, 2.0239) 0.44
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5.2. Application of the HBLD Model to the Native Language Vocabulary Data: Metropolis
within Gibbs

The native language vocabulary data is applied for the HBLD model which is devel-
oped using the Metropolis within Gibbs Bayesian technique.

5.2.1. Estimation of Parameters

The Metropolis within Gibbs algorithm in Section 5.1 is used to estimate parameters for
the HBLD model using the native language vocabulary data that was previously analyzed
using the Gibbs sampler algorithm. In the following sections, the results of the application
of the MCMC convergence diagnostics using CODA and the estimation of parameters are
given. Moreover, the point estimates obtained using the Metropolis within Gibbs algorithm
will be compared with the results obtained using the Gibbs sampler algorithm and the
results from [5]. The results of the convergence diagnostic tests for τ2, β0, . . . , β5 are given
in Table 9.

Table 9. MCMC convergence diagnostics for the values of τ2, β0, . . . , β5 found for the case study
using the Metropolis within Gibbs algorithm. Tests performed included Geweke, H–W, and R–L tests.

Test Variable Geweke H-W R-L

τ2
z-score

1.242

Stationarity test: passed
p-value: 0.343

Half-width test: passed
Half-width: 0.0139

Dependence factor (I)

24.5

β0

z-score

0.065

Stationarity test: passed
p-value: 0.4156

Half-width test: passed
Half-width: 0.0027

Dependence factor (I)

1.16

β1

z-score

−0.4372

Stationarity test: passed
p-value: 0.0903

Half-width test: passed
Half-width: 0.0133

Dependence factor (I)

1.14

β2

z-score

1.0128

Stationarity test: passed
p-value: 0.6255

Half-width test: passed
Half-width: 0.008

Dependence factor (I)

1.15

β3

z-score

−0.9468

Stationarity test: passed
p-value: 0.3958

Half-width test: passed
Half-width: 0.0097

Dependence factor (I)

1.29

β4

z-score

−0.1164

Stationarity test: passed
p-value: 0.5035

Half-width test: passed
Half-width: 0.0068

Dependence factor (I)

1.20

β5

z-score

−0.6779

Stationarity test: passed
p-value: 0.5048

Half-width test: passed
Half-width: 0.0095

Dependence factor (I)

1.18

As in Section 4.1, it could be concluded that the chains of parameter τ2 have converged
because some of the results of the diagnostic tests satisfy the conditions for convergence.
Even though the dependence factor (I) found for the R–L diagnostic is greater than 5,
indicating that the sample is highly correlated, the z-score found for the Geweke diagnostic
test is between −2 and 2. Thus, it could be concluded that τ2 is converged at a 5%
significance level. Moreover, the p-value is less than 0.95, suggesting the null hypothesis
is not rejected. The conclusion that the chains of parameters have converged is also
supported by the fact that the stationarity test and half-width test are passed. The z-scores
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of parameters β0, . . . , β5 for the Geweke diagnostic are between −2 and 2, suggesting the
convergence at a 5% significance level. For the H–W test, after discarding the 50% chain,
the stationarity tests are passed for all of these parameters. As all of the p-values are lower
than 0.95, the null hypothesis is not rejected for all of these parameters.

The half-width tests are also passed for all of these parameters. The dependence
factors (I) found using the R–L diagnostic test for all of these parameters are lower than 5,
indicating that the sample is less correlated. It could therefore be concluded that the chains
have converged.

5.2.2. Estimation Results

The parameter estimates obtained using the formulation of the proposed MCMC to
assess the sensitivity of the HBLD model are given in Table 10. The value of the estimated
intercept (β0) is 0.5758, and the associated credible interval (0.4025, 0.7481). This point
estimate is similar to the results from [5] (β0 = 0.5769). However, the standard deviation is
smaller (0.0877) than the standard deviation found by [5] (0.1555). This indicates that the
estimated population mean effect size (intercepts) obtained using the Metropolis within
Gibbs (MwG) is more precise.

Table 10. Parameter estimates for the HBLM using the Metropolis within Gibbs (case study).

Estimate Result of τ2with the 95% CI and SD

τ̂2 = 0.3044, CI (0.0817, 0.7446), SD = 0.1743 (Metropolis within Gibbs)
τ̂2 = 0.3054, CI (−0.0643, 0.6750), SD = 0.1848 ([5])

Estimates results of β0, . . . , β5 with the 95% CI and SD

Parameter estimates 95 % CI SD

β̂0 = 0.5758 (MwG)
β̂0 = 0.5769 ([17])

(0.4025, 0.7481) (MwG)
(0.2659, 0.8879) ([17])

0.0877 (MwG)
0.1555 ([17])

β̂1 = −0.9445 (−1.9556, 0.1406) 0.5206
β̂2 = −0.2432 (−0.7781, 0.2676) 0.2635

β̂3 =0.3000 (−0.3740, 0.9483) 0.3324
β̂4 = 0.3714 (−0.1107, 0.8357) 0.2427
β̂5 = 0.5590 (−0.0702, 1.2309) 0.3301

The Metropolis within Gibbs algorithm is used to calculate the joint posterior distri-
bution of all parameters for the model when the log-logistic distribution is imposed on
the variance, τ2. The resulting estimated parameter of τ2 is similar to that found by [5].
This indicates that the result is consistent after changing the prior distribution and that
the Metropolis within Gibbs algorithm is a useful approach for calculating the joint pos-
terior distribution of the model. The resulting estimated parameters also indicate that
the standard deviation obtained by this algorithm is lower, confirming the more precise
result. It can be concluded that the model is insensitive to the imposition of different prior
distributions on the variance component of τ2. Furthermore, the acceptance rate for τ2 is
36%. This indicates that the chain moves rapidly across the whole distribution, without
getting stuck in any one place.

The density and trace plots for β0 are given in Figure 11a,b, respectively. The marginal
posterior density of β0, shown in panel (a), is symmetric. The trace plot displayed in panel
(b) shows that the chains of parameters mixed well, indicating that the chains of parameters
have converged.

The density plot for τ2 is given in Figure 12a, which shows that the marginal posterior
distribution of τ2 is skewed to the right. The trace plot of τ2 in Figure 12b shows that the
chains have slowly converged.

The values for the intercept (β0) and τ2 were obtained using the three approaches
given in Table 11. This shows that the values of the population mean effect size (intercept)
and τ2 which are obtained from these approaches, are very close to each other. The
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standard deviation of τ2, which is obtained using the Metropolis within Gibbs, is smaller
than two other approaches, suggesting that the use of this algorithm provided the more
precise results.
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Table 11. Parameter estimates β0 (intercept) and τ2 given by Stevens and Taylor [5]; obtained by the
use of the Gibbs sampler algorithm and by the use of the Metropolis within Gibbs (case study).

Parameter
Steven and Taylor [5] Gibbs Sampler Algorithm

(Inverse Gamma)
Metropolis within Gibbs

(Log-Logistic)

Mean with CI SD Mean with CI SD Mean with CI SD

β0 (intercept) 0.5769
(0.2659, 0.8879) 0.1555 0.5756

(0.4036, 0.7444) 0.0866 0.5758
(0.4025, 0.7481) 0.0877

τ2 0.3054
(−0.0643, 0.6750) 0.1848 0.3106

(0.0764, 0.8201) 0.207 0.3044
(0.0817, 0.744) 0.1743

6. Conclusions

This paper discussed the hierarchical Bayesian linear dependence (HBLD) model. This
model was used to obtain overall conclusions in a meta-analysis by combining results
from several studies. This model could accommodate heterogeneity that arose in the
meta-analysis due to the different outcomes or treatments occurring in each study under
consideration. The existence of correlations within studies and between studies arising due
to the dependence structure was assumed in the model.

The validity of the programming to estimate parameters for the HBLD model was
confirmed using the simulated data. The joint posterior distributions of all parameters for
the model were derived using the Gibbs sampler or the Metropolis within Gibbs algorithm.
Even though the formulas for the posterior distributions were implemented in R and
the resulting code was executed in order to estimate the parameters for the model, the
developed R code—directly for the Gibbs sampler and Metropolis within Gibbs algorithms
instead of employing any of the Bayesian and MCMC package available—needs to be
considered in this study. The advantage of the MCMC algorithm utilizing the Gibbs
sampler is its ease in implementation using the Bayesian software BUGS.

The MCMC convergence diagnostics using CODA were applied to determine whether
the chains of parameters had converged. The Geweke, Heidelberger and Welch (H–W), and
Raftery and Lewis (R–L) diagnostic tests showed that the chains of estimated parameters
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for the models had converged. The estimation of parameters using the R code confirmed
the consistency of the parameters for the models. Although several of the point estimates
were not really close to their corresponding target values, they were still inside their
corresponding credible intervals. The true values of the parameters also lay inside the
credible intervals, indicating that the parameters were consistent. Furthermore, the trace
and density plots showed that the parameters were stable and symmetric.

A sensitivity analysis was conducted for the HBLD model to assess the robustness
of this model. This showed that most of the parameter estimates for the model were
unchanged by the use of different prior distributions, showing the robustness of the HBLD
model. However, we cannot justify that the HBLD model generally is not sensitive in this
study. This is due to the use of only one prior distribution for the model.

As an application, the HBLD model was applied to data from a meta-analysis con-
ducted by [5] concerning the impact of native-language vocabulary aids on second-language
reading comprehension. The point estimate of the intercept obtained using the Gibbs sam-
pler algorithm was 58%, indicating that the native-language vocabulary aids were effective
in increasing second language reading comprehension.

For future research, applying the non-normal distributions [37,38] in a model of meta-
analysis will be worthwhile to extend the work. This approach could be chosen to obtain a
more flexible and accurate model.
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Appendix A

Examining the first term of (8) yields:
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(A1)

Now, examining the second term of (8):
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After multiplying (A1) and (A2), (8) becomes:
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(as µT
θ′Λθ′

−1θ′ is 1 × 1 and Λθ′
−1 is symmetric)

= exp
{
−1

2
[(θ′T − µT

θ′)Λθ′
−1(θ′ − µθ′

)
− µT

θ′Λθ′
−1µθ′ ]

}
= exp

{
−1

2
(θ′T − µT

θ′)Λθ′
−1(θ′ − µθ′

)}
× exp

{
−µT

θ′Λθ′
−1µθ′

}
(as the last term does not contain θ′).
Hence:

f (θ′|β , τ2) ∝ exp
{
−1

2
(θ′T − µT

θ′)Λθ′
−1(θ′ − µθ′

)}
Examining the first term of (12) yields:

(2π)−
n
2

∣∣∣τ2 I
∣∣∣− 1

2 exp
{
−1

2
(
θ′ − Xβ

)T
(τ2 I)

−1(
θ′ − Xβ

)}
∝ exp

{
−1

2

(
θ′T − (Xβ

)T
)(τ2 I)

−1(
θ′ − Xβ

)}
= exp

{
−1

2

[
θ′T(τ2 I)

−1
θ′ − θ′T(τ2 I)

−1
Xβ− (Xβ)T(τ2 I)

−1
θ′ + (Xβ)T(τ2 I)

−1
Xβ
]}

(since θ′T(τ2 I)−1Xβ is 1 × 1 and (τ2 I)−1 is symmetric)

= exp
{
−1

2

[
θ′T(τ2 I)

−1
θ′ + (Xβ)T(τ2 I)

−1
Xβ− 2(Xβ)T(τ2 I)

−1
θ′
]}

(as the first term does not contain β)

∝ exp
{
−1

2

[
(Xβ)T(τ2 I)

−1
Xβ− 2(Xβ)T(τ2 I)

−1
θ′
]}

= exp
{
−1

2
(Xβ)T(τ2 I)

−1
Xβ + (Xβ)T(τ2 I)

−1
θ′
}

(A5)

Examining the second term of (12) yields:

(2π)−
p
2 |D|−

1
2 exp

{
−1

2
(β− b)T D−1(β− b)

}

∝ exp
{
−1

2
(βT − bT)D−1(β− b)

}
= exp

{
−1

2
(βT D−1β− βT D−1b− bT D−1β + bT D−1b)

}
(since bT D−1β is 1 × 1 and D−1 is symmetric)

= exp
{
−1

2
(βT D−1β− 2βT D−1b + bT D−1b)

}
,

(as the last term does not contain β)

∝ exp
{
−1

2
(βT D−1β− 2βT D−1b)

}

= exp
{
−1

2
βT D−1β + βT D−1b

}
(A6)

After multiplying (A5) and (A6), (12) becomes:



Computation 2022, 10, 71 30 of 31

f (β
∣∣∣θ′, τ2)∝ exp

{
−1

2
(Xβ)T(τ2 I)

−1
Xβ + (Xβ)T(τ2 I)

−1
θ′
}

× exp
{
−1

2
βT D−1β + βT D−1b

}
= exp

{
−1

2
(Xβ)T(τ2 I)

−1
Xβ + (Xβ)T(τ2 I)

−1
θ′ − 1

2
βT D−1β + βT D−1b

}
f (β
∣∣∣θ′, τ2)= exp

{
−1

2
βT (XT(τ2 I)

−1
X + D−1)β + βT (XT(τ2 I)

−1
θ′ + D−1b)

}
Let:

Λβ = (XT(τ2 I)
−1

X + D−1)
−1

(A7)

and:
µβ = (XT(τ2 I)

−1
X + D−1)

−1
(XT(τ2 I)

−1
θ′ + D−1b). (A8)

Then:

f (β
∣∣∣θ′, τ2) = exp

{
−1

2
βT (XT(τ2 I)

−1
X + D−1) (XT(τ2 I)

−1
X + D−1)Λβ β + βT (XT(τ2 I)

−1
+ D−1)µβ

}
= exp

{
−1

2
βTΛ−1

β Λ−1
β β + βTΛ−1

β µβ

}
= exp

{
−1

2
[βTΛ−1

β

(
β− µβ

)
− βT Λ−1

β µβ]

}
= exp

{
−1

2
[(βT − µT

β )Λ
−1
β

(
β− µβ

)
+ µT

βΛ−1
β

(
β− µβ

)
− βT Λ−1

β µβ]

}
= exp

{
−1

2
[(βT − µT

β )Λ
−1
β

(
β− µβ

)
+ µT

βΛ−1
β β− µT

β Λ−1
β µβ − βT Λ−1

β µβ]

}
(as βTΛ−1

β µβ is 1 × 1 and Λ−1
β is symmetric)

f (β
∣∣∣θ′, τ2) = exp

{
−1

2
[(βT − µT

β )Λ
−1
β

(
β− µβ

)
+ µT

βΛ−1
β β− µT

β Λ−1
β µβ − µT

β Λ−1
β β]

}
= exp

{
−1

2
(βT − µT

β )Λ
−1
β

(
β− µβ

)}
× exp

{
−µT

βΛ−1
β µβ

}
(as the last term does not contain β)

∝ exp
{
−1

2
(βT − µT

β )Λ
−1
β

(
β− µβ

)}
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