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Abstract: In this work, generalized polynomial chaos (gPC) expansion for land surface model param-
eter estimation is evaluated. We perform inverse modeling and compute the posterior distribution
of the critical hydrological parameters that are subject to great uncertainty in the Community Land
Model (CLM) for a given value of the output LH. The unknown parameters include those that have
been identified as the most influential factors on the simulations of surface and subsurface runoff,
latent and sensible heat fluxes, and soil moisture in CLM4.0. We set up the inversion problem in
the Bayesian framework in two steps: (i) building a surrogate model expressing the input–output
mapping, and (ii) performing inverse modeling and computing the posterior distributions of the
input parameters using observation data for a given value of the output LH. The development
of the surrogate model is carried out with a Bayesian procedure based on the variable selection
methods that use gPC expansions. Our approach accounts for bases selection uncertainty and quan-
tifies the importance of the gPC terms, and, hence, all of the input parameters, via the associated
posterior probabilities.

Keywords: uncertainty quantification; generalized polynomial chaos; Bayesian inversion; US-ARM;
inverse modeling

1. Introduction

Land surface models (LSMs) are used by scientists to quantitatively simulate the
exchange of water and energy fluxes at the Earth–atmosphere interface. LSMs have pro-
gressed from simplistic schemes defining simply the surface boundary conditions for gen-
eral circulation models (GCMs) to complicated models incorporating modules representing
biogeochemical, hydrological, and energy cycles at the surface–atmosphere interface over
the last few decades (Pitman [1]). The model parameters are frequently related with definite
physical meaning and have an influence on the primary model outputs, such as water and
energy fluxes. They are built on mathematical formulations of the laws of physics. The
assumption for Inter-comparison of Land Surface Parameterization Schemes is that the
parameters are quantifiable and transferable between sites with similar physical properties
or site conditions (PILPS) (Bastidas et al. [2], Henderson-Sellers et al. [3,4]). However,
default assignment of parameter values are actually inappropriate according to (Bastidas
et al. [2], Rosero et al. [5]). In the meantime, given the high dimensionality of the parameter
space and the complexity of the land surface system, more research is needed to determine
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which parameters are more uncertain and the potential for using observations to constrain
or calibrate the uncertain parameters in order to better capture uncertainty in the resulting
land surface states (Hou et al. [6], Huang et al. [7]). The goal of this research is to quantify
the uncertainty in a subset of parameters in a community LSM called the Community Land
Model (CLM), which is the land component of the Community Earth System Model (CESM)
(formerly known as the Community Climate System Model (CCSM) (Collins et al. [8], Gent
et al. [9], Lawrence et al. [10]). It is possible that model structural uncertainty in LSMs
is attributable to simplified assumptions or representations of actual processes or events.
Many of these assumptions hold true only in certain situations. Furthermore, LSMs are
prone to ambiguity in terms of input parameter values, owing to the fact that many input
characteristics, such as those related to land cover and land use, as well as soil qualities,
are difficult to assess at the scales at which they are utilized. A common technique in land
surface modeling is to define a set of universally applicable default parameter values. Over
the last two decades, the land surface modeling community has worked hard to resolve
uncertainty in model parameters, data, and model structure. The purpose of this study
is to reduce model parameter uncertainty using generalized polynomial expansion and
Bayesian inversion.

In a high-dimensional parameter space, the computational cost of stochastic inversion
is significant. Surrogate models can be utilized to solve this problem instead of numerical
simulators. Ensemble simulations, which are required to build surrogate models, can
be efficiently executed in a task-parallel manner on supercomputing facilities. Surrogate
creation, on the other hand, is a lengthy procedure. Surrogates are not utilized very often in
climate model or LSM calibration. Using observations of latent heat fluxes, the authors used
different surrogates (e.g., polynomials and/or universal kriging) to calibrate hydrological
parameters of CLM 4.0 in (Ray et al. [11], Huang et al. [12]).

For the model–data mismatch, two competing models were utilized to construct a
composite of measurement error and (a crude estimate of) CLM structural error. In (Gong
et al. [13]), the authors employed adaptive surrogate-based optimization to estimate the
parameters of the Common Land Model employing six observables at once; 12 independent
parameters were (deterministically) calibrated.

Using Bayesian compressive sensing (BCS) and polynomial chaos expansions, (Sargsyan
et al. [14]) sought to create surrogates for five variables of interest from CLM4 with prog-
nostic carbon and nitrogen modules turned on (i.e., CLM4-CN) (PCEs). They discovered
that the input–output relationship in CLM4-CN could be made up of qualitatively di-
verse regimes (i.e., living or dead vegetation regimes associated with various locations
in the parameter space), necessitating the use of clustering and classification to generate
piecewise PCEs.

The applicability of employing gPC for CLM4 hydrological model calibration is in-
vestigated in this study. Based on [15], we provide a completely Bayesian technique that
combines fully Bayesian statistics, variable selection, and generalized polynomial chaos
surrogate models to handle the uncertainty quantification and model inversion problem
in CLM4. The procedure produces a cheap mathematical/statistical approximation of
the model output (latent heat flux) as a function of a set of model parameters. Bayesian
inversion of the model parameters’ given observations is performed by using the pro-
duced cheap gPC surrogate model instead of the expensive computer model output in the
likelihood function, and then by performing Bayesian parametric inference facilitated by
Markov chain Monte Carlo methods. The method allows for dimension reduction and
the selection of the important model parameters that significantly influence the output
parameter by computing inclusion posterior probabilities.

The layout of the paper is as follows: in Section 2, we describe the study site, input
data, and the conducted numerical simulations, and present the parameters of interest
that we calibrate; in Section 3, we present the inversion methodology using gPC in the
Bayesian framework; in Section 4, we evaluate the inversion results; in Section 5, we draw
our conclusions.
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2. Dataset and Parameterization

The FLUXNET database (www.fluxdata.org, accessed on 20 March 2022) contains half-
hourly observations of ecosystem CO2, heat fluxes, and meteorological data of more than
250 sites worldwide and for a total of 960 site-years. The study site in this study is US-ARM
(ARM Southern Great Plains site, Lamont, Oklahoma) (Fischer et al. [16], Torn [17]). It has
a vegetation type of croplands, covered with temporary crops followed by harvest and a
bare soil period (e.g., single and multiple cropping systems), a humid subtropical climate,
and clay-type soil texture.

Observational data used in parameter estimation are observed latent heat fluxes and runoff
measurements, which are processed and gap-filled to obtain daily and monthly averaged data.
We consider 10 critical hydrological parameters that are likely to have dominant impacts on
the simulation of surface and subsurface runoff, latent and sensible fluxes, and soil moisture,
as suggested in existing literature (Hou et al. [6], Niu et al. [18,19], Oleson et al. [20,21]). The
selected parameters are fmax, Cs, fover, fdrai, qdrai,max (denoted as Qdm hereinafter), Sy, b,
Ys, Ks, and θs. Explanations of the 10 parameters and their prior information are shown in
Table 1 in Hou et al. [6]. Prior distributions of the parameters are specified as independent
truncated normal distributions with location, scale, and range parameters specified according
to the values in Table 1 in Hou et al. [6]; in the cases that prior variance was not available, we
considered uniform prior distributions. We recall that such values for the hyper-parameters
are acceptable according to existing literature Oleson et al. [20,21]. It is important to highlight
that, although truncated normals, these priors are essentially flat due to their large variances.
Moreover, 256 samples were generated by using quasi Monte Carlo (QMC) sampling on the
basis of the prior pdfs; QMC provides a good dispersion between sample points and can
achieve a good uniformity in dimensionality at around 10 Caflisch [22], Wang and Sloan [23].
Numerical simulations corresponding to sampled parameter sets were conducted, which yield
the data matrix of inputs (i.e., realizations of the 10 parameters) and outputs (i.e., latent heat
fluxes), which enables the development of response surfaces or surrogates that can be used for
sensitivity analysis, parameter ranking, and model calibration.

3. Bayesian Methodology

We describe a synergy of Bayesian methods aiming to quantify the importance of
input CLM4 model parameters and calibrate these parameters against real measurements,
as well as build a surrogate model describing the input–output relation in the CLM4 model,
in the Bayesian framework.

3.1. Bayesian Inverse Problem Setup

Bayesian inverse methods allow for the uncertainty quantification of input parameters
of a computer model from observations [24]. Bayesian inference is performed through the
posterior distribution, which is derived according to the Bayes theorem. We need to specify
two components: the likelihood function representing experimental information from the
measurements, and the prior distribution representing the researcher’s prior information
about the uncertain parameters.

We consider that the output value observed uf ∈ Rdu is associated to some unknown
input ξ via a forward model (e.g., CLM4) u(·) : Rdξ → R, and possibly contaminated
by some additive observational noise εf (residuals); namely uf = u(ξ) + εf. A reasonable
assumption is to model εf as a normally distributed variable with mean zero and variance
σ2. This is justified by central limit theorem arguments, and the fact that, in the noise term,
there are several insignificant random measurement errors accumulated from observations
and modeling errors due to model parameterization. Thus, the likelihood is:

L(uf|ξ) = Ndu(u
f|u(ξ), diag(σ2

1 , . . . , σ2
du
)).

To account for the uncertainty about the input parameters we assigned prior distribu-

tion ξ ∼ πξ(·) = ∏
dξ

i=1 πξi (·), where πξi (ξi) are considered to be shifted beta distributions

www.fluxdata.org
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Beta(aξi , bξi , ξi,min, ξi,max), with known ξi ∈ [ξi,min, ξi,max] and aξi > 0, bξi > 0. Here, ξi,min,
and ξi,max can be specified because a reasonable range of the model parameter is often a
priori known. In addition, aξi and bξi can be specified by using the method of moments
or the maximum entropy method [25] because, often, reasonable values for the mean and
variance of the model parameter are a priori known. A computationally convenient choice
for the priors of the variance {σ2

j } is the inverse gamma prior distribution IG(aσ2 , bσ2)

with parameters aσ2 > 0, and bσ2 > 0, as it is a semi-conjugate prior to the likelihood. By
considering the likelihood variance σ2 as random unknown parameters and treating the
problem in the Bayesian framework, we let the data decide a proper value for σ2 through
the posterior distribution. The prior hyper-parameters are considered to be fixed values
and are pre-defined by the researcher.

The posterior distribution of ξ, σ2 given the observations uf is

πξ,σ2(ξ, σ2|uf) =
L(uf|ξ, σ2)πξ(ξ)πσ2(σ2)∫

L(uf|ξ, σ2)πξ(ξ)πσ2(σ2)d(ξ, σ2)
, (1)

by using the Bayes’ theorem, and marginal distribution πξ(ξ|uf) quantifies the uncertainty
about the model parameters ξ.

The posterior distribution density (1) is usually intractable. If u(·) was known or was
cheap to compute, inference on ξ could be obtained using standard Markov chain Monte
Carlo (MCMC) methodology [26]. In Algorithm 1, we present a simple MCMC sampler
that updates ξ and σ2 iteratively in two stages. The output sample {(ξ(t), σ2,(t))}T

t=1 of
Algorithm 1 can be used to perform inference on ξ and σ2, e.g., expectation of any function
h(·) of ξ can be approximated as

E(h(ξ)) ≈ 1
T

T

∑
t=1

h(ξ(t))

for large T.
In the present application of the CLM4 model, u(·) is prohibitively expensive to

compute iteratively because the forward model (CLM4) is too expensive to run. This
prevents us from directly using this method, and, particularly, Algorithm 1. To overcome
this issue, we built a cheap but accurate proxy (called surrogate model) for u(·), and
plugged it into (1). The construction of such a surrogate model in the Bayesian framework
is discussed in Section 3.2.

Algorithm 1 Updates of a single MCMC swap.

Update ξ:

• Simulate ξ from a Metropolis–Hastings transition probability that targets
πξ|σ2(ξ|uf, σ2), where πξ,σ2(ξ|uf, σ2) ∝ N(uf|u(ξ), σ2)N(ξ|µξ , σ2

ξ ).

Update σ2:

• Draw σ2 from IG
(

1
2 + aσ2 , 1

2

∣∣uf − u(ξ)
∣∣2
2 + bσ2

)
.

3.2. Surrogate Model Specification

We describe a fully Bayesian procedure for building a surrogate model to be used as
a cheap but accurate proxy of u(·) in (1) based on gPC expansions and MCMC methods.
The highlight is that, apart from evaluating a surrogate model, the procedure is able to
quantify the importance of each PC basis via inclusion posterior probabilities, which allows
for the selection of the important input parameters: Fmax, Cs, Fover, Fdrai, Qdm, Sy,
B, Psis, Ks, thetas.
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3.2.1. Generalized Polynomial Chaos Expansion

We consider the output parameter u(ξ) as a function of the vector of random input
variables ξ ∈ Ξ ⊆ Rdξ that follow distribution f (·).

The output parameter u(ξ) can be modeled as an expansion of PC bases {ψα(·)} and
PC coefficients {cα}:

u(ξ) = ∑
α∈N

dξ
0

cαψα(ξ), (2)

for ξ ∼ f (·) [27]. We denote multi-indices α := (α1, . . . , αdξ
) of size dξ that are defined

on a set of non-negative integers Ndξ

0 := {(α1, . . . , αdξ
) : αj ∈ N ∪ {0}}. The family of

polynomial bases {ψα(·); α ∈ Ndξ

0 } contains multidimensional orthogonal polynomial
bases with respect to the probability measure f (·) of ξ. Each multidimensional PC basis
ψα(·) results as a tensor product of univariate orthogonal polynomial bases ψαj(·) of degree
αj ∈ N1

0, namely:

ψα(ξ) =
dξ

∏
j=1

ψαj(ξ j), αj ∈ N1
0, (3)

where E f (ψαj(ξ)ψαj′ (ξ)) = Zjδ0(j− j′), for j, j′ = 1, . . . , dξ and Zj = E f (ψ
2
αj
(ξ)).

Often, the PC bases {ψα(·)} are chosen so that they are orthogonal with respect to the
distribution f (·). A quite general family of polynomials is the Askey family [28], whose
members are associated with standard distributions. In this work, we focus on the use of
Jacobi polynomial bases [28], which can be defined recursively as:

ψ0(z(ξ)) = 1;

ψ1(z(ξ)) =
1
2
[a− b + (a + b− 2)zξ ];

ψj(z(ξ)) =
(2j + a + b− 1)[(2j + a + b)(2j + a + b− 2)z(ξ) + a2 + b2]

2j(j + a + b)(2j + a + b− 2)
ψj−1(z(ξ))

− 2(j + a + b− 1)(j + b− 1)(2j + a + b)
2j(j + a + b)(2j + a + b− 2)

ψj−2(z(ξ)),

j = 2, . . . , pξ − 1,

where z(ξ) is a linear transformation z(ξ) : [ξmin, ξmax] → [−1, 1], and ξmin, ξmax are the
minimum and maximum of ξ.

In practice, for computational reasons, we truncate (2) by considering a finite sub-set
of PC bases based on the total truncated rule. Hence, the expansion form becomes:

upξ
(ξ) := ∑

α∈A
cαψα(ξ), (4)

which uses, for only a finite set of multi-indices, A, such that A = {α ∈ Ndξ : ∑
dξ

i=1 αi ≤ pξ}
with cardinality mξ := (pξ+dξ )!

pξ !dξ ! . Other truncation rules can be adopted [14,29].

The PC coefficients {cα; α ∈ Ndξ

0 } are equal to cα = E f (u(ξ)ψα(ξ))/Zα, where

Zα = E f ((ψα(ξ))2), for a ∈ Ndξ

0 [27]; however, they are intractable. Moreover, the number
of unknown PC coefficients is of order d

pξ

ξ and grows rapidly with the dimension dξ and
PC degree pξ . This causes computational problems such as over-fitting [15,30], especially
when the dimensionality of ξ is high. If we consider a smaller PC degree or carelessly
omit PC bases, it may lead to a significant increase in bias and hence produce inaccurate
surrogate models. Hence, there is a particular interest in keeping only the inputs or bases
that significantly affect the output in the gPC. The Bayesian procedure in Section 3.2.2
effectively addresses these matters.
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3.2.2. Bayesian Training Procedure

We describe a stochastic and automatic Bayesian procedure that accurately evaluates
the PC coefficients and the gPC surrogate model, while it allows for the selection of the
the significant PC bases, and hence input model parameters. This procedure is able to
trade off efficiently between the bias (caused by omitting bases) and the over-fitting, which
are both required. Furthermore, it can select the significant PC bases and estimate the PC
coefficients simultaneously, while providing credible intervals.

We assume that there is a training dataset D =
{
(uj, ξ j)

}nξ

j=1 available, where nξ is the
size of the dataset, ξ j denotes the random input value, and uj := u(ξ j) denotes the output
value corresponding to the j-th input value ξ j. Then, we model

uj = upξ
(ξ j) + εj , for j = 1, . . . , nξ , (5)

where εj ∈ R is the error term, associated with the j-th observation. Equation (5) can be
written in matrix form:

u = Xc + ε, (6)

where u := (uj; j = 1 : nξ)
>, ε := (εj; j = 1 : nξ)

>, Xa := (ψa(ξ j); j = 1 : nξ), and
X := (Xa; a ∈ A) is an nξ ×mξ dimensional matrix of basis functions.

The likelihood L(u|c, σ2) := L({uj}|{ξ j}, c, σ2) is:

L(u|c, σ2) =
nξ

∏
j=1

N
(

uj|ψ(ξ j)
>c, σ2

)
; (7)

= N
(

u|X>c, Imσ2
)

,

where N(·|µ, σ2) denotes the Gaussian probability density function with mean µ and
variance σ2. The likelihood function is considered as a proximity measure of the truncated
gPC expansion to the observations. We specify a hierarchical prior model π(c, γ, σ2, λ, ρ):

ca|γa, σ2, λ ∼ γaN(ca|0, σ2/λ) + (1− γa)δ0(ca), a ∈ A;

γa ∼ Bernoulli(ρ), a ∈ A; (8)

σ2|aσ, bσ ∼ IG(aσ, bσ);

λ|aλ, bλ ∼ G(aλ, bλ);

ρ|aρ, bρ ∼ Beta(aρ, bρ),

where aλ, bλ, aρ, and bρ are fixed prior hyper parameters, and predetermined by the
researcher. In the Bayesian framework, inference on the uncertain model parameters can
be performed based on the posterior distribution

π(c, γ, σ2, λ, ρ|D) = L(u|c, σ2)π(c, γ, σ2, λ, ρ)∫
L(u|c, σ2)π(c, γ, σ2, λ, ρ)d(c, γ, σ2, λ, ρ)

. (9)

Particular interest lies in the computation of the inclusion probabilities π(γa|D) that re-
fer to the marginal posterior probability that the a-th basis is important, and the π(ca|D, γa)
that refers to the posterior density of the a-th PC coefficient.

To fit the Bayesian model, we resort to Markov chain Monte Carlo (MCMC) methods
because the posterior distribution (9) is intractable and cannot be sampled directly. The
conjugate prior model (8) allows for the design of a Gibbs sampler [31,32] whose updates
involve sampling from the full conditional distributions of the parameter updated. In
Algorithm 2, we represent a pseudo-code of one sweep of the Gibbs samples, along with the
associated full conditional distributions. We highlight that the procedure is fully automatic
because there is no need to tune the algorithmic parameters involved in Algorithm 2. The
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notation c−a ( and X−a) refers to the vector c (and matrix X) excluding the a-th element
(and column). Moreover, we denote mξ,γ = ∑a∈A γa.

Algorithm 2 Updates of the Gibbs swap.

Update {(γa, ca)}: For a ∈ A,

1. Compute µa, and s2
a, where

µa =
(

X>a Xa + λ
)−1

X>a (u− X−ac−a),

s2
a = σ2(X>a Xa + λ)−1

2. Update γa: draw γa from Bernoulli(P(γ)
a ), where

P(γ)
a =

[
1 +

1− ρ

ρ

√
2πσ2

λ
N(0|µa, s2

a)

]−1

,

3. Update ca: draw ca from π(ca|u, X, γ, c−a, ρ, σ2, λ), where

π(ca|u, X, γ, c−a, ρ, σ2, λ) =

{
δ0(ca) , if γa = 0
N(ca|µa, s2

a) , if γa = 1
.

Update σ2:

• Sample σ2 from IG
(

nξ

2 +
mξ,γ

2 + aσ, bσ +
nξ

2 |u− Xc|2 + 1
2 λ|c|22

)
.

Update λ: ,

• Sample λ from G
(

mξ,γ
2 + aλ, 1

2σ2 |ca|22 + bλ

)
.

Update ρ:

• Sample ρ from Beta(mξ,γ + aρ, mξ −mξ,γ + bρ).

In order to evaluate the surrogate model, as well as quantify the importance of the
input model parameters, we consider two Bayesian procedures. One is the Bayesian model
averaging [33] and the other is the median probability model.

Bayesian Model Averaging

Bayesian model averaging is most suitable when we are interested in the predictive
ability of the surrogate model.

Let
{(

γ(t), c(t), σ2,(t), λ(t), ρ(t)
)}T

t=1
be a Gibbs sample from Algorithm 2. Estimates

and associated standard errors of {ca} can be computed as ĉa = 1
T ∑T

t=1 c(t)a and

s.e.(ĉa) = sc
a

√
$c

a
T , where sc

a is the sample standard deviation and $c
a is the sample inte-

grated autocorrelation time of
{

c(t)a ; t = 1 : T
}

for a ∈ A [26,33]. Estimates for µ, v, and
u(ξ) can be computed by Monte Carlo integration using the ergodic average of quantities
in Gibbs sample; for instance:
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û(ξ) =
1
T

T

∑
t=1

( ∑
a∈A

c(t)a ψa(ξ)) = ∑
a∈A

ĉaψa(ξ); (10)

P̂a =
1
T

T

∑
t=1

1(γa);

µ̂ =
1
T

T

∑
t=1

c(t)0 = ĉ0, v̂ =
1
T

T

∑
t=1

∑
α∈A−{0}

(c(t)α )2Zα;

σ̂2 =
1
T

T

∑
t=1

σ2,(t), λ̂ =
1
T

T

∑
t=1

λ(t);

ĉa =
1
T

T

∑
t=1

c(t)a , ρ̂ =
1
T

T

∑
t=1

ρ(t).

Median Probability Model Based Evaluation

A parsimonious (or sparse) surrogate model involving only significant basis functions
and important input model parameters can be obtained by examining the estimated in-
clusion probabilities π(γa|D). A suitable probabilistic basis selection mechanism is the
median probability model (MPM) [34].

Let
{(

γ(t), c(t), σ2,(t), λ(t), ρ(t)
)}T

t=1
be a Gibbs sample from Algorithm 2. The pos-

terior distribution that the PC basis is significant can be estimated as P̂a = π̂(γa|D) =
1
T ∑T

t=1 γ
(t)
a . We call {Pa} the marginal inclusion posterior probabilities. The inclusion

parameters are estimated as γ̂(MPM)
a = 1(P̂a ∈ (0.5.1)), for a ∈ A. MPM consists of PC

coefficients {ca}, and PC bases {ψa(·)}, whose marginal inclusion probabilities are such
that P̂a > 0.5 (and hence γ̂(MPM)

a = 1). Hereafter, we will refer to them as significant PC
coefficients and PC bases.

After the selection of the significant PC bases, inference about the uncertain parameters
can be made by re-running Algorithm 2 for fixed γ equal to γ̂(MPM) in order to obtain a
a larger Gibbs sample. The new Gibbs sample can be used to perform inference and
estimation. For instance, estimates for µ, v, and u(ξ) can be computed by Monte Carlo
integration and using the equations of the estimators in (10). Note that a number of the
coefficients {c′(t)a } will be constantly zero for all t = 1, . . . , T. The reason is because, unlike
in the BMA approach, here, we consider only a single subset of PC bases, and hence the
inclusion parameter is a fixed parameter equal to γ(t) = γ(MPM), for t = 1, . . . , T.

The MPM approach allows the selection of the important input model parameters that
significantly affect the output. If an input parameter ξ j is not represented by any significant
PC basis in the gPC expansion, it would be reasonable to consider that input parameter ξ j
does not significantly affect the output model and, hence, is omitted from the analysis.

4. Analysis of the US-ARM Data-Set

Here, we consider the US-ARM data set. The main interest lies in comput-
ing the posterior distributions of the 10 (random) input parameters of CLM4 ξ =
(Fmax, Cs, Fover, Fdrai, Qdm, Sy, B, Psis, Ks, θs), given an observed latent heat flux
(LH) measurement u(f) as shown in Table 1.

We apply the above methodology, which involves two stages: (i) building a surrogate
model to replace the accurate but expensive forward model CLM4 according to the method-
ology in Section 3.2, and (ii) conducting inversion of the 10 inputs according to the theory
in Section 3.1.
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Table 1. Observed value u(f) for the US-ARM data-set.

Months Measurement

January-April 15.542 22.017 41.365 59.095

May-July 58.377 58.813 45.107 41.362

August-December 31.250 28.645 17.635 12.778

Surrogate Model Building Step

For each month, we built a surrogate model that maps the input of CLM4 ξ to the
output LH u. For this type of dataset, Hou et al. [6] and Sun et al. [35] observed that
the dependency between the output parameters LH corresponding to different months is
weak and, hence, can be neglected. Therefore, here, we built surrogate models for each
month independently. An advantage of assuming independence is that it leads to a simpler
parameterization for the statistical model, which is easier to treat and interpret.

To build the gPC expansion, we followed the procedure in Section 3.2. For the design
of the gPC expansion, we considered PC bases from the Jacobi polynomial family, and the
total truncated rule with polynomial degree 4. The bases in the gPC expansion had the
following arrangement: first, the main effects as Fmax, Cs, Fover, Fdrai, Qdm, Sy, B, Psis,
Ks, θ, and, then, the interactions by increasing order, while interactions of the same order
were arranged so that their interacting bases correspond to main effects in the aforesaid
order. This rule identifies the order of the columns of the design matrix X, as well as that
of the elements of the vector C in (6). The parameters of the Jacobi PC bases were set
according to the prior information of the input of CLM4 in ([6], Table 1) by matching the
moments of the corresponding shifted beta distribution, to which, they are orthogonal. We
considered the prior model (8) with hyper-parameters aλ = 10−3, bλ = 10−3, aσ = 10−3,
bσ = 10−3, aρ = 1, and bρ = 1. This choice of hyper-parameters leads to weakly informative
priors. This is a reasonable choice because there is lack of prior information about the
parameterization of the surrogate model. For training the gPC expansion, we used the
training data set US-ARM. We ran Algorithm 2 for 2 · 105 iterations, where the first 105

were discarded as burn-in.
In Figures 1 and 2, we present the marginal posterior probabilities {Pr(γj|D)} com-

puted by the ergodic average of the occurrences of the corresponding PC bases in the Gibbs
sample. We observe that, during the period May-August, the marginal inclusion proba-
bilities are higher than those of the rest months. This indicates that the input parameters
of CLM4 may have a larger impact on the output LH during those months. From the
hydrology point of view, this is expected because LH is higher on average and has a larger
variability during these months, and the effects of hydrological parameters are expected to
be more pronounced in the summer months.

We can infer that the input parameters Fmax, Cs, Fdrai, Qdm, and B are significant
according to the MPM rule. This is because these input parameters are represented by
significant PC basis functions; namely, the corresponding marginal inclusion probabilities
in Figures 1 and 2 are greater than 0.5. The order of the indices in Figures 1 and 2 is
the same as that mentioned above in the surrogate model building step section; namely,
first, the main effects are followed by their interactions in the order of Fmax, Cs, Fover,
Fdrai, Qdm, Sy, B, Psis, Ks, θ. The first 11 indexes correspond to the main effects, indices
12–66 correspond to the second-order interactions, indices 67–286 correspond to third-order
interactions, and the rest of the indices correspond to fourth-order interactions. From
the hydrology perspective, this is reasonable, because these parameters are major factors
controlling the drainage and runoff generation, which, in turn, impact heat fluxes. The
results are also consistent with the previous work in (Hou et al. [6]).
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Figure 1. Plots of the posterior marginal inclusion probabilities: January–June.
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Figure 2. Plots of significant posterior marginal inclusion probabilities: July–December.

In Figures 3 and 4, we use box-plots to represent the posterior density estimates of
the PC coefficients generated by the Gibbs sampler. In these figures, we consider only
the coefficients corresponding to bases characterized as significant according to the MPM
rule; namely, those with Pr(γj|D) < 0.5. We observe that significant coefficients do not
include zero in the range where the main posterior mass is concentrated. This shows
that the method is consistent. Moreover, we observe that the significant PC coefficients
that correspond to the period May-August have, in general, larger absolute values. This
indicates that the variance of the output LH during those months is larger compared to that
of the rest months, which is as expected. Finally, we can possibly infer that different input
parameters ξ may have a different effect of LH at different times, since we can observe
different significant coefficients, or bases, in different months.
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Figure 3. Box-plots of the posterior PC coefficients: January–June.

The gPC expansion of LH as a function of the input parameters ξ can be evaluated
according to the estimator in (10), which is the ergodic average of the Gibbs sample.

4.1. Inversion Step

We calibrate the 10 CLM parameters ξ = (Fmax, Cs, Fover, Fdrai, Qdm, Sy, B, Psis, Ks, θ)
against the measurement of the parameter LH u(f) in Table 1, as in Section 3.1. We considered
beta priors on the CLM parameters whose hyper-parameters are specified by using the method
of moments and based on the prior information in Hou et al. [6].

Calibration was performed by running the MCMC sampler (Algorithm 1) and evalu-
ating the posterior distributions according to the procedure in Section 3.1. Even though,
in the previous step, we detected that the input model parameters Fmax, Cs, Fdrai, Qdm,
and B are the significant ones, we also considered them for calibration to obtain informa-
tion about them as well. In order to make the MCMC sampler tractable, we replaced the
forward model CLM4 u(·), in Algorithm 1, with the estimated gPC expansion that serves
as a surrogate model. We ran the MCMC sampler (Algorithm 1) for 2 · 104 iterations and
discarded the first 104 as burn-in.

In Figures 5 and 6, we present the estimated posterior densities of the input parameters
of CLM4, as generated by the MCMC sampler. The blue bars correspond to the histogram
estimate, whereas the red line corresponds to the kernel density estimate. These posterior
distributions allow us to find a reasonable range of input values that correspond to the
given value of output uf. The associated box-plots of the marginal posteriors of the model
parameters at each individual figure indicate the range of the main posterior density. We
can see that we have successfully managed to shorten the ranges of the possible values for
most of the input model parameters. For instance, we observe that the main density on
the marginal posterior distribution of the density of Qdm is around the area [−4,−2.5] in
log10 scale.
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Figure 4. Box-plots of significant posterior PC coefficients: July–December.
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Figure 5. A posteriori distributions of the input parameters of CLM4 for a given output uf. The red
line indicates the posterior density, whereas the green line indicates the prior density of the parameter.
(BMA evaluation).

4.2. Model Validation

We validated the effectiveness of the Bayesian inversion procedure. We evaluated the
predictive distribution of the output parameter LH by using the derived gPC surrogate
model and the MCMC sample of the input parameters generated by Algorithm 1. In
Figures 7 and 8, we present the resultant predictive distributions of the output LH for the
12 months. The blue bars are the histogram estimate, the red line is the kernel density
estimate of the predictive distribution, and the green arrow represents the observed output
value of LH. The plots show that, for each month, the observed output value uf for the LH
lies below the modes of each of the marginal predictive distributions. This implies that the
proposed methodology is valid and that the surrogate model derived from the method is
able to produce accurate predictions.
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Figure 6. A posteriori distributions of the input parameters of CLM4 for a given output uf. The red
line indicates the posterior density, whereas the green line indicates the prior density of the parameter.
(BMA evaluation).
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Figure 7. Distributions of the output LH associated to input parameters of CLM4 drawn by the a
posteriori distributions: January–June.
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5. Conclusions

We focused on evaluating the uncertainties associated with the hydrologic parameters
in CLM4 in the Bayesian framework. We presented a Bayesian methodology for the uncer-
tainty quantification (UQ) framework that couples a generalized polynomial chaos model
with the Bayesian variable selection methods. We presented a fully Bayesian methodology
that involves two steps: building a surrogate step, which is the construction of a surrogate
model to express the input–output mapping; and the inverse modeling step, which is the
evaluation of the posterior distribution of the input parameters for a given value of the
output LH.

For the construction of the surrogate model, we propose a Bayesian procedure, based
on variable selection methods, that uses gPC expansions and accounts for bases selection
uncertainty. The advantage of this approach is that it can quantify the significance of the
gPC terms, and, hence, the importance of the input parameters, in a probabilistic manner.
The input posterior distributions were evaluated according to Bayesian inverse modeling.
Our numerical experiments suggested that the method presented is suitable for performing
the inverse modeling of hydrologic parameters in CLM4, and able to effectively describe
the uncertainty related to these parameters.

Our future work involves the comparison of the proposed method against other
methods based on neural networks, and generalized linear models, on which, we are
currently working.

Author Contributions: G.K. and G.L. derived the models and performed the computations. Z.H.
and M.H. worked on the interpretation of the results from the analysis of the application. All authors
have read and agreed to the published version of the manuscript.

Funding: The National Science Foundation (DMS-1555072, DMS-1736364, DMS-2053746, and DMS-
2134209), and Brookhaven National Laboratory Subcontract 382247, and U.S. Department of Energy
(DOE) Office of Science Advanced Scientific Computing Research program DE-SC0021142.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Supplementary data related to this article can be found at https://
github.com/georgios-stats/Inverse-modeling-of-hydrologic-parameters-in-CLM4-via-generalized-
polynomial-chaos-in-the-Bayesian-f, accessed on 20 March 2022.

Acknowledgments: Guang Lin would like to thank the support from the National Science Foun-
dation (DMS-1555072, DMS-1736364, DMS-2053746, and DMS-2134209), and Brookhaven National
Laboratory Subcontract 382247, and U.S. Department of Energy (DOE) Office of Science Advanced
Scientific Computing Research program DE-SC0021142.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pitman, A. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. J. R. Meteorol.

Soc. 2003, 23, 479–510. [CrossRef]
2. Bastidas, L.; Gupta, H.V.; Sorooshian, S.; Shuttleworth, W.J.; Yang, Z.L. Sensitivity analysis of a land surface scheme using

multicriteria methods. J. Geophys. Res. Atmos. 1999, 104, 19481–19490. [CrossRef]
3. Henderson-Sellers, A.; Pitman, A.; Love, P.; Irannejad, P.; Chen, T. The project for intercomparison of land surface parameterization

schemes (PILPS): Phases 2 and 3. Bull. Am. Meteorol. Soc. 1995, 76, 489–504. [CrossRef]
4. Henderson-Sellers, A.; Chen, T.; Nakken, M. Predicting Global Change at the Land-Surface: The Project for Intercomparison of

Land-Surface pArameterization Schemes (PILPS) (Phase 4); Technical Report; American Meteorological Society: Boston, MA,
USA, 1996.

5. Rosero, E.; Yang, Z.L.; Wagener, T.; Gulden, L.E.; Yatheendradas, S.; Niu, G.Y. Quantifying parameter sensitivity, interaction,
and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm
season. J. Geophys. Res. Atmos. 2010, 115, D03106. [CrossRef]

6. Hou, Z.; Huang, M.; Leung, L.R.; Lin, G.; Ricciuto, D.M. Sensitivity of surface flux simulations to hydrologic parameters based
on an uncertainty quantification framework applied to the Community Land Model. J. Geophys. Res. Atmos. 2012, 117, D15.
[CrossRef]

https://github.com/georgios-stats/Inverse-modeling-of-hydrologic-parameters-in-CLM4-via-generalized-polynomial-chaos-in-the-Bayesian-f
https://github.com/georgios-stats/Inverse-modeling-of-hydrologic-parameters-in-CLM4-via-generalized-polynomial-chaos-in-the-Bayesian-f
https://github.com/georgios-stats/Inverse-modeling-of-hydrologic-parameters-in-CLM4-via-generalized-polynomial-chaos-in-the-Bayesian-f
http://doi.org/10.1002/joc.893
http://dx.doi.org/10.1029/1999JD900155
http://dx.doi.org/10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2
http://dx.doi.org/10.1029/2009JD012035
http://dx.doi.org/10.1029/2012JD017521


Computation 2022, 10, 72 18 of 18

7. Huang, M.; Hou, Z.; Leung, L.R.; Ke, Y.; Liu, Y.; Fang, Z.; Sun, Y. Uncertainty analysis of runoff simulations and parameter
identifiability in the Community Land Model: Evidence from MOPEX basins. J. Hydrometeorol. 2013, 14, 1754–1772. [CrossRef]

8. Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Briegleb, B.P.; Bitz, C.M.; Lin, S.J.; Zhang, M. The
formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Clim. 2006, 19, 2144–2161.
[CrossRef]

9. Gent, P.R.; Yeager, S.G.; Neale, R.B.; Levis, S.; Bailey, D.A. Improvements in a half degree atmosphere/land version of the CCSM.
Clim. Dyn. 2010, 34, 819–833. [CrossRef]

10. Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Zeng, X.; Yang, Z.L.; Levis, S.;
Sakaguchi, K.; et al. Parameterization improvements and functional and structural advances in version 4 of the Community
Land Model. J. Adv. Model. Earth Syst. 2011, 3. [CrossRef]

11. Ray, J.; Hou, Z.; Huang, M.; Sargsyan, K.; Swiler, L. Bayesian calibration of the Community Land Model using surrogates.
SIAM/ASA J. Uncertain. Quantif. 2015, 3, 199–233. [CrossRef]

12. Huang, M.; Ray, J.; Hou, Z.; Ren, H.; Liu, Y.; Swiler, L. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian
inversion to the Community Land Model: Case studies at flux tower sites. J. Geophys. Res. Atmos. 2016, 121, 7548–7563. [CrossRef]

13. Gong, W.; Duan, Q.; Li, J.; Wang, C.; Di, Z.; Dai, Y.; Ye, A.; Miao, C. Multi-objective parameter optimization of common land
model using adaptive surrogate modeling. Hydrol. Earth Syst. Sci. 2015, 19, 2409–2425. [CrossRef]

14. Sargsyan, K.; Safta, C.; Najm, H.N.; Debusschere, B.J.; Ricciuto, D.; Thornton, P. Dimensionality reduction for complex models via
Bayesian compressive sensing. Int. J. Uncertain. Quantif. 2014, 4, 63–93. [CrossRef]

15. Karagiannis, G.; Lin, G. Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse
approximation of PDEs with stochastic inputs. J. Comput. Phys. 2014, 259, 114–134. [CrossRef]

16. Fischer, M.L.; Billesbach, D.P.; Berry, J.A.; Riley, W.J.; Torn, M.S. Spatiotemporal variations in growing season exchanges of CO2,
H2O, and sensible heat in agricultural fields of the Southern Great Plains. Earth Interact. 2007, 11, 1–21. [CrossRef]

17. Torn, M. AmeriFlux US-ARM ARM Southern Great Plains Site-Lamont; Technical Report, AmeriFlux; Lawrence Berkeley National
Laboratory: Berkeley, CA, USA, 2016.

18. Niu, G.Y.; Yang, Z.L.; Dickinson, R.E.; Gulden, L.E. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in
global climate models. J. Geophys. Res. Atmos. 2005, 110, D21. [CrossRef]

19. Niu, G.Y.; Yang, Z.L.; Dickinson, R.E.; Gulden, L.E.; Su, H. Development of a simple groundwater model for use in climate
models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res. Atmos. 2007, 112, D7. [CrossRef]

20. Oleson, K.; Niu, G.Y.; Yang, Z.L.; Lawrence, D.; Thornton, P.; Lawrence, P.; Stöckli, R.; Dickinson, R.; Bonan, G.; Levis, S.; et al.
Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res. Biogeosci. 2008, 113, G1.
[CrossRef]

21. Oleson, K.W.; Lawrence, D.M.; Gordon, B.; Flanner, M.G.; Kluzek, E.; Peter, J.; Levis, S.; Swenson, S.C.; Thornton, E.; Feddema,
J.; et al. Technical Description of Version 4.0 of the Community Land Model (CLM). 2010. Available online: https://
www.researchgate.net/publication/277114326_Technical_Description_of_version_40_of_the_Community_Land_Model_CLM
(accessed on 20 March 2022).

22. Caflisch, R.E. Monte carlo and quasi-monte carlo methods. Acta Numer. 1998, 7, 1–49. [CrossRef]
23. Wang, X.; Sloan, I.H. Low discrepancy sequences in high dimensions: How well are their projections distributed? J. Comput. Appl.

Math. 2008, 213, 366–386. [CrossRef]
24. Marzouk, Y.; Xiu, D. A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems. Commun. Comput. Phys. 2009,

6, 826–847. [CrossRef]
25. Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany,

2013.
26. Robert, C.P.; Casella, G. Monte Carlo Statistical Methods, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004.
27. Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach; Princeton University Press: Princeton, NJ,

USA, 2010.
28. Xiu, D.; Karniadakis, G.E. The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations. SIAM J. Sci. Comput. 2002,

24, 619–644. [CrossRef]
29. Blatman, G.; Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 2011,

230, 2345–2367. [CrossRef]
30. Doostan, A.; Owhadi, H. A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 2011,

230, 3015–3034. [CrossRef]
31. Hans, C. Model uncertainty and variable selection in Bayesian LASSO regression. Stat. Comput. 2010, 20, 221–229. [CrossRef]
32. Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal.

Mach. Intell. 1984, 721–741. [CrossRef]
33. Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Stat. Sci. 1999, 14, 382–401.
34. Barbieri, M.M.; Berger, J.O. Optimal Predictive Model Selection. Ann. Stat. 2004, 32, 870–897. [CrossRef]
35. Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Ruby Leung, L. Inverse modeling of hydrologic parameters using surface flux and runoff

observations in the Community Land Model. Hydrol. Earth Syst. Sci. 2013, 17, 4995–5011. [CrossRef]

http://dx.doi.org/10.1175/JHM-D-12-0138.1
http://dx.doi.org/10.1175/JCLI3760.1
http://dx.doi.org/10.1007/s00382-009-0614-8
http://dx.doi.org/10.1029/2011MS00045
http://dx.doi.org/10.1137/140957998
http://dx.doi.org/10.1002/2015JD024339
http://dx.doi.org/10.5194/hess-19-2409-2015
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821
http://dx.doi.org/10.1016/j.jcp.2013.11.016
http://dx.doi.org/10.1175/EI231.1
http://dx.doi.org/10.1029/2005JD006111
http://dx.doi.org/10.1029/2006JD007522
http://dx.doi.org/10.1029/2007JG000563
https://www.researchgate.net/publication/277114326_Technical_Description_of_version_40_of_the_Community_Land_Model_CLM
https://www.researchgate.net/publication/277114326_Technical_Description_of_version_40_of_the_Community_Land_Model_CLM
http://dx.doi.org/10.1017/S0962492900002804
http://dx.doi.org/10.1016/j.cam.2007.01.005
http://dx.doi.org/10.4208/cicp.2009.v6.p826
http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.1016/j.jcp.2010.12.021
http://dx.doi.org/10.1016/j.jcp.2011.01.002
http://dx.doi.org/10.1007/s11222-009-9160-9
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1214/009053604000000238
http://dx.doi.org/10.5194/hess-17-4995-2013

	Introduction
	Dataset and Parameterization 
	Bayesian Methodology
	Bayesian Inverse Problem Setup 
	Surrogate Model Specification 
	Generalized Polynomial Chaos Expansion
	Bayesian Training Procedure


	Analysis of the US-ARM Data-Set
	Inversion Step
	Model Validation

	Conclusions 
	References

