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Abstract: The purpose of speech enhancement is to improve the quality of speech signals degraded
by noise, reverberation, or other artifacts that can affect the intelligibility, automatic recognition, or
other attributes involved in speech technologies and telecommunications, among others. In such
applications, it is essential to provide methods to enhance the signals to allow the understanding of
the messages or adequate processing of the speech. For this purpose, during the past few decades,
several techniques have been proposed and implemented for the abundance of possible conditions
and applications. Recently, those methods based on deep learning seem to outperform previous
proposals even on real-time processing. Among the new explorations found in the literature, the
hybrid approaches have been presented as a possibility to extend the capacity of individual methods,
and therefore increase their capacity for the applications. In this paper, we evaluate a hybrid approach
that combines both deep learning and wavelet transformation. The extensive experimentation
performed to select the proper wavelets and the training of neural networks allowed us to assess
whether the hybrid approach is of benefit or not for the speech enhancement task under several types
and levels of noise, providing relevant information for future implementations.

Keywords: speech enhancement; denoising; signal processing; deep learning; wavelets

1. Introduction

Voice is the most common and effective form of communication between persons.
Since the early years of human kind, persons have exchanged thoughts, indications, and
in general information using our voices. From the perspective of analysis and processing
this information using technology, the voice is a sound signal, which will be disturbed by
noises when it is propagated in living environments [1].

The enhancement of these signals affected by noise has a long history among the re-
searchers in signal processing and remains a challenging problem under a variety of dynamic
scenarios and several types of noises and levels. The purpose of the various techniques
developed to deal with the noise that contaminates the speech sounds is to remove the noise
as much as possible, so users or systems can receive the original speech signal after removing
the noise without sacrificing the intelligibility and clarity of the speech.

This process of enhancing is of great importance for many applications, such as mobile
phone communications, VoIP, teleconferencing systems, hearing aids, and automatic speech
recognition (ASR) systems. For example, several authors have reported a decrease in the
performance of ASR in the presence of noise recently [2—4], and there is concern about the
performance of devices for hearing aids as well [5,6].

In order to overcome this relevant problem, a number of algorithms have been presented
in the literature (reviews on this topic can be consulted in [7,8]). According to such reviews
and previous references [9,10], those algorithms can be divided into two basic categories:
Single-Channel Enhancing Techniques and Multi-Channel Enhancing Techniques.

From the first category, two main approaches have been presented:
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a  Spectral Subtraction Method, which uses estimations of statistics of the signal and
the noise. It is suitable for real-time applications due to its simplicity. The first
assumption is that the speech and the noise can be modeled using an addition of the
single component:

y(t) = s(t) +n(h), ey

where s(t) is the clean speech signal and #n(t) the noise signal. In the frequency
domain, this expression can be written as

Y(w) = S(w) + D(w) @

The estimation of the enhanced speech $(w) can be expressed as

1$(@)? = /|Y () — E|(Dw)[! 3)

The enhanced signal can be obtained in the time domain using the inverse Fourier
transform in Equation (3) with the phase information.

b Spectral Subtraction with Over-subtraction Model (SSOM):
The previous method applies a difference in the spectral domain based on a statistical
average of the noise. If such a statistical average is not representative of the signal,
for example, in musical background noise, in this case, a value floor of minimum
spectrum values is established, which leads to minimizing the narrow spectral peaks
by decreasing the spectral excursions.

¢ Non-Linear Spectral Subtraction: This method is based on a combination of the two
previous algorithms, considering the subtraction based on the signal-to-noise ratio
(SNR) of each frame. That makes the process nonlinear, applying less subtraction
where the noise is less present, and vice versa.

The limitation of these spectral subtraction methods were addressed previously in [11].

For the second class of algorithms, the systems take advantage of available multiple
signal inputs in separate channels and perform significantly better for non-stationary noises.
The main algorithms are:

a  Adaptive Noise Cancellation: This method takes advantage of the principle of de-
structive interference between wave sounds, by using a reference signal to generate
an anti-noise wave of equal amplitude, but opposite phase. Several strategies have
been applied for defining this reference signal, for example using sensors located near
the noise and interference sources.

b  Multisensor Beamforming: This method is applicable when the sound is recorded
using a geometric array of microphones. The sound signals are amplified or attenu-
ated (in the time or frequency domain) depending on their direction of arrival. The
phase information is particularly important, because most methods reject all the noisy
components not aligned in phase.

Other authors, such as [9], have presented complementary categories of speech en-
hancement algorithms, including statistical-model-based algorithms, where measurements
of noisy segments of recordings are used to estimate the parameters of the clean speech
from the segments where both signals are present. Another relevant category would be the
subspace algorithms based on the principle of applying linear algebra theory: the speech
signals can be mapped to a different subspace than the noise subspace.

With the recent developments in deep learning, based on complex models of artificial
neural networks, the process of learning a mapping function between noise-corrupted
speech to clean speech has been applied successfully. In this domain, artificial neural
networks can be defined as a class of machine learning models initially intended to imitate
some characteristics of the human brain by connecting units organized in layers, which
propagate information through internal connections. Clean speech parameters can be
predicted from noisy parameters by combining complex neural network architectures and
deep learning procedures, as presented in [12-14].
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In most cases, the application of deep neural networks has surpassed the results of
other algorithms previously presented in the literature and, thus, can be considered the
state-of-the-art in speech denoising for several noisy conditions.

On the other hand, wavelet denoising, which considers a different approach than the
mapping function, has also been presented in the literature for the task of removing noise in
speech signals recently, even with noise collected from real environments [15]. From these
considerations, in this work, we study the combination of the wavelet and deep learning
denoising approaches in a hybrid implementation, where both algorithms process the noisy
signals to enhance their quality. The idea of combining algorithms in a cascade approach
has been presented previously, but with a combination of deep learning and classical
signal-processing-based algorithms. To our knowledge, this is the first extended study on
the combination of Long Short-Term Memory neural networks and wavelet transforms.

The results of this experimental study can benefit current and future implementation of
speech enhancement, in systems such as videoconferencing and audio restoration, where the
improvement in the quality of the speech is imperative, and therefore the selection of the simple
or hybrid approaches can be performed carefully. Furthermore, the hybrid methodology results
can establish a baseline for future proposals on a new combination of enhancement algorithms.

1.1. Related Work

This section focuses on the hybrid approaches to speech denoising and previous
experiences with wavelet transform presented in the literature. The application of deep
neural networks as an isolated algorithm for this purpose has been reported in a number of
publications and reviewed recently in [16,17].

The wavelet-denoising-based references usually specify the problem of the threshold
in the wavelet functions and measuring the signal-to-noise ratio before and after the
application of the functions. For example, in a recent report presented in [1], four threshold
selection methods were applied, using sym4 and db8 wavelets. Some authors provide
experimental validation for different noisy signals and proved that the denoising method of
the speech signal based on wavelet analysis is effective in enhancing noisy speech signals.

A two-stage wavelet approach was developed in [18], first by estimating the speech
presence probability and, then, removing the coefficients of the noise floor. Results in speech
degraded with Pink and White noise from a signal-to-noise ratio of 0 to a signal-to-noise
ratio of -8 surpassed several classical algorithms.

A hybrid of deep learning and the vector Wiener filter was presented recently in [19],
showing benefits from the combined application of algorithms. Other than the deep-
learning-based hybrid approach, contemplating harmonic regeneration noise reduction
and a comb filter was reported in [20] and validated using also subjective measurements.
Another two-stage estimation algorithm based on wavelets was proposed in [21], as a
previous stage to more traditional algorithms such as the Wiener filter and MMSE.

One implementation of the wavelet transform for enhancing noisy signals in ranges
of the SNR from —10 to SNR 10, with a great variety of natural and artificial noises, was
presented in [22]. The success of the proposal was observed especially for lower SNR levels.

Hybrid approaches that combine wavelets and other techniques for speech enhance-
ment are also part of the proposals presented in the literature. For example, a combination
of wavelets and a modified version of principal component analysis (PCA) was presented
in [23]. The results showed relevant noise reduction for several kinds of artificial and
natural noises and a lower signal distortion without introducing artifacts.

In terms of wavelets and deep learning hybrid approaches, some recent experiences
were explored in [24], by applying the wavelet transform for the decomposition of the
signal and in a second stage, the radial basis function network (RFBN). The performance of
the proposal was described as excellent by the authors, using objective measures such as
the segmental signal-to-noise ratio (SegSNR) and PESQ.

In our work, we propose to take advantage of the application of wavelets as presented
in [1], with a hybrid approach similar to those of Ram and Mohanty [24], but with the
incorporation of initialized LSTM networks using transfer learning.
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1.2. Problem Statement

The purpose of speech enhancement of a noisy signal is to estimate the uncorrupted
speech signal from the degraded speech signal. Several speech denoising algorithms
estimate the characteristics of the noise from silent segments in the speech utterances or by
mapping the signal into new domains, such as with the wavelet transform.

In our case, we considered segments of noisy y; and clean s; speech to compare the
enhancement using wavelets, deep learning, and both methods in cascade. As stated in [25],
the enhancing process using wavelets can be summarized as follows: Given W(-) and
W~1(.), the forward and inverse wavelet transform operators, and D(-, A), the denoising
operator with threshold A, the process is performed using the three steps:

e Transform y(t) using a wavelet: Y = W(y(t)).
e Obtain the denoised version using the threshold, in the wavelet domain: Z = D(Y, A).
e Transform the denoised version into the time domain: s = W~1(Z).

On the other hand, the enhancement using artificial neural networks is performed by
learning a mapping function f between the spectrum of y; and s; with the criteria

T
min ) [ls: — Fly)][> @)
t=1

f is approximated using a Recurrent Neural Network, which outputs a version of the
denoised signal s, after the training process.

In the hybrid approach, the first step of wavelet denoising provides §; to the neural
networks, which is trained with the criteria

T
min Z l|s: — £(30)||%, ®)
=1

with the purpose of obtaining §, a better approximation of s; than s7 and s5.

The rest of this paper is organized as follows: Section 2 present in detail the Materials
and Methods. Section 3 presents the Results and Discussion, and finally, the Conclusions
are presented in Section 4.

2. Materials and Methods

In this section, the main techniques and procedures to establish the Experimental
Setup to evaluate the proposed Hybrid approach are presented.

2.1. Wavelets

Wavelets are a class of functions that have been successfully applied in the discrimina-
tion of data from noise data, emulating a filter. The wavelet transform uses an infinite set
of functions of different scales and at different locations to map a signal into a new domain,
the wavelet domain [26].

It has become an alternative to the Fourier transform and can be related to similar
families of function transformations, but with a particular interest in the scale or resolution
of the signals.

In the continuous-time domain, a wavelet transform of a function f(t) is defined
as [25]:

1 [ t—b
CWTy f(a,b) = Wy(a,b) = |a]2 /oof(t)‘I’<a>dt, (6)

where a # 0 and 4, b are real numbers that represent dilating and translating coefficients.
The function ¥(t) is called the mother wavelet and requires the property of having a zero
net area. There is a variety of mother wavelet functions, for example: Haar, Symlet, and
Ricker, among many others. Different values of a and b provide variants of scales and shifts
of the mother wavelet, as shown in Figure 1.
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Figure 1. Different scales and shifts of the Ricker wavelet, also known as the “Mexican hat” wavelet.

The fundamental idea behind wavelets is to analyze the functions according to the
scale [27], representing them as a combination of time-shifted and scaled representations of
the mother wavelet. For the selection of the best mother wavelet for a particular application,
an experimental approach needs to be implemented [28]. For example, in the case of
electroencephalogram (EEG) signals, more than forty mother functions were tested in [29],
to determine the Symlet wavelet of order nine as the best option for that problem.

The wavelet transform provides coefficients related to the similarity of the signal
with the mother function. A detailed mathematical description of wavelets can be found
in [30-32].

The application of wavelets for denoising signals using thresholding emerged in the
1990s from the works [33,34]. The threshold can be of two types: soft thresholding and hard
thresholding, and the idea is to reduce the magnitude or completely remove the coefficients
in the wavelet domain.

The process of denoising using this approach can be described using the following
steps [35]:

1.  Apply the wavelet transform to the noisy signal, to obtain the wavelet coefficients.
2. Apply the thresholding function and procedure to obtain new wavelet coefficients.
3. Reconstruct the signal by inverse transforming the coefficients after the threshold.

According to [36], wavelet denoising gives good results in enhancing noisy speech
for the case of White Gaussian noise. Wavelet denoising is considered a non-parametric
method. The choice of the mother wavelet function determines the final waveform shape
and has an important role in the quality of the denoising process.

2.1.1. Thresholding

The threshold process affects the magnitude or the amount of coefficients in the
wavelet domain. The two most popular approaches are hard thresholding and the soft
thresholding. In the first type, hard thresholding, the coefficients whose absolute values
are lower than A, are set to zero. The soft thresholding performs a similar operation, but
also shrinks the nonzero coefficients. This operation can be mathematically described as
sign(x)(x — A) if x > A and is 0 if x < A [25]. The two types of thresholding are illustrated
in Figure 2.



Computation 2022, 10, 102

60of 17

******* Hard threshold -7

Soft threshold

—2 -1 0 1 2

Figure 2. Illustration of hard and soft thresholding for wavelet coefficients.

To implement the thresholds, several estimation methods are available in the literature.

Four of the well-known standard threshold estimation methods are [37,38]:

1.

Minimax criterion: In statistics, the estimators face the problem of estimating a
deterministic parameter from observations. The minimax method minimizes the cost
of the estimator in the worst case. For the case of threshold selection, the principle
is applied by assimilating the de-noised signal to the estimator of the unknown
regression function. This way, the threshold can be expressed as:

[ 0(0.336+0.182910g, N) N > 32 -
- 0 N <32

where o = median(%) and w is the wavelet coefficient vector of length N.

Sqtwolog criterion: The threshold is calculated using the equation

/\] = 0’]' 210g(N]) (8)

where 0; is the median absolute deviation (MAD) and N; is the length of the noisy
signal at the jth scale.
Rigrsure: The soft threshold can be expressed as

A =0 /Wy )

where wy, is the bth squared wavelet coefficient chosen from a vector consisting of the
squared values of the wavelet coefficients and ¢ is the standard deviation.

Hersure: The threshold combines Sqtwolog and Rigrsure, given the property that the
Rigrsure threshold does not perform well at a low SNR. In such a case, the Sqtwolog
method gives better threshold estimation. If the estimation from Sqtwolog is A1 and
from Rigrsure is A, then Hersure uses:

. A A>B
A= { min(A,Ay) A >B, (10)
where, given the length of the wavelet coefficient N and s, the sum of squared wavelet
coefficients, the values of A and B are calculated as

_s—N

A= (11)
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B = (log, N)Iv/N (12)

2.1.2. No Thresholding Alternative

Research on the implementation of wavelet denoising without using a threshold can
be found in [39,40]. This approach considers using a functional analysis method based on
the entropy of the signal, and this algorithm takes advantage of a constructive structural
property of the wavelet tree with respect to a defined seminorm; it consists of searching for
minima for the low-frequency domain and other minima for the high-frequency domain.

2.2. Deep Learning

Deep learning is a subset of machine learning techniques that allows computers to
process information in terms of a hierarchy of concepts [41]. Typically, deep learning is
based on artificial neural networks, which are known for their capacity as universal function
approximations with good properties of self-learning, adaptivity, and advancement in input
to an output mapping [42]. With this capacity, computers can learn complex operations
and functions by building them out of simpler ones.

Previous to the development of deep learning techniques and algorithms, other ap-
proaches were almost unable to process natural data in their raw form. For this reason, the
application of pattern-recognition or machine-learning systems required domain expertise
to understand the problems, obtain the best descriptors, and apply the techniques using
feature vectors that encompass the descriptors [43].

The most common form of deep learning is by composing layers of neural network
units. The first level receives the data (in some cases, raw data), and subsequent layers
perform other transformations. After several layers of this process, significantly complex
functions can be learned. The feedforward deep neural network, or multi-layer perceptron
(MLP) with more than three hidden layers, is a typical example of a deep learning algorithm.
The architecture of a MLP organized with multiple units, inputs, outputs, and weights can
be represented graphically [44], as shown in Figure 3.

V' W o
{.ﬁ\?g{

W
A‘IA
Al

'o

Inputs
Outputs

Input layer Hidden layers

Output layer

Figure 3. Illustration of a multi-layer perceptron. Information flows from inputs to outputs through
connections between unit i and unit j denoted as w]l In each node, outputs sf{ are produced and
propagated towards the outputs o0, of the network. Hidden layers may differ in the number of units.



Computation 2022, 10, 102

8of 17

Each layer performs a function from the inputs (or the outputs of the previous layer)
to the outputs, using activation functions defined in each unit and the value of the weight
of the connections. For example, a network with three layers defines functions fi(-),f2(-),
f3(+), and this way, the whole network performs a function from inputs x to the outputs
defined as f(x) = f3(f2(f1(x))) [41].

The purpose of the training process of a deep neural network is to approximate some
mapping function f(x;0), where x are inputs and 0 the networks’ parameters, such as
the value of the connections between units and the hyperparameters of learning (e.g., the
learning rate and the bias). One of the most relevant aspects of deep learning is that the
parameter 0 is learned from data using a general-purpose learning procedure [43]. This
way, deep learning has shown its capability to solve problems that have resisted previous
attempts in the artificial intelligence community.

The success of deep learning in speech recognition and image classification in 2012
is often cited as the leading result of the renaissance of deep learning, using architectures
and approaches such as deep feedforward neural networks, convolutional neural networks
(CNNs), and Long Short-Term Memory (LSTM) [45].

One of the most important architectures of deep neural networks applied to signal
processing is autoencoders. Autoencoders are designed to reconstruct or denoise input
signals. For this reason, the output presents the same dimensionality as the inputs. Thus,
autoencoders consist of encoding layers and decoding layers. The first stage removes
redundant information in the input, while decoding layers reverse the process [17]. With
the proper training, pairs of noisy/clean parameters can be presented to the autoencoder,
and the approximation function gives denoising properties to the network.

A massive amount of data are often required, given the huge amount of parameters
and hyperparameters of autoencoders and the deep networks in general. Furthermore, the
recent advances in machine parallelism, such as cloud computing and GPUs, are of great
importance to perform the training procedures in a short time [45].

From this experience, we selected the recent implementation of the stacked dual-
signal transformation LSTM network (DTLN). This implementation combines a short-time
Fourier transform (STFT) and a pre-trained stacked network. This combination enables
the DTLN approach to extract information from magnitude spectra and incorporate phase
information, providing state-of-the-art performance.

The DTLN has 128 units in each of its LSTM layers. The networks’ inputs correspond
to information extracted from a frame size of 32 ms and a shift of 8 ms, using an FFT
of size 512. An internal convolutional layer with 256 filters to create the learned feature
representation is also included. During training, 25% of dropout is implemented between
the LSTM layers. The optimization algorithm applied to update the network weights was
Adam, first presented in [46], using a learning rate of 10 x e~3. This implementation is
capable of real-time processing, showing state-of-the-art performance. Its architecture
combines LSTM, dropout, and convolutional layers, resulting in a total of 986753 trainable
parameters. Further details of the implementation can be found in [47].

2.3. Proposed System

In order to test our proposal, the first step is to generate a dataset of noisy speech
with both natural and artificial noise at several signal-to-noise ratio levels. This procedure
establishes parallel data of clean and noisy speech and allows the comparison of speech
quality before and after the application of the denoising procedures.

Our focus is on the combination of wavelet-based and deep-learning-based speech
denoising, with the purpose of comparing the performance of both separately and analyzing
the suitability of both in a two-stage approach. In the case of wavelet-based denoising,
the following four steps were applied in an extensive experimentation, according to the
description presented in Section 2.1:

1. Select a suitable mother wavelet.
2. Transform each speech signal using the mother wavelet.
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3. Select the appropriate threshold to remove the noise.
4. Apply the inverse wavelet transform to obtain the denoised signal.

There is a variety of criteria that can be used to choose the mother wavelet, such as
the ones presented in [27,48]. In our case, an experimental approach was implemented,
following a process of trial and error with commonly used wavelet families for speech
denoising such as Daubechies, Symlet, and biorthogonal.Different wavelets from each
family (using common ranges) were tested using objective measures, and the wavelets
with the best results in each case were tested again; finally, the wavelet with the best
results among the wavelet families was selected. This process was made using the Wavelet-
Denoiser System (https://github.com/actonDev/wavelet-denoiser, accessed on 28 April
2022) to determine the best combination of mother wavelets and parameters for each case.

For the application of the deep-learning-based denoising, the procedure can be sum-
marized in the following steps:

1. Select one architecture of the network: In our experiments, we used the stacked dual-
signal transformation LSTM network architecture presented in [47]. The architecture
was based on two LSTM layers followed by a fully connected (FC) layer.

2. Train the deep neural network with pairs of noisy and clean speech at the inputs and at
the outputs. For the case of the hybrid approach, the outputs of the wavelet denoising
were used as the inputs of the neural network, which were re-trained completely
using pairs of wavelet-based denoising and clear speech.

3. Establish a stop criterion for the training procedure.

As in the case of wavelets, objective measures can be applied to validate the benefits
of the deep neural networks in each noise type and level. With the purpose of performing a
proper comparison, the same amount of epochs for training the deep neural networks was
used for both (noisy, clean) and (wavelet-denoised, clean) procedures. Additionally, for the
sake of completeness in the experiments, we also considered a two-stage approach with the
application of wavelet denoising to the results of the deep-learning-based denoising proce-
dure. This experimental approach can be summarized in four possibilities to implement
and compare, as illustrated in Figure 4.

(a) (b) (c) (d)
Noisy Speech NOiS_y §peech Wavelet-Enhanced Deep Learning -
(Training set) Speech (Training set) Enhanced
Wavelet L, DNN L, DNN Wavelet
Transform Transform
1 ‘,' Clean Speech Clean Speech :l:

(Training set) : (Training set)

Threshold Noisy Threshold

Speech Wavelet-Enhanced

I m ' Speech (Test set)
Inverse “' ".'”' Inverse

3

Wavelet

Wavelet
Transform P Trained DNN Transform
> Trained DNN

Wavelet Enhanced Deep leamning Hybrid Wavelet +
Speech Encanced Speech Deep learning Hybrid Deep learning +
Enhanced Speech Wavelet Enhanced

Speech

Evaluation metrics

Figure 4. The four implementations for experimental setup: wavelet enhancement (a), deep learning
enhancement (b), wavelet + deep learning enhancement (c), deep learning + wavelet enhancement (d).
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2.4. Experimental Setup

In this section, a detailed description of the data and the evaluation process is presented.

2.4.1. Dataset

In order to test our hybrid proposal based on wavelets and deep learning, we chose the
CMU ARCTIC databases, constructed at the Language Technologies Institute at Carnegie
Mellon University. The recordings and their transcriptions are freely available in [49].
The dataset consists of more than 1100 recorded sentences, selected from Project Guten-
berg’s copyright-free texts. The recordings were sampled at 16KHz in WAV format.

Four native English speakers recorded each sentence, and their corresponding files
were labeled as bdl (male), slt (female), clb (female), and rms (male). For our experiments,
we chose the slt voice and defined the training, validation, and test sets according to the
common criteria of the data available: 70%, 20%, and 10%, respectively. The randomly
selected utterances that conform the test set for the deep neural networks were shared in
the evaluation of the four cases described in Section 2.3.

2.4.2. Noise

To compare the capacity of the four cases contemplated in our proposal, the database
was degraded with additive noise of three types: two artificially generated noises (White,
Pink) and one natural noise (Babble). To cover a wide range of conditions, five levels of
signal-to-noise (SNR) ratios were considered for each case. This gives the following dataset:

The whole set of voices to compare can be listed as:

*  Clean, as the dataset described in the previous section.

*  The same dataset degraded with additive White noise added at five SNR levels: SNR
—10, SNR —5, SNR 0, SNR 5, and SNR 10.

®  The clean dataset degraded with additive Pink noise added at five SNR levels: SNR
—10, SNR -5, SNR 0, SNR 5, and SNR 10.

¢  The clean dataset degraded with additive Babble noise added at five SNR levels: SNR
—10, SNR —5, SNR 0, SNR 5, and SNR 10.

2.4.3. Evaluation

The evaluation metrics defined for our experiments were based on measures com-
monly applied in noise reduction and speech enhancement, namely, perceptual evaluation
of speech quality (PESQ), and frequency domain segmental signal-to-noise ratio (SegSNR).

The first measure is based on a psychoacoustic model to predict the subjective quality
of speech, according to ITU-T recommendation P.862.ITU. Results are given in interval
[0.5,4.5], where 4.5 corresponds to a perfect signal reconstruction [50,51].

The second measure is frame-based, calculated by averaging the SNR estimates at
each frame, using the equation:

N EL 152( )
SegSNR = 37 ; (SG,]) — X))

(13)

where X (i, j) is Fourier transform coefficient of frame i and S(i, j) is the coefficient for the
processed speech. N is the number of frames and L the number of frequency bins. The values
of this measure are given in the interval [—20, 35] dB.

Additionally, we present waveforms and spectrogram visual inspection to illustrate
the result of the different approaches.

3. Results and Discussion

In this study, five SNR levels, three types of noise, and two objective measurements
were explored to evaluate the performance of the four different algorithms described in
Section 2.3. A sample visualization of the different waveforms involved in the study is
shown in Figure 5.
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Figure 5. Sample of waveforms with and without degradation with White noise and the results after
several procedures presented in the study.

The objective measures of PESQ and SegSNR are reported as the mean of fifty measures
calculated on the test set. To select the mother wavelet and the threshold, extensive
experimentation was conducted. For every case reported in the results, more than twenty
possibilities were tested. The most successful mother wavelets were db1 and db2.

For the deep learning and hybrid approaches involving neural networks, the stop
criterion was defined as the number of epochs. The same number of epochs used for
the training of the networks from the noisy to clean signal were replicated in the hybrid
proposals, for the sake of comparison.

The results for the PESQ measure and the Babble noise degradation and filtering are
presented in Table 1. A first relevant result can be observed on the small benefit that was
measured for the case of the wavelet enhancement. A better performance than those of the
wavelets was obtained with the deep learning enhancement for every SNR level of Babble
noise. In terms of the hybrid combination of wavelets and deep learning, the deep neural
networks as a second stage achieved an improvement in three of the five cases of PESQ.
Furthermore, an increase on SegSNR was measured in two of the five cases with the same
hybrid combination, as presented in Table 2.

For all the cases of the SegSNR measure with Babble noise, it was observed that the
wavelet transform did not represent significant improvements of the results. This can
explain why none of the hybrid approaches performed better than deep learning alone,
with the exception of two cases.
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Table 1. Babble noise PESQ. The higher values represent better results. In bold is the best result for

each SNR level.
SNR Noisy Wavelets DL Wavelets + DL DL + Wavelets
—-10 0.44 0.49 0.53 0.51 0.52
-5 0.53 0.54 0.95 1.43 0.95
0 0.82 0.83 1.85 1.86 1.85
5 1.32 1.32 2.20 2.16 2.20
10 1.94 1.94 2.42 2.53 2.43

Table 2. Babble noise SegSNR. The higher values represent better results. In bold is the best result for

each SNR level.
SNR Noisy Wavelets DL Wavelets + DL DL + Wavelets
—-10 —15.74 —15.72 —0.98 —0.99 —0.94
-5 —10.75 —10.74 0.76 0.69 0.621
0 —5.80 —5.82 4.90 4,94 4.62
5 —0.98 —1.04 6.38 6.02 5.92
10 3.60 3.43 7.12 7.58 6.45

The benefits of the hybrid approaches were consistently better for the case of Pink
noise. The results for PESQ and the different levels of this type of noise are presented in
Table 3. For this measure, the hybrid approach of wavelets + deep learning gave better
results in four of the five noise levels. This results are important because the application of
wavelets did not improve any of the cases in terms of the SNR, but, as shown in Table 4, an
increase in SegSNR was consistent.

Such results can be interpreted in terms of improvements incorporated into the signals
with the application of wavelets, which did not improve the perceptual quality of the
speech sounds, but the mapping of the noisy signals into a different version is beneficial
for the enhancement using deep learning.

Table 3. Pink noise PESQ. The higher values represent better results. In bold is the best result for

each SNR level.
SNR Noisy Wavelets DL Wavelets + DL DL + Wavelets
—-10 0.16 0.04 1.27 1.29 1.26
-5 0.46 0.42 1.50 1.54 1.49
0 0.83 0.83 1.65 1.74 1.63
5 1.39 1.39 2.14 2.13 2.13
10 1.99 1.99 2.31 2.32 2.30

Table 4. Pink noise SegSNR. The higher values represent better results. In bold is the best result for

each SNR level.
SNR Noisy Wavelets DL Wavelets + DL DL + Wavelets
-10 -15.11 —-9.98 4.26 4.51 4.36
-5 —10.14 =5.11 4.95 5.23 5.09
0 —5.22 —5.11 5.05 5.65 5.15
5 —-0.43 —0.42 7.31 7.22 7.16
10 4.08 3.92 7.57 7.53 7.12

The best results of the hybrid approach of wavelets + deep learning were obtained
for the case of White noise. Table 5 shows the results of the PESQ measure. For all the
noise SNR levels, such a hybrid approach gave the best results, even when the first stage of
wavelet enhancement did not improve the quality of the signal. However, in a similar way
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to the previous case, Table 6 shows how the wavelets improved the SegSNR in all the cases
of White noise degradation.

Table 5. White noise PESQ. The higher values represent better results. In bold is the best result for
each SNR level.

SNR Noisy Wavelets DL Wavelets + DL DL + Wavelets
—10 0.28 0.11 1.34 1.36 1.34

-5 0.58 0.56 1.67 1.75 1.65

0 0.94 0.94 1.76 1.81 1.75

5 1.43 1.43 1.92 1.92 1.90

10 1.95 1.94 2.23 2.44 2.20

Table 6. White noise SegSNR. The higher values represent better results. In bold is the best result for
each SNR level.

SNR Noisy Wavelets DL Wavelets + DL DL + Wavelets
—-10 —15.74 -12.77 2.83 3.64 2.90
-5 —-10.77 —7.84 5.50 6.40 5.70
0 —5.84 —3.03 7.71 8.61 7.85
5 -1.03 1.49 9.54 10.21 9.66
10 3.54 5.51 11.29 11.51 11.341

The improvements on the SegSNR measure with the hybrid approach were consistent
also at all SNR levels of White noise. For this case, it is also significant that the hybrid
combination of deep learning and wavelets as a second stage also surpassed the results of
deep learning.

For all types of noise, the application of wavelets as the second stage of enhancement
did not represent any relevant benefit in terms of PESQ, in comparison to the deep learning
approach. From a visual inspection of the spectrograms in Figure 6, it seems that the
application of wavelets introduced some patterns at the higher frequencies and blurred
some relevant information at those bands as well.

This kind of result may explain also why wavelets did not improve significantly the
PESQ of the noisy utterances, but helped to improve the SegSNR (in particular in the case
of White noise). Especially for the case of White noise, the wavelets as an intermediate
representation of the signals seemed to represent advantages for the application of the deep
learning enhancement.

The results of this work may represent similar benefits to recent proposals of combining
wavelets and deep learning, for example, in [52], where deep learning performed the
mapping in the wavelet domain. In our case, deep learning was applied as a second stage
of enhancement (and as a first stage prior to wavelets). In that work, relevant benefits in
terms of improving the SNR were found.

Other hybrid or cascade approaches have been tested recently in similar domains,
for example, speech emotion recognition [53]. The results of this study may represent an
opportunity to develop more hybrid approaches, where the benefit of each stage can be
analyzed separately, in a similar way to image enhancement, where different algorithms to
enhance aspects such as noise, blur, and compression have been applied separately, using a
cascade approach.
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Figure 6. Spectrograms with results of the enhancement process. First row: clear utterance. Second
row: noisy utterance, with Babble SNR 0. Third row: wavelet enhancement. Fourth row: hybrid
wavelet+deep learning enhancement.

4. Conclusions

In this paper, we analyzed the hybrid combination of wavelets and deep learning
for the enhancement of speech signals. For this purpose, we conducted an extensive
experimentation for the selection of parameters of the wavelet transform and the training of
more than forty deep neural networks to measure whether or not the combination of both
deep learning and wavelets (as both the first or second stages) benefits the enhancement
of speech signals degraded with several kinds of noise. To establish a proper comparison,
some restrictions were introduced in the experimentation, such as the limitation of epochs
during training to match the hybrid and deep learning cases.

The results showed benefits of the hybrid application of first wavelet enhancement
and deep learning as a second stage, especially for the case of White noise. Those benefits
were measured in comparison to the noisy signal and the enhancement with wavelets and
deep learning alone. For other types of noise, in particular Babble, the hybrid approach
presented mixed results, with benefits on some of the SNR levels analyzed. This type of
noise, which is more complex and irregular than the synthetic White and Pink noises, was
the most challenging scenario of those contemplated in this work. The application of deep
learning as a unique stage presents better results for that case. For the case of Pink noise,
the hybrid approach enhancement shows better results than the separate algorithms for the
higher levels of noise. When the SNR was as low as 5 or 10, deep learning performed better.

The wavelet denoising succeed in enhancing the signals in terms of SegSNR (except
for Babble noise, where the benefits were almost null), but some artifacts observed in
the spectrograms may explain why its benefits were not measurable in terms of PESQ.
Regardless, the output obtained with the wavelet enhancement represents a better input to
the deep neural networks than the noisy signals. The benefits of applying a combination
of deep learning and other algorithms are present in the scientific literature, and future
works may define the particular benefits of the separate algorithms in order to establish
optimized hybrid applications for particular noise types and levels.
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Several research opportunities can follow the results of this study. For example, an
analysis of delays in real-time applications using the hybrid proposal could be addressed in
order to establish the feasibility of implementation in a particular hardware and integrated
software. Furthermore new scenarios, such as far-field speech enhancement for application
in video conferencing or multi-speaker enhancement, can be analyzed in terms of hybrid
approaches in order to select the best simple or hybrid algorithms.
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FC Fully connected

GPU Graphics processing unit

MLP Multi-layer perceptron

MMSE  Minimum mean-squared estimation
MAD Median Absolute Deviation

PCA Principal component analysis

PESQ Perceptual evaluation of speech quality
RFBN Radial basis function network

STFT Short-time Fourier transform
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