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Abstract: An aging society increases the demand for emergency services, such as EMS. The more
often EMS is needed by patients, the more medical staff are needed. During the COVID-19 pandemic,
the lack of medical staff became a critical issue. This research aims to combine the allocation of trained
volunteers to substitute for medical staff and solve the EMS relocation problem. The objective of the
proposed research is to (1) minimize the costs of the system and (2) maximize the number of people
covered by the EMS within a predefined time. A multiobjective variable neighborhood strategy
adaptive search (M-VaNSAS) has been developed to solve the problem. From the computational
results, it can be seen that the proposed method obtained a better solution than that of current practice
and the genetic algorithm by 32.06% and 13.43%, respectively.

Keywords: EMS location problem; multiobjective variable neighborhood strategy adaptive search;
relocation problem; internet of things

1. Introduction
1.1. Motivation

The International Social Security Association (ISSA) reports that the proportion of
the population over 64 years old will increase from 16% to 26% by 2050. The aging of the
world’s population is accelerating. The larger size of the aging population confirms the
development of the world’s healthcare system; however, it also requires reformulating
various public policies such as health, housing, social services, and pension systems.
Elderly people prefer to remain in their own homes rather than moving into retirement
care facilities; thus, older people inhabit homes that are randomly spread throughout a city.
When an emergency service is needed due to a health problem of an elderly person, the
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emergency medical service (EMS) needs to arrive at the target location within a predefined
time in order to, potentially, save the life of the patient. The traveling time of the EMS to
the patient depends on (1) the distance from the EMS’s location to the patient’s location
and (2) the current traffic situation (CTS) of the route used by the EMS. Sometimes, even
when the EMS is located close to the patient’s location, the traveling time is high due to
current traffic conditions. This paper presents a methodology to solve the EMS’s location
problem (EMS-LP), and the current traffic situation is considered. A multiobjective variable
neighborhood strategy adaptive search (M-VaNSAS) is used to solve the EMS-LP, while
the IOT is used to track the CTS. The IOT sends the CTS to the central processing unit
(CPU); then, the M-VaNSAS uses these data to calculate the correct location of the EMS. A
correct location of the EMS is defined as enabling the EMS to arrive at the patient’s location
within a predefined time. The predefined time is divided into two categories: (1) promised
service time (PST: R2); (2) excellent service time (EST: R1). R1 is set to 8 min, and R2 is set
to 20 min. As the number of elderly people is growing, the number of required EMSs is
also increasing. EMS cars/trucks (hardware) are not difficult to find or buy for use in the
healthcare system; however, the number of emergency medical technicians (EMTs), who
need to be on standby with the EMS, is always limited. In Thailand, trained volunteers
(TVs) are used as substitutes for experienced EMTs. Different TVs have different experience
levels and different costs. The experience of the EMT affects the chances of the survival of
the patient in severe cases. An EMS needs enough experienced staff in order to guarantee
the service quality of all EMSs in the system; thus, the assignment of the right TV to an
EMS offers the full capability of the EMS to rescue patients before sending them to the
hospital. In this study, the assignment of TVs to work with the EMS is integrated into the
model; therefore, the EMS has full capacity and the lowest assignment cost. In this article,
we present a combination of the EMS relocation problem and the TV assignment problem
(EMS-LP-TVS) in order to maximize the following objectives: (1) minimize the total costs
of the system; (2) maximize the number of people who can be covered within the R1 time.
The framework of the proposed problem is shown in Figure 1.
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Figure 1 illustrates the proposed problem and an approach to finding a solution. It
begins with installing equipment to assess the current traffic situation (smart radar speed);
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information from this IOT device is sent via LoRa over the internet to the server; then, the
server sends information back to the EMS and TV via a mobile application. In this step, the
staff assignment and EMS relocation algorithm are used.

1.2. Related Works

The EMS location/relocation (EMS-L/R) problem is to locate/relocate the EMS when-
ever the traffic situation or patient demand is changed. The EMS-L/R has been solved
statically [1–3] and dynamically [4]. Static planning deals with a single period; Zidi et al. [5]
presented a mathematical model based on the vehicle routing problem to represent the EMS
location problem and solved it by a hybrid simulated annealing algorithm and tabu search
(SA-TS). The demand and traveling time were collected from historical data. When the
result was obtained, it was used until the new demand and traveling time were obtained
(the next planning period). Bélanger et al. [6] presented a combination of EMS static location
planning with an EMS dispatching strategy to reach the patient within the specified time,
while Mouhcine et al. [7] included road accident history in the model to create an optimal
route for the EMS.

Researchers focus more on dynamic planning, where the location/relocation is de-
termined through multiple period planning. Multiple period planning is needed due to
the changing demand of the EMS and the fact that the traveling time from the current
location to the patient may change during the time of the day or the day of the week.
Schmid and Doerner [8] presented a mixed integer program to represent a multiperiod
EMS location problem in which the current traffic situation was integrated into the model.
The average speed of the traffic along a street, which varied depending on the time of day,
was collected. These data were used to calculate the optimal location of the EMS, which
varied throughout the day, and the result showed that the dynamic relocation strategies had
better performance than the static ones. Rajagopalan et al. [9] presented a comprehensive
simulation model to minimize the number of ambulances used to service the varying
patient demand. This research also focused on multiple period planning in which the
demand of the patients and traveling time of the EMS varied throughout the planning
time. EMS demand varies with time, such as on a working day, when people are in office
locations, while on the weekend, people may stay home or be in shopping areas; thus, the
location of the population varies throughout time.

The traveling time of the EMS is affected by the current traffic situation of the city’s
streets. Most research has used historical data, which were collected manually or electroni-
cally from the electronic devices. These electronic devices include speedometers, radar, and
range finders. While these devices have been widely used by the police and researchers,
they have not been used in the real-time relocation problem.

The critical issue mentioned during the COVID-19 pandemic [10] was healthcare
system management, particularly the resource allocation problem. Ma et al. [11] proposed
a dynamic programming model to study bed allocation in hospitals for different patient
types during the pandemic. Yuk-Chiu Yip [12] presented guidelines for healthcare resource
allocation based on an ethical analysis. Biswas et al. [13] revealed the composition of the
COVID-19 exposure-measurement framework, which can help with vaccine prioritiza-
tion and resource allocation. Kim et al. [14] showed that a vaccine with lower resource
requirements (wider reach) can significantly contribute to reducing the infection rate of the
population and revealed that the tradeoffs between efficacy and reach are critical for re-
source allocation decisions between different vaccine types for improving health outcomes.
From the mentioned research, we can see that during the pandemic, resource availability
was the critical issue to manage. Human resources in the healthcare system are one of the
most critical parts that cannot be boosted in a very short time to cover a difficult period,
such as the COVID-19 pandemic. Chen et al. [15] studied the problem by integrating
medical staff allocation and the staff scheduling problem in uncertain environments using
a two-stage algorithm based on goal programming to determine the smallest possible
number of medical staff required and to create the best schedule for them. Vieira et al. [16]



Computation 2022, 10, 103 4 of 24

proposed a stochastic mixed-integer linear programming model that optimized the alloca-
tion of radiation therapy technologists to multiple operations in radiotherapy over a set of
scenarios of patient inflow. The goal was to maximize the (expected) number of patients
completing pretreatment within the waiting time target. An EMS requires a high number of
medical staff since every minute the patient has to wait for medical treatment dramatically
reduces their chance of survival. In Thailand, the EMS stands by at the location from
which it can reach patients within the predefined time. However, a large city such as Ubon
Ratchathani, Thailand, with more than 1.5 million inhabitants, needs a high number of
EMSs. Each EMS vehicle needs at least two staff, one driver, and one medical staff member
who can provide first aid to the patients. During the pandemic, medical staff needed to
remain on standby at hospitals; therefore, they could not be on standby with the EMS at
the EMS locations. Here, a medically trained volunteer (TV) could be used as a substitute
for professional medical staff [17–19]. The TV has different experience, which results in
different pay. Therefore, the right assignment of a TV to an EMS will generate a suitable
cost for the city and the service quality of the EMS. In this research, the experiences of a
TV will be collected and assigned to a specified EMS. All EMSs must have a minimum
service quality, which is controlled by the minimum total experience level of the TV with
the responsibility for a specified EMS.

The EMS-LP-TVS is the first time that staff allocation and EMS relocation problems
have been integrated. Previously, the EMS relocation problem has been integrated with
other NP-hard problems, such as the dispatching problem [6] and the vehicle routing prob-
lem [7,20–23]. The methodology used to solve the EMS and location/relocation problem
has included set covering and its extension [24,25], tabu search [4], linear programming [26],
variable neighborhood search (VNS) [8,27], hybridization of simulated annealing algorithm
and tabu search [5,28], particle swarm optimization [29], and ant colony optimization [7].

The algorithm used in this research is the variable neighborhood strategies adaptive
search (VaNSAS), which was first proposed by Pitakaso et al. [30], who used VaNSAS to
solve the location routing problem. VaNSAS comprises four steps: (1) generate an initial
set of tracks (solution); (2) perform the track touring process; (3) update the heuristics
information; (4) repeat steps 2 and 3 until termination. The basic concept of VaNSAS
is that the quality of the current solution improves by using many types of heuristics.
The heuristics include metaheuristics, simple heuristics, or the well-known local search
procedure. Generally, three to four heuristics are designed for use in VaNSAS. The track
can be used to select the heuristics in black box optimization. A suitable improvement
procedure (IP) is selected with different probabilities. The probability of selecting the IP is
iteratively updated depending on the average solution quality of tracks that previously
used that IP. VaNSAS has been successfully used to solve various problems, such as the
location routing problem, assembly line balancing problem [31], and scheduling and routing
problems [32].

1.3. Contribution

This study aims to find the procedure to assign the TVs to the EMSs and locate the
EMSs at the right place, so that an EMS can reach the patient before the PST. The objectives
of the proposed procedure are to (1) minimize the total costs of the system (traveling
cost and TV assignment cost) and (2) maximize the number of people covered within R1.
The multiobjective EMS location model has been developed to solve this problem. The
objectives’ function is evaluated using (1) the weighted sum method and (2) Pareto front
analysis. The contribution of our research is as follows.

1. The assignment of the trained medical volunteer (TV) is first integrated into the
EMS location problem. Due to the limitation of medical staff during a pandemic, a
shortage of medical staff occurs; hence, a TV is used as a substitute for the medical
staff; however, the levels of TVs’ experience are different. If the TV’s assignment is
not suitable, it can affect the ability of the EMS to rescue the patients, which is the
main concern of this article.
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2. The IOT is used to collect the real average speed of a car along a particular road
obtained from speed checkpoints. The IOT’s device submits this information to the
EMS center, the data are analyzed, and real-time location information is sent to the
EMS. This can help the EMS to reach the patients within the PST.

3. A new black box (improvement box) selection formula is first presented to improve the
search performance of the original VaNSAS. A multiobjective variable neighborhood
strategy adaptive Search (M-VaNSAS) is presented in this paper, and it is evaluated in
comparison to existing well-known metaheuristics.

This paper is organized as follows. Section 2 discusses the related work and back-
ground to this study. Section 3 presents the proposed method, which is a modified differ-
ential evolution algorithm, while Sections 4 and 5 present the computational results and
conclusions, respectively.

2. Mathematical Model Formulation

In this section, the mathematical model is developed for the proposed problem (EMS-
LP-TVS).

Indices

i: EMS i (i = 1,2,3, . . . ,I)
l: Trained volunteer (TV)
k = 1,2,3, . . . ,K
j: Community j (j = 1,2,3,..,J)
t: Time period t (t = 1,2,3,..,T)

Parameters

I: Number of EMSs
J: Number of communities
H: Maximum traveling time from the EMS to the community
R1: EST time
R2: PST time
El: Experience level of TV l

Fl

{
1 i f TV l is highly experienced TV

0 otherwise
Tijt: Traveling time per kilometer from i to j at time t (min)
L: Number of trained volunteers
T: Length of planning period
O: Maximum communities that an EMS can serve
M: Minimum level of experience in an EMS
Cl: Cost of TV l (THB)
D: Maximum number of TVs in one EMS
Ai: Capacity of EMS i
Pjt: Size of population in j time t
B: Traveling cost per min of an EMS

Decision Variables

Xijt

{
1 when EMS i serve community j at time t

0 otherwise

Nijt

{
1 when EMS i serve community j not within R1 at time t

0 otherwise

Yi

{
1 if EMS i is in use

0 otherwise

Sli

{
1 if TV l is assigned to EMS i

0 otherwise
Uijt Traveling time of EMS i to comunity j at time t
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Objective Functions

Min Z1 =
T
∑

t=1

J
∑

j=1

I
∑

i=1
BTijtXijt +

L
∑

l=1

i
∑

i=1
ClSli

and

Max Z2 =
T
∑

t=1

J
∑

j=1

I
∑

i=1
Pit
(
1− Nijt

) (1)

Subject To

Uijt ≤ H ∀i, ∀j (i = 1 . . . I) (j = 1 . . . J) (t− 1..T) (2)

Uijt ≤ TijtXijt ∀i, ∀j (i = 1 . . . I) (j = 1 . . . J) (t− 1..T) (3)

Uijt ≤ R1 +
[
(H − R1)Nijt] ∀i, ∀j (i = 1 . . . I) (j = 1 . . . J)(t− 1..T) (4)

∑J
j=1 PjtXijt ≤ AiYi ∀i (i = 1 . . . I) (t− 1..T) (5)

∑J
j=1 Xijt ≤ O ∀i (i = 1 . . . I) (t− 1..T) (6)

∑I
i=1 Xijt ≥ 2 ∀j (j = 1 . . . J) (t− 1..T) (7)

∑I
i=1 Sli ≤ 1 ∀l (l = 1 . . . L) (8)

∑L
l=1 ElSli ≥ M ∀i (i = 1 . . . I) (9)

∑L
l=1 FlSli ≥ 1 ∀i (i = 1 . . . I) (10)

Equation (1) shows the objective functions of the proposed problem, which is com-
posed of two objectives: (1) Z1 is used to find the minimum total cost of operating the
EMS, i, plus the traveling cost from i to j, and the assignment cost of the TVs to the EMS,
and (2) Z2 is used to reveal the maximum number of people who are served within the
R1 time. The first term of the first objective is the total distance used to travel from the
location of EMS to the community multiplied by the traveling cost per kilometer. The result
of multiplying is the total traveling cost that can occur in the system. The second term of
the first objective operating cost of the EMS, when the TV is assigned to the EMS, will incur
a cost and the summation of all assigned TV costs if it is the total operating cost of all EMSs.
The second objective has one term which is the total population that are covered within R1

time by at least two EMSs (R1-CoV). The cost term is calculated by multiplying the size of
the population of a community i at time t by one minus the community sign or number
(0 or 1). If the community sign is 1, it means that the community is not covered within
R1 by at least two EMSs, although we will obtain the total size of the population that are
covered by at least one EMS within R1 time.

Equations (2) and (3) are used to define the traveling time from EMS i to j. Equation (4)
shows whether community i can be reached by R1 or R2. Equations (2)–(4) have to be used
together in order to form the value of Uijt, which is the decision variable that informs
the system about what is the traveling time from community j to EMS i at time t, and it
forces the decision variable Nijt to be zero or one. Equations (5) and (6) ensure that an
EMS does not serve more patients than its capacity. Equation (5) controls the number
of people that a particular EMS needs to service, which has to be less than its limitation,
and Equation (6) is used to control the total number of communities that needs to be less
than the EMS’s limitation. Equation (7) determines that a single community must be
covered by at least two EMSs. Equations (8)–(10) are used to control the assignment of
EMTs; i must have at least 1 experienced EMT, and the total experience of an EMS must be
above the minimum requirement.
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3. The Proposed Method

In our research, we propose the multiobjective variable neighborhood strategy adap-
tive search (M-VaNSAS). M-VaNSAS comprises four steps: (1) generate a set of initial tracks
(solution); (2) perform the track touring process by using black box operators (improvement
box: IB); (3) update the heuristics information; (4) repeat steps (2) and (3) until termination.
How we used M-VaNSAS to solve the proposed problem is explained below.

3.1. Generate the Initial Tracks

In this section, the NT (number of tracks) was randomly generated. Table 1 represents
four tracks. Each track had a dimension of 1 × D, where D represents the number of
available EMSs. As shown in Table 1, D was set to 5. The initial WP used in this paper
was a real number, which was uniformly randomly generated between 0 and 1 using
Equation (11).

Yij1 = U(0, 1) (11)

where Yij1 is the value in track i, position j, at iteration 1. j is defined as the number of
available EMSs, and i is the predefined number of tracks. Another two sets of tracks
were also randomly generated in the first iteration, the set of best tracks (BT) and random
tracks (RT).

Bij1 = U(0, 1) (12)

Rij1 = U(0, 1) (13)

where Bijt is the set of the best solution collected from the best solution found, from
iterations one to iteration t; Rijt was randomly selected using the formula. The first Bijt and
Rijt, which had to appear in the first iteration, were randomly generated using Equations
(12) and (13), respectively. Equation (14) was used to update Yijt. The value of Yij in iteration
t + 1 was equal to the value of Yij in iteration t, which used a selected IB operator. Table 1
shows an example of the four randomly generated tracks.

Table 1. NP of initial tracks.

Elements 1 2 3 4 5
Track No

1 0.77 0.07 0.82 0.14 0.44
2 0.28 0.76 0.55 0.96 0.52
3 0.83 0.60 0.43 0.77 0.63
4 0.12 0.91 0.58 0.41 0.98

Table 1 shows the value of the track elements. Track 1 comprised five elements, which
had values of 0.77, 0.07, 0.82, 0.14, and 0.44, respectively. They represent the value of
the elements used to decode the proposed problem’s solution. The decoding method is
explained in the following section.

The Decoding Method

The decoding method was used to decode the values of the elements representing the
solution to the proposed problem. The decoding method used in this article comprises
three steps: (1) assign communities to an available EMS (at least two EMSs must attend to
a community within a predefined time: R1 = 12 min, R2 = 20 min); (2) sort the value of the
elements from lowest to highest (list A); (3) assign the unused EMSs to the first position
of list A; (4) reassign communities to the remaining EMSs; and (5) repeat steps (3) and (4)
until a feasible solution is found during the assignment. The decoding method procedure
is described in the following steps.

Table 2 shows the distance between the candidate location, the EMS, and the commu-
nity (V) where the patients live.
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Table 2. Traveling time of time t of the location i to locate the EMS j.

Community 1 2 3 4 5 6 7 8 9

Location

1 4 20 7 8 18 6 17 16 24
2 11 17 21 21 23 12 6 13 20
3 7 10 15 18 19 15 12 24 4
4 19 17 5 22 21 16 13 17 16
5 8 9 10 6 5 16 6 23 9

Step 1: Assign the community to an available EMS. The results of Step 1 are shown in
Table 3.

Communities 1 to 9 have the following numbers of inhabitants at time t: 100, 120,
220, 130, 150, 100, 140, 130, and 159 people, respectively, while the EMSs 1 to 5 have the
capacities of 900, 800, 1000, 900, and 800, respectively. The limitation of the number of
communities that an ambulance can cover is seven. The results of the first assignment are
shown in Table 3.

Table 3. Community assignment results.

Community 1 2 3 4 5 6 7 8 9 #Patients #Community

EMS

1 1 1 1 1 610 4
2 1 1 1 399 3
3 1 1 1 1 600 4
4 1 1 1 1 389 4
5 1 1 1 400 3

Step 2: Sort the elements of value from lowest to highest. The sorting of track 1 is
shown in Table 4.

Table 4. Sorting results of the value of elements of track 1.

Before sort
Elements 1 2 3 4 5

Value 0.77 0.07 0.82 0.14 0.77

After sort
Element 2 4 5 1 3

Value 0.07 0.14 0.77 0.77 0.82

From Table 4, the original track of track 1 value in element 1, 2, 3, 4, and 5 is 0.77,
0.07, 0.82, 0.14, and 0.77, respectively. The element will be sorted according to its value in
elements in ascending order; thus, the new element sequence after the sorting is 2, 4, 5, 1,
and 3, which have values in elements of 0.07, 0.14, 0.77, 0.77, and 0.82, respectively. The
element sequence will be used in the next step of the proposed decoding method.

Step 3, Step 4, and Step 5 are performed simultaneously. The final result is shown in
Table 5.
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Table 5. Results of the decoding method.

Community 1 2 3 4 5 6 7 8 9 #Patients #Community

EMS

1 1 1 1 1 1 1 840 6
2 0 0
3 1 1 1 1 1 1 859 6
4 0 0
5 1 1 1 1 1 1 799 6

As seen in Table 5, EMS numbers 2 and 5 were unused, and the communities attended
to by these two EMSs were assigned to other available EMSs. In relocating an EMS to
the community, the following conditions must be considered: (1) the number of patients
attended to by the EMS must be under the EMS’s capacity and (2) it must also be under
the maximum number of communities the EMS can cover. In the next step, after we
have obtained the used and unused EMSs, we will assign the TVs to the used EMSs. The
methodology to assign the TVs to the used EMSs can be explained stepwise as follows.

Trained Volunteer Assignment Procedure

Step 1: Divide the TVs into two groups, which are experienced (El ≥ 1) and inexperi-
enced (El < 1) TVs according to their predefined labor cost.

Step 2: For each group, sort the value of Cl in ascending order to obtain the lists of
experienced TVs (List 1) and inexperienced TVs (List 2).

Step 3: Assign the first TV in List 1 to the first used EMS, and assign the second TV
from the top of List 2; if the total experience level does not reach M, assign the second TV
from the next position in List 2.

Step 4: Repeat Step 3 until all used EMSs are fully assigned to TVs. An example result
of TV assignments is shown in Table 6.

Table 6. TV assignment results.

Community 1 2 3 4 5 6 7 8 9 Exp.TV InExp.TV Total Exp.

EMS

1 1 1 1 1 1 1 3 (1.3) 1 (0.8) 2.1
3 1 1 1 1 1 1 6 (1.4) 4 (0.7) 2.1
5 1 1 1 1 1 1 2(1.3) 5 (0.9) 2.2

From Table 6, there are nine TVs (1 to 9), who have an experience level of 0.8, 1.3, 1.3,
0.7, 0.9, 1.4, 0.5, 1.6, and 0.7, respectively. The cost of the nine TVs is 250, 360, 320, 260, 280,
390, 400, 420, and 400, respectively. The expected experience level of a TV is 2.0. Therefore,
EMS 1 is served by TVs number 3 and number 1, EMS number 3 is served by TVs number
6 and number 4, and EMS number 5 is served by TVs number 2 and number 5.

3.2. Perform Track Touring Process

The tracks iteratively tour the black box. The black box features solution improvement
methods that are not limited to a local search. The black box (improvement box: IB) can
include metaheuristics, heuristics, and simple local search. In our research, four black
boxes were designed to use the following methods: random-transit (RT), best-transit (BT),
inter-transit (IT), and scaling factor (SF). We used a roulette wheel selection for the track to
select the preferred black box. The selection of the black box is controlled by Equation (14).

Pbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1 + ρ

∣∣∣Abt−1 − Abest
t−1

∣∣∣
∑B

b=1 FNbt−1 + (1− F)Abt−1 + KIbt−1 + ρ
∣∣Abt−1 − Abest

t−1

∣∣ (14)
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where Pbt is the probability of selecting the black box in iteration t; Nbt−1 is the total number
of tracks that selected a black box in the previous iterations; Abt−1 is the average objective
value of all tracks that selected black box b in all previous iterations; Abest

t−1 is the global
best solution found before iteration t; Ibt−1 is a reward value, which increases by 1 if a
black box finds the optimal solution in the last iteration but is set to 0 otherwise; B is the
total number of black boxes; F is the scaling factor (F = 0.5); and K is the parameter factor
(K = 1). Equation (14) is the formula that each track will select the preferred black box in
each iteration. It is constructed based on four terms that can guide the solution to a good
searching area. These terms are (1) number of times that the tracks have selected that black
box in the previous iterations; (2) the average solution value of the tracks that have selected
that black box; (3) if that black box contains the current best solutions; (4) how far the
average solution of tracks that select that black box is from the solution of the best black
box. We can see that, if the black box generates a good solution in previous iterations, it
will increase the probability of selecting that black box in the current iteration.

The black box is operated using Formulas (15)–(18). Let us define the set of tracks in
a single iteration. Assume that B is the number of tracks comprised in one iteration. Set
A as the set of tracks that selected black box b, and set Z as the set of tracks that were not
selected to operate in black box b, while the number of tracks in A plus Z is equal to B. We
denote n as the track that was randomly chosen from the sets of track Z, and track i is the
track that was chosen from the sets of track A.

Random-transit (RT) Yijq =

{
Yijq−1 i f Rij ≤ C
Rijq otherwise

(15)

Best-transit (BT) Yijq =

{
Yijq−1 i f Rij ≤ C
Bgbest

j otherwise
(16)

Inter-transit (IT) Yijq =

{
Yijq−1 i f Rij ≤ C
Ynjq otherwise

(17)

Scaling factor (SF) Yijq =

{
Yijq−1 i f Rij ≤ C
RijYijq−1 otherwise

(18)

Bgbest
j and Bpbest

hj are the sets of tracks that gave the global best solution and best
solution obtained from black box b, respectively. Rij is the random number of track i in
position j.

Generally, the local search or local improvement of the metaheuristic is to increase
two types of search capability: (1) diversification or exploration search; (2) intensification
search. The exploration search behavior is designed to let the current solution escape from
the local optimal solution and the intensification search will let the current solution search
intensively for the current search space. Equations (15)–(18) fail in these two categories.
Equations (15) and (18) are designed to increase the diversification or exploration capability,
while Equations (16) and (17) are used to increase the intensification search. In Equation
(16), the current solution is guided by the current best solution to the good searching space,
while in Equation (17), the current solution is guided by the neighbor’s solution of it.

The sub-iteration update position of Yijq+1 was executed using Equation (19). q was
the sub-iteration of black box b, which was the predefined parameter. C was the predefined
parameter and was set to 0.7 [25]. The evaluation of the solution that was iteratively
searched used Equation (20).

Yijq+1 =

{
Yijq i f fit ≤ fiq and update fit = fiq and Yijt = Yijq

Yrjq otherwise
(19)

fiq = w1 f 1
iq + w2 f 2

iq (20)
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where fit is the objective function of track i at iteration t, and fiq is the objective function of
track i at sub-iteration q. The objective used for Equation (20) derives from Equation (21),
where w1 is the random weight for objective 1, w2 = (1 − w1), and w1 = U(0, 1). f 1

iq and f 2
iq

are the objectives of objective Z1 and Z2, respectively.

Max Z = −w1
T

∑
t=1

J

∑
j=1

I

∑
i=1

BTijtXijt +
L

∑
l=1

i

∑
i=1

Cl + w2
T

∑
t=1

J

∑
j=1

I

∑
i=1

Pit
(
1− Nijt

)
(21)

The Pareto front was used to retain the nondominated solution. We denote f 1(yr) and
f 2(yr) as the objective functions of objective 1 and 2 of track r, respectively. LetR represent
a set of feasible solutions, denote y = (y1,y2, . . . ,yi), which is the set of decision vectors, and
f v(y)=( f 1(y), f 2(y),.., f V(y)) is the set of objective functions of vector y. y will dominate y’
if and only if f v(y) ≤ f v(y’) for all v = 1,2,3, . . . ,V.

The promising solution from the Pareto front is analyzed using TOPSIS. The tech-
nique for order of preference by similarity to ideal solution (TOPSIS) is used to reveal the
promising set of parameters. TOPSIS was first presented by Hwang and Yoon [33]. TOPSIS
begins by constructing a normal decision matrix, which will transform various attributes’
dimensions into a non-dimensional attribute by using Equations (22)–(28).

rlv =
xlv√

∑L
l=1 (Xlv)

2
(22)

Ulv = wvrlv (23)

U∗v =

{
max

L
Ulv i f v ∈ V ; min

L
Ulv i f v ∈ V∗

}
(24)

U′v =

{
min

L
Ulv i f v ∈ V ; max

L
Ulv i f v ∈ V′

}
(25)

S∗l =

√√√√ V

∑
v=1

(U∗v −Ulv)
2 (26)

S′l =

√√√√ V

∑
v=1

(U′v −Ulv)
2 (27)

C∗l =
S′l

S∗l + S′l
(28)

where xlv is the value of the objective function of point l objective v, l is the number of points
in the Pareto front, V* is a set of positive objectives functions, and V’ is a set of negative
objective functions. wv is the predefined parameter, which is the weight of each objective
function. U* (U∗ =

{
U∗1 , U∗2 , . . . , U∗n

}
) and U’ (U′ =

{
U′1, U′2, . . . , U′n

}
) are the positive

and negative ideal solutions, respectively. S∗l and S′l are the separation measures for each
alternative from both the positive and negative ideal solutions, respectively, which will be
used to calculate the relative closeness to the ideal solution (C∗l ). The set of parameters that
has a value of C∗l closest to 1 will be selected as the promising solution.

3.3. Update the Probability of the Black Box (IB)

In this step, some of the heuristic information used in Equation (14) should be updated,
and the variables to be updated are shown in Table 7.
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Table 7. List of variables that need to be iteratively updated.

Variables Update Procedure

Nbt Total number of tracks that select black box b from iteration 1 to iteration t

Abt
Abt =

Nbt
Tbt

.
when Tbt is total cost generated from all tracks that select black box b (iteration 1 to iteration t)

Ibt

Ibt = Ibt−1 + G

when G =

{
1 i f black box b contain global best solution in iteration t

0

Bgbest
j Update global best track

Rijq Randomly select the value in position of all track, all position

3.4. Repeat Steps 3.2–3.3

Steps 3.2–3.3 are iteratively repeated until termination. The pseudocode of M-VaNSAS
used in this paper is shown in Algorithm 1.

Algorithm 1: Multiobjective variable neighborhood strategy adaptive search (M-VaNSAS)-EMS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Input: Number of tracks (NT), Number of parameters (D), Scaling factor (F),
Improvement factor (K), Value of CR, Number of improvement box (IBPop)
Output: Best_Track_Solution
Begin
Population = Initialize Population (NT, D)
IBPop = Initialize InformationIB (NIB)
Encode Population to WP
while the stopping criterion is not met do
for i = 1: NT
//selected improvement box by roulette wheel selection
selected_IB = RouletteWheelSelection(IBPop)
if(selected_IB = 1) Then
new_u = RT (u)
Perform RT
else if(selected_IB = 2)
new_u = BT (u)
Perform BT
else if(selected_IB = 3)
new_u = IT (u)
Perform IT
else if(selected_IB = 4)
new_u = SF(u)
Perform SF
Perform Decoding method, Weight Sum Method
if(CostFunction(new_u) ≤ CostFunction(Vi)) Then
Vi = new_u
Update Pareto Front
End for loop //end update heuristics information
End while loop
End

As seen in Algorithm 1, M-VaNSAS will start by generating a set of initial solutions,
known as the initial set of tracks. Then, this set of tracks will improve their solution quality
by performing the improvement procedure using the black box. The black box will be used
as a tool to improve the solution quality of the current set of tracks. There are four black
box methods: RT, BT, IT, and SF. The tracks will iteratively search for the new solution. The
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maximum iteration of the searching of the tracks is the predefined variables, and it will be
used as the stopping criterion for the proposed algorithm.

3.5. Comparison Methods

In this study, we compared the proposed methods using a genetic algorithm. A genetic
algorithm (GA) is a nature-inspired metaheuristic that consists of four steps: (1) generate
an initial solution; (2) perform a mutation procedure; (3) perform a crossover procedure;
(4) perform a selection procedure. We modified the GA proposed by [34] for our problem.
The selection process of GA was modified using Equation (21).

3.6. IOT and Mobile Application Architecture Design

Figure 2 shows the system architecture design, smart radar speed, which combines a
battery power supply with solar cells, and was installed on a road to measure the speed
of a car on that road. The Smart Radar Speed was connected to the LoRa network, which
measures the speed of a car, obtains the coordinates from the GPS, and sends those data to
the server to record the data in the database. Then, for every predefined planning period
(t), the server calculates the average speed on each road to optimize the relocation of the
ambulance. The server sends the updated information on the relocation of the ambulance
to each ambulance via the EMS application for driving.

Figure 2. The proposed architecture design.

The design concept of this system consists of three main parts: smart radar speed, the
EMS application, and the server system.

1. The smart radar speed consists of six components: an ESP32 LoRa, a GPS module, a
Doppler radar module, an LM2596 module, a power panel, and an LED matrix. The
Doppler radar module, GPS module, and LED matrix were connected to a printed
circuit board; the core of the board is an ESP32 LoRa microcontroller, which has a
32-bit CPU operating at 160 MHz, with 16 MB of ROM and 512 KB of RAM, and the
integrated LoRaWAN communication in the 920–925 MHz band [35]. The circuit board
used the power from a 12 V lithium−ion rechargeable battery with a solar cell. The
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LM2596 module was used to generate 5 V of power for the circuit board. Furthermore,
the LED matrix displays the car speed obtained from the Doppler radar module.

2. The EMS application, shown in Figure 3, runs on the Android platform. The EMS
application needs to connect to 4G, with authentication via a login; then, the applica-
tion obtains the data from the server’s database and displays them on the screen of
the application. A Google Maps API displays the current location and journey of the
ambulance on the application. Furthermore, the EMS application provides navigation
when the system notifies the ambulance to relocate.

3. The server system performs the average speed calculation for each road and the
lowest cost of the ambulance rerouting using an optimization algorithm; then, the
server relays the ambulance relocation information to the EMS application.

Figure 3. User interface EMS application design.

In conclusion, the methodology to solve the proposed problem (EMS-LP-TVS), which
is the combination of the EMS location problem and the trained medical volunteer (TV), is
as follows.

(1) Assign the TV to the EMS using M-VaNSAS algorithm.
(2) Use current traffic condition to locate the EMS in the relevant location using M-

VaNSAS algorithm.
(3) Update real-time traffic situation using IOT and mobile application.
(4) Reroute the EMS using M-VaNSAS algorithm.
(5) Send the new location to the driver of EMS, leading back to step 1 (if needed).
(6) Redo steps (3)–(5) at least every 3 h.

The proposed method was used as a tool for simulation and testing is reported in
Section 4.

4. Computational Results and Framework

In this section, we divide the computational result into two parts: (1) the simulation
result of the VaNSAS compared with GA using the randomly generated datasets; (2) the
case study results compared with the current method.
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4.1. Compare the Proposed Method (M-VaNSAS) with the Results from the Optimization Software
(Lingo v.16) and the Genetic Algorithm

The proposed method was coded using Python and evaluated with a PC Intel ® Core
™ i5-2467M CPU 1.6 GHz, produced in USA. The testing of the performance of M-VaNSAS
was on 14 randomly generated datasets compared with the existing heuristics. The details
of the tests are shown in Table 8.

Table 8. Details of 14 randomly generated test instances.

#Instance #Community #Inhabitant #EMS #Instance #Community #Inhabitant #EMS

A-1 45 3561 14 A-8 100 16,361 25
A-2 50 3773 14 A-9 100 17,058 25
A-3 75 10,581 20 A-10 100 17,981 25
A-4 75 11,246 20 A-11 100 18,375 27
A-5 80 12,498 20 A-12 120 18,891 27
A-6 80 14,356 23 A-13 120 21,239 27
A-7 80 15,029 23 A-14 148 28,491 32

Remark: # means number of.

The details of the random parameters used to generate the tests are shown in Table 9.

Table 9. Random parameter settings.

Parameters Defined Value Parameters Defined Value

I U [8, 48] R2: PST 15 min,
J U [20, 153] L U [50, 120]
H 28 min T 24 h
R1 7 min O 5 communities
Pjt U [50, 450] M 2.5
El U [0.8, 1.2] D 3 persons

Tijt: 1 km/min Cl U [350, 550]
B: 8 Baht/min Ai U [500, 1500]

In the first experiment, we used the GA and M-VaNSAS to solve the proposed problem
for all 14 test instances. The GA and M-VaNSAS were used to collect the Pareto front;
then, TOPSIS, with varying weights of w1 and w2, was used to evaluate the difference
between both heuristics. The stopping criteria of GA and M-VaNSAS were set to 45 min for
all test instances. Each instance was executed five times, and the best solution was used
as representative of the method. Table 10 shows the computational results using various
values of w1 and w2 (TOPSIS).

Table 10. Computational results of all 14 test instances when varying w1 and w2.

#instance

GA M-VaNSAS

w1 = 0.3; w2 = 0.7 w1 = 0.5; w2 = 0.5 w1 = 0.7; w2 = 0.3 w1 = 0.3; w2 = 0.7 w1 = 0.5; w2 = 0.5 w1 = 0.7; w2 = 0.3

f1
iq f2

iq f1
iq f2

iq f1
iq f2

iq f1
iq f2

iq f1
iq f2

iq f1
iq f2

iq

A-1 14,781 2817 12,422 2619 12,006 2591 13,783 3248 12,297 3053 12,018 2998
A-2 15,915 3129 14,196 3004 13,827 2833 14,481 3441 13,491 3219 13,120 3105
A-3 20,177 7381 19,894 6781 18,759 6593 18,718 9172 17,809 8728 16,915 8201
A-4 23,481 8198 22,372 7712 21,981 7346 19,964 10,276 19,182 9871 18,782 9134
A-5 24,147 9274 23,394 9063 22,855 8539 22,120 11,924 21,853 11,036 21,105 10,863
A-6 25,601 11,092 24,712 10,753 24,016 9982 23,318 13,291 22,375 12,857 21,982 12,019
A-7 26,018 12,841 25,984 11,284 25,091 10,982 24,723 14,874 23,812 13,464 22,981 13,006
A-8 28,843 13,918 27,819 13,054 27,047 12,457 26,918 15,982 26,118 14,824 25,336 14,048
A-9 30,027 14,771 29,871 14,048 29,284 13,871 28,864 16,499 27,085 16,010 26,849 15,812
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Table 10. Cont.

#instance

GA M-VaNSAS

w1 = 0.3; w2 = 0.7 w1 = 0.5; w2 = 0.5 w1 = 0.7; w2 = 0.3 w1 = 0.3; w2 = 0.7 w1 = 0.5; w2 = 0.5 w1 = 0.7; w2 = 0.3

f1
iq f2

iq f1
iq f2

iq f1
iq f2

iq f1
iq f2

iq f1
iq f2

iq f1
iq f2

iq

A-10 31,238 15,052 30,845 14,281 30,018 14,028 29,016 16,821 28,347 16,124 27,817 16,036
A-11 34,919 16,989 34,074 16,042 33,853 15,781 31,183 17,295 31,028 17,038 30,075 16,982
A-12 35,620 17,001 34,591 16,891 34,437 16,057 32,019 17,837 32,113 17,249 31,097 17,028
A-13 37,871 18,964 36,726 18,058 36,112 17,982 34,901 20,193 33,782 19,517 33,044 19,040
A-14 50,928 24,219 48,786 23,124 46,790 23,006 43,928 27,981 42,018 26,757 41,282 25,593

average 28,540.43 12,546.14 27,549.00 11,908.14 26,862.57 11,574.86 25,995.43 14,202.43 25,093.57 13,553.36 24,457.36 13,133.21

%diff 16.69 11.66 12.64 16.15 9.83 18.50 6.29 0.00 2.60 4.57 0.00 7.53

From Table 10, we can see that, on average, M-VaNSAS provided a better solution
than that of GA. M-VaNSAS produced a 9.80% lower cost than that of GA and 13.49% more
people were covered within the R1 time by the ambulance. Using the data obtained from
Table 10, graphs plotted to show the effects of using different weights of w1 are presented in
Figures 4 and 5. The best objective for objective one (minimize total cost) is when we used
M-VaNSAS with w1 = 0.7 and w2 = 0.3, while the best objective for the second objective
(maximum population coverage) is when we used M-VaNSAS and set w1 = 0.3 and w2 = 0.7.
On average, GA generated a worse solution than that of M-VaNSAS, at 14.25%. The relative
difference (%diff) is calculated using Equation (29).

%di f f =
SC − SB

SB × 100% (29)

where SC is the candidate solution and SB is the best solution among all candidate solutions.

Figure 4. Effect of weight w1 on the total cost given by different solution approaches.
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Figure 5. Effect of weight w1 on the number of populations covered by the ambulances within R1

traveling time (Cov-R1) given by different solution approaches.

From Figures 4 and 5, we can see that when the weight of w1 increased, the total cost
of the system was lower, as w1 is the weight that focuses on reducing the total cost. In all
w1 values, M-VaNSAS generated a lower cost than that of the GA. By contrast, when the
weight of w1 increased, the Cov-R1 decreased, because an increase in w1 implies a decrease
in the value of w2, which is the weight of increasing the Cov-R1 objectives.

The average ratio of the Pareto-optimal solution (ARP) was used to compare the
performance of GA and M-VaNSAS in obtaining a good result for the proposed problem.
Let N1,N2, . . . Nk be the number of iterations used in experiment k. n1, n2, . . . , nk are the
number of Pareto-optimal solutions found in the kth experiment, and K is the total number
of experiments. Therefore, the ARP is calculated using Equation (30).

ARP =

n1
N1

+ n1
N2

+ . . . + nk
Nk

K
(30)

The results of the ARP are shown in Table 11.

Table 11. Comparison of Pareto ratio of GA and M-VaNSAS.

Iteration
GA M-VaNSAS

Number of Pareto Points ARP Number of Pareto Points ARP

200 280 1.4 340 1.7
500 601 1.20 891 1.78
800 933 1.17 1023 1.28

1000 1284 1.28 1506 1.51
1200 1490 1.24 1701 1.41
1500 1680 1.12 2014 1.34

Average 1203 1.28 1362 1.46

From the computational results shown in Table 11, we see that M-VaNSAS found
12.68% more Pareto points than the GA; thus, we can conclude that M-VaNSAS is better
than the GA in finding more solutions. Figures 6 and 7 compare the Pareto fronts of the
M-VaNSAS and GA.
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Figure 6. Pareto front of GA.

Figure 7. Pareto front of M-VaNSAS.

From Figures 6 and 7, we can see that the Pareto front of the GA had more gaps
between the Pareto points than that of M-VaNSAS. From the data that we collected, GA
found 1680 Pareto points during 1500 iterations, while M-VaNSAS found 2014 points using
the same number of iterations. The ARP of the GA was 16.42% less than that of M-VaNSAS,
which means the chances of GA having a larger gap between each Pareto point were higher,
as shown in Figures 6 and 7.

The next experiment examined the effectiveness of the proposed method when we
simplified the objective function of the proposed problem to see the cost expenditure per
person. The objective function shown in Equation (1) was simplified to Equation (31). The
solution was compared with the result obtained from Lingo V.16 within 480 h and the GA
using 45 min of computational time. The results are shown in Table 12, and the statistical
test using the Wilcoxon signed-rank test is shown in Table 13.

Min Z =
∑T

t=1 ∑J
j=1 ∑I

i=1 BTijtXijt + ∑L
l=1 ∑i

i=1 ClSli

∑T
t=1 ∑J

j=1 ∑I
i=1 Pit

(
1− Nijt

) (31)
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Table 12. Average cost per person of the population in the communities.

Best Result from Lingo v.16 GA M-VaNSAS

A-1 5.28 4.74 4.03
A-2 5.01 4.73 4.19
A-3 3.45 2.93 2.04
A-4 3.52 2.90 1.94
A-5 3.74 2.58 1.98
A-6 3.02 2.30 1.74
A-7 3.18 2.30 1.77
A-8 3.42 2.13 1.76
A-9 3.45 2.13 1.69

A-10 3.12 2.16 1.76
A-11 4.04 2.12 1.82
A-12 3.56 2.05 1.86
A-13 4.21 2.03 1.73
A-14 4.51 2.11 1.57

average 3.82 2.66 2.13

Table 13. p-value of the statistical test using Wilcoxon signed-rank test of data given in Table 11.

GA M-VaNSAS

Lingo v.16 0.00096 0.00096
GA 0.00096

From Tables 12 and 13, we can see that M-VaNSAS obtained the best result among all
three methods. It significantly improved the solution obtained from the best result found
by Lingo using 480 h by 44.15% and improved the solution quality of Lingo by 19.69%.
Figure 8 shows the progressive plot of the best solutions found during 1100 iterations of
the GA and M-VaNSAS.

Figure 8. Progressive plot of the development of the best average cost per person found during the
search with the proposed methods.

From Figure 8, we can see that M-VaNSAS found a new solution during the search
132 times, while GA found a new best solution 101 times, which means that M-VaNSAS had
a higher ability to find a good solution during the search; the average difference between
the new best solution and the current best solution was 3.19%, while GA had an average
difference of 1.87%. This implies that M-VaNSAS surpassed the local optimum more than
the GA.
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The next experiment we performed examined the efficiency of using a different black
box or improvement box. In this experiment, Equation (31) was used as the objective
function for all M-VaNSAS. The stopping criterion was the computational time, which was
set to 45 min. All the proposed M-VaNSAS approaches were used to solve all 14 random
test instances. Details of the subalgorithm of M-VaNSAS are shown in Table 14.

Table 14. Details of the subalgorithm of M-VaNSAS.

IB Types Random-Transit (RT) Best-Transit (BT) Inter-Transit (IT) Scaling Factor (SF)

M-VaNSAS-1
√

M-VaNSAS-2
√

M-VaNSAS-3
√

M-VaNSAS-4
√

M-VaNSAS-5
√ √

M-VaNSAS-6
√ √

M-VaNSAS-7
√ √

M-VaNSAS-8
√ √

M-VaNSAS-9
√ √ √

M-VaNSAS-10
√ √ √

M-VaNSAS-11
√ √ √

M-VaNSAS-12
√ √ √

The checklist shown in Table 14 contains the improvement boxes used in the M-
VaNSAS for each subalgorithm. The results of all the proposed M-VaNSAS approaches are
shown in Table 15. The average cost used in different numbers of improvement boxes is
shown in Figure 9.

Table 15. Average cost per population (baht/person) of using the different proposed methods.

M-VaNSAS Subalgorithm

Use 1 IB Use 2 IB Use 3 IB Use 4
IB

1 2 3 4 5 6 7 8 9 10 11 12 13

A-1 5.19 5.23 5.21 5.19 4.87 4.76 4.97 4.75 4.41 4.36 4.44 4.56 4.03
A-2 5.04 5.11 5.07 5.32 4.98 4.83 4.78 4.69 4.34 4.28 4.38 4.32 4.19
A-3 4.45 4.58 4.62 4.37 4.13 3.89 3.84 3.89 3.52 3.14 3.26 2.87 2.04
A-4 3.51 3.27 3.24 3.18 2.89 2.54 2.49 2.4 2.22 2.18 2.26 2.29 1.94
A-5 3.25 3.17 3.21 3.18 2.94 2.85 2.58 2.47 2.18 1.99 2.24 2.45 1.98
A-6 2.78 2.92 2.65 2.59 2.43 2.57 2.49 2.28 2.11 2.08 2.42 2.31 1.74
A-7 2.69 2.54 2.85 2.73 2.46 2.31 2.51 2.26 2.03 1.93 2.25 2.18 1.77
A-8 2.71 2.88 2.96 2.23 2.52 2.47 2.28 2.54 2.15 2.32 2.08 2.02 1.76
A-9 2.65 2.71 2.59 2.64 2.28 2.32 2.39 2.31 2.18 2.26 2.29 2.18 1.69
A-10 2.51 2.67 2.62 2.5 2.42 2.38 2.54 2.44 2.06 2.18 2.25 2.08 1.76
A-11 2.64 2.69 2.58 2.66 2.57 2.4 2.59 2.38 2.19 2.28 2.04 2.43 1.82
A-12 2.78 2.5 2.63 2.73 2.64 2.66 2.71 2.73 2.26 2.31 2.18 2.37 1.86
A-13 2.59 2.64 2.78 2.56 2.55 2.48 2.73 2.51 2.3 2.37 2.16 2.08 1.73
A-14 2.38 2.35 2.47 2.29 2.43 2.15 2.27 2.32 1.92 1.85 2.1 1.89 1.57

Ave. 3.23 3.23 3.25 3.16 3.01 2.90 2.94 2.86 2.56 2.54 2.60 2.57 2.13

% dif 51.64 51.64 52.58 48.36 41.31 36.15 38.03 34.27 20.19 19.25 22.07 20.66 0.00
Note: the %dif is the relatively different result of the subalgorithm with the best solution.
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From Table 15 and Figure 9, we can conclude that using 1 IB generated the highest
cost, while using 4 IB generated the best solution among all the methods. M-VaNSAS-13,
which used all the improvement boxes (four) in M-VaNSAS, obtained the best solution of
all the methods. It obtained a lower cost than using 3, 2, and 1 IB by 33.76%, 27.21%, and
17.04%, respectively, with the same computational time. In sum, the use of a higher number
of improvement boxes provided a better solution. In using the different relative results of
the subalgorithms with the best subalgorithm, we found that 1, 2, and 3 IB exceeded the
cost of 4 IB by 51.06%, 37.44%, and 20.54%, respectively.

Figure 9. Average cost per population (baht/person).

4.2. Case Study Results Compared with the Current Method

The designed application and the M-VaNSAS were implemented in a real case study,
the EMS service of Muang Ubon Ratchathani City, which has 217,396 people, 155 commu-
nities, and 35 EMS vans. M-VaNSAS was used for 30 days, and the results of the average
arrival time at the patients, maximum and minimum arrival time at the patients, minimum
total cost incurred during the 30 days, and the total distances covered by all EMSs were
recorded. The results are shown in Table 15. GA was used for 30 days using the same real
data obtained from the implementation of M-VaNSAS. The results of M-VaNSAS and GA
were compared with current practice, which the city government uses to manage the EMS.
The results are shown in Table 16.

Table 16. Comparative results of the current situation and the proposed method.

Average Arrival
Time to Patients

(min)

Maximum Arrival
Time to Patients

(min)

Minimum Arrival
Time to Patients

(min)

Total Cost
Incurred (baht)

Total Distance
(km)

Current situation 22.48 31.72 8.10 1,718,386 8298
GA 18.60 25.01 7.05 1,348,727 6981

M-VaNSAS 13.37 16.95 5.04 1,167,479 5811

From the computational results, we can see that using the proposed method generated
a 40.52% faster arrival time at the patients, which can increase the chances of patient
survival. The maximum arrival time decreased from 31.72 min to 16.95 min, or 46.56%,
while the minimum arrival time at the patients decreased from 8.10 to 5.04 min, or 37.77%.
Finally, the total cost and total distance traveled were reduced by 32.06% and 29.97%,
respectively. Comparing the GA and M-VaNSAS, M-VaNSAS generated a 13.43% lower
cost than that of the GA and recorded 16.76% less total distance than that of the GA. An
example of the locations of the EMSs during the day (a) and at night (b) is shown in
Figure 10.
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Figure 10. Day and night EMS location.

5. Conclusions and Future Outlook

We proposed a methodology to dynamically and optimally locate EMSs in order to
reach the patients on time. An IOT was installed to calculate the current traveling time from
point to point and connect this information with the designed EMS relocation algorithm.
Trained volunteers were assigned to the used EMSs in order to obtain the lowest assignment
cost of the whole system while maintaining the service level. The M-VaNSAS was proposed
to solve the problem, and the effectiveness was compared with the well-known genetic
algorithm (GA).

Four black boxes were used to improve the initially constructed methods. These
black boxes were random-transit (RT), best-transit (BT), inter-transit (IT), and scaling
factor (SF). The new black box selection formula was modified to obtain a better solution.
The link between Pareto analysis and the VaNSAS was first discussed in this paper to
achieve combinatorial optimization. The computational result showed that the M-VaNSAS
improved the solution quality of the GA by up to 19.69%. The case study results showed
that M-VaNSAS obtained 28.56% and 15.03% lower cost than that of the current procedure
and GA, respectively.

The proposed methods outperformed the current practice and the genetic algorithm
for the following reasons.

(1) The service time (average time to reach the patients) was reduced because of the ap-
plication and IOT system designed and used in this study. Real-time traffic reporting
to the central computer was used to reroute the ambulance; therefore, the EMS could
reach patients more quickly.

(2) The total cost and distance to service the patients were reduced due to the effectiveness
of the designed algorithm (M-VaNSAS).

(3) The service level of the patients was increased, as the number of people covered
within seven minutes increased with M-VaNSAS; this could reduce the number of
severe cases.

For future work, we know that patient demand for EMS is not always predictable, and
it occurs stochastically in the real word. Therefore, stochastic demand management will be
a focus in future research. Moreover, the integration of the EMS dispatching strategy should
also be present in order to obtain a good plan for the EMS location and dispatching strategy.
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