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Abstract: This paper presents an Artificial Neural Network (ANN)-based approach for predicting
tunnel stability that is both dependable and accurate. Numerical solutions to the instability of unlined
horseshoe tunnels in cohesive-frictional soils are established, primarily by employing numerical
upper bound (UB) and lower bound (LB) finite element limit analysis (FELA). The training dataset
for an ANN model is made up of these numerical solutions. Four dimensionless parameters are
required in the parametric analyses, namely the dimensionless overburden factor γD/c′, the cover-
depth ratio C/D, the width-depth ratio B/D, and the soil friction angle φ. The influence of these
dimensionless parameters on the stability factor is explored and illustrated in terms of a design chart.
Moreover, the failure mechanisms of a shallow horseshoe tunnel in cohesive-frictional soil that is
influenced by the four dimensionless parameters are also provided. Therefore, the current stability
solution, based on FELA and ANN models, is presented in this paper, allowing for the efficient
and accurate establishment and evaluation of an optimum surcharge loading of shallow horseshoe
tunnels in practice.

Keywords: tunnel stability; finite element; cohesive-frictional soils; underground opening; limit
analysis; artificial neural network

1. Introduction

The major goal during the construction phase of urban areas is to minimize the
destruction of adjacent structures and roadways above the ground surface due to the
ground settlement [1–3]. For this reason, geotechnical engineers are increasingly concerned
with the stability of subsurface structures such as tunnels, underground spaces, abandoned
mine workings, and pipelines. The most influential factor regarding shallow h tunnel
construction is a lack of stability, which is mostly caused by a surcharge loading above the
ground [4–11]. In this study, an artificial neural network (ANN) technique is introduced to
solve the tunnel stability problem in the form of a black-box-type prediction model which
aims to determine the critical surcharge loading imposed on the ground surface above a
shallow elliptical tunnel in cohesive-frictional soil.

The finite element limit analysis (FELA), a sophisticated numerical approach for
determining factors of safety and ultimate loads, has recently become an extensive tool for
developing precise plastic solutions to tunnel stability problems. To numerically determine
genuine plastic collapse loads, this approach employs optimization and finite element
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discretization techniques by including upper bound (UB) and lower bound (LB) bracketing,
which are based on plastic bound theorems to obtain the exact solutions. It is worth noting
that the UB and LB approaches are based on either kinematics or equilibrium [12,13].
Sloan [14] provides further information on the features and evolution of UB and LB FELA.
Moreover, various researchers, including Sloan and Assadi [15], Wilson et al. [16–18],
Yamamoto et al. [19,20], Keawsawasvong and Ukritchon [21,22], Keawsawasvong and
Likitlersuang [23], Keawsawasvong and Shiau [24], Ukritchon and Keawsawasvong [25,26],
Yang et al. [27–29], Zhang et al. [30], and Dutta and Bhattacharya [31], have previously
performed FELA to overcome the problems of unlined tunnels and trapdoors. In addition,
the influence of the non-associated flow rule on the face stability of tunnels was investigated
by Di et al. [32] and Zhang et al. [33]. The experimental investigation of mechanical
characteristics for linings of twin tunnels was also carried out by Zheng et al. [34]. Note
that these investigations were carried out with the constrained shapes of circular, square,
rectangular, and elliptical tunnels.

The pain point for maintaining the stability of an underground tunnel is the minimum
support pressure. Horseshoe-shaped tunnels can be utilized to minimize the amount of
support pressure required and to increase the amount of useable area for openings. To
minimize the excavation volume and satisfy the requirements of the geometrical constraints
for the construction of roads and related walkways, horseshoe-shaped tunnels are requested.
Various past constructions of horseshoe-shaped tunnels can be found in [35–37]. A few
earlier studies on the stability of horseshoe tunnels are relevant to the present study.
The initial study of horseshoe tunnels was carried out by Wilson et al. [18]; the analyses
were only conducted in undrained clay, and they provided a comparison with square
and rectangular tunnels, indicating that the horseshoe tunnel necessitates a lower support
pressure under the same conditions. Subsequently, the stability of dual horseshoe tunnels in
cohesive-frictional soil was investigated by Zhang et al. [38]. They employed upper bound
analysis to determine the critical unit weight. Later on, Bhattacharya and Sriharsha [39]
explored the stability of a long horseshoe tunnel in cohesive-frictional soil under plane
strain conditions. The internal support pressure was obtained via lower bound limit
analysis. Furthermore, the results were provided in terms of design charts, as were most of
the earlier horseshoe tunnel stability solutions. Therefore, it is complicated to apply their
results since there are no exact solutions provided, and approximation or interpolation is
required to obtain the stability solution.

In this study, the numerical solutions regarding the stability of horseshoe tunnels in
cohesive-frictional soils (or sandy soils) under plane strain conditions are presented by
employing the numerical technique of FELA to derive UB and LB solutions. In FELA,
four dimensionless parameters, namely soil strength parameters, soil unit weight ratio,
width-depth ratio, and cover-depth ratio, are utilized to perform a parametric analysis to
demonstrate their influence. The relationship between the parameters under consideration
is provided, as well as the failure mechanisms. An artificial neural network (ANN) tech-
nique, which is one of the soft computing approaches, is used to construct a black-box-type
prediction model. This artificial intelligence technique may acquire data from a sufficiently
compact information gathering and then establish a black-box-type prediction model to
resolve the problems represented by a closed-form equation. This study established an
improved model for promptly and reliably evaluating the stability of horseshoe tunnels in
cohesive-frictional soils via the combination of ANN and FELA techniques. It should be
emphasized that earlier investigations that combined the ANN and FELA techniques were
fairly restricted. Only a few investigations by Li et al. [40,41] and Qian [42], which adopted
the ANN technique for soil slope stability predictions based on FELA solutions, have been
reported. Keawsawasvong et al. [43] later employed a similar method to construct an
ANN model for rock tunnel stability problems, employing FELA solutions in conjunction
with the HB model as an input data set. Nevertheless, none of the preceding studies have
determined an ANN model for horseshoe tunnel stability. Therefore, this study introduces
novel soft computing techniques for assessing the stability of horseshoe tunnels in cohesive-
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frictional soils, resulting in a practical tool that relies on the ANN and FELA methodologies.
The concept proposed in this study will allow for the rapid evaluation of these concerns in
practice for shallow tunnel designs and construction in metropolitan regions.

2. Problem Statement

Figure 1 shows the problem definition of an unsupported infinitely long horseshoe
tunnel in cohesive-frictional soil under plane strain conditions. The geometry of the tunnel
consists of two parts, which are the half-circular tunnel roof with a diameter B and the
rectangular section with a width B and a vertical height of D/2. The tunnel has an overall
height of D, which is located beneath the ground level with a cover depth C. With the
accompanying flow rule, the soil mass around the tunnel is assumed to obey the Mohr-
Coulomb yield criterion. According to the Mohr-Coulomb yield criterion, the soil profile is
controlled by three parameters: effective cohesion (c′), effective friction angle (φ), and unit
weight (γ). The ground surface is subjected to a vertical surcharge loading (σs). It is worth
noting that the soil unit weight and the surface surcharge operate as vertical driving forces
leading to the event of a collapse, while the effective cohesion operates as an uplift force
that resists the driving force.
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Figure 1. Problem definition of an unsupported infinitely long horseshoe tunnel in a Cohesive-
frictional soil under plane strain condition.

To simplify the analyzed parameters, a dimensionless technique Butterfield [44] was
adopted with six considered dimensional input parameters, namely C, D, B, γ, c′, and
φ, which mainly influence the outcome of critical surcharge loading (σs) at the surface
of the ground. Moreover, the six dimensional input parameters are reduced into four
dimensionless input parameters, which can be stated in terms of the stability factor of
horseshoe tunnels in cohesive-frictional soil as follows:

σs

c′
= f (

γD
c′

,
C
D

,
B
D

, φ′) (1)

where σs/c′ represents the stability factor of horseshoe tunnel;
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γD/c′ represents the dimensionless overburden factor;
C/D represents the cover-depth ratio;
B/D represents the width-depth ratio;
φ represents the soil friction angle.
The parametric analysis for the considered parameters provides a variety of alterna-

tives that are useful in practice. More details on the chosen range of the four dimensionless
parameters encompassed in this study are provided in Table 1. The dimensionless in-
put and output data examined by FELA, on the other hand, are critical for developing a
nonlinear input–output mapping of the problem of horseshoe tunnel instability in cohesive-
frictional soils, which applies a neural network trained throughout an extreme learning
neural network.

Table 1. Input parameters.

Input Parameters Values Average

C/D 1, 2, 3, 4 2.5

B/D 0.5, 0.75, 1, 1.33, 2 1.116

γD/c′ 0, 1, 2 1

φ 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦ 15◦

3. Method of Analysis

The present study employs the numerical program OptumG2 FELA [45] to analyze the
stability problems of a horseshoe tunnel in cohesive-frictional soil. The numerical results
obtained by FELA will be utilized as input data in the ANN model. Numerous geotechnical
engineering concerns have been solved entirely by applying FELA to evaluate the stability
solution in terms of safety factors and limit loads (e.g., [46–58]). A depth ratio of C/D = 4
and varied values of B/D = 0.5, 1, and 2 are the selected cases of the models developed
by OptumG2, as seen in Figure 2a–c. Only half of the domain of the horseshoe tunnel
was simulated, with the line of symmetry placed to the domain’s left boundary which is
also represented in Figure 2a–c. In the FELA analysis, all numerical models are subjected
to the standard boundary conditions, where the left and right boundaries are considered
to be roller support that only allows the movement in the vertical direction. The bottom
boundary is considered to be a fixed support in which no movement is allowed in both the
horizontal and vertical directions along the plane. Free surfaces are provided within the
horseshoe tunnel and on the ground surface to indicate that free movement is permitted.
Furthermore, the loading multiplier function in OptumG2 is employed to place a uniform
surcharge vertically across the top of the ground surface. The critical surcharge loading (σs)
in the event of collapse is optimized according to the UB and the LB FELA.

In both the LB and the UB FELA, the soils are discretized into a series of triangular
components that are dispersed throughout the domain of the horseshoe tunnel problems.
The LB solutions are obtained in the LB FELA analysis by establishing a statically acceptable
stress field, located inside three-noded triangle elements, that has its own fundamental
unknowns of stress components. Through the loading multiplier approach, the collapse
surcharge is maximized by obeying all equilibrium requirements based on the LB FELA
technique that is developed throughout the whole domain of the problem. Moreover, a
kinematically acceptable velocity field in the domain is generated in the UB FELA analysis,
using each node’s vertical and horizontal velocities as the fundamental unknowns. The
loading multiplier approach is used to reduce the collapse surcharge by comparing the
level of current activity performed by the external pressure with the total internal power
dissipation. The domain sizes are selected to be broad enough to include the plastic shear
zone in all simulations of the LB and UB FELA models. The overlapping of the plastic shear
zone at the right or bottom boundary should not be observed, since this would affect the
correctness of the solution. Thus, the sizes of the right and bottom boundaries are set to be
7D and 2D, respectively, which are sufficient to avoid the effect of insufficient boundaries
(see Figure 2).
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In order to provide better precise limit solutions, the significant function of mesh
adaptivity in OptumG2 is enabled in all UB and LB simulations. An autonomously adapt-
able mesh refinement was used to achieve the tight UB and LB solutions. Furthermore,
the effective approach of automatic mesh adaptivity with shear dissipation optimization
ensures that the generated LB and UB solutions are more accurate. With a starting mesh
amount of 5000 elements that will be raised to the final mesh amount of 10,000 elements, this
study applies five adaptive meshing phases. The finalized adaptive meshes may be utilized
to display the horseshoe tunnel’s failure processes in cohesive-frictional soil. Ciria et al. [59]
have written a paper that goes into further detail about this mesh adaptivity characteristic.

4. Results and Discussion

Since the differences between the current UB and LB solutions are very small (less
than 1%), the average (Ave) solutions computed from the average values of the UB and
LB FELA solutions, which can be considered as rigorous solutions, are presented in this
study. Note that only the solutions of the active collapse of tunnels are considered in this
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study. Figures 3–6 and Table 2 demonstrate the average solution of the stability factor of
a horseshoe tunnel in cohesive-frictional soil. Table 2 contains the results data that will
eventually be utilized as input data in the ANN technique, which will be described in the
next section. Note that the sign conventions for the dimensionless load factors presented
in Table 2 show that a positive sign corresponds to the cases where the ground above the
tunnel can support the compressive normal stress and the self-weight of soil masses. In
contrast, a negative sign corresponds to the cases where only the tensile normal stress can
apply on the ground surface. The later cases of the negative sign rarely happen in practice
since compressive normal stress is mostly applied on the ground surface. Nevertheless,
these cases can indicate that if there is no tensile normal stress applied on the ground
surface, the soils around the tunnel will certainly collapse due to the driving force from the
self-weight of soil masses.
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Figure 6. Influence of B/D on the stability factors σs/c′ of horseshoe tunnels with φ = 25◦: (a) γD/c′ = 0
and (b) γD/c′ = 1.

Throughout all numerical results, Figure 3a,b represents the influence of the soil
friction angle on the stability factor in the selected cases of γD/c′ = 0 and C/D = 1 and 4,
respectively, with various values of B/D = 0.5, 0.75, 1, 1.333, and 2. A non-linear increasing
relationship between φ on σs/c′ is discovered, in other words as the soil frictional angle
increases, the strength of soil around the tunnel also increases. The influences of the
overburden factor γD/c′ on the stability number σs/c′ with the selected cases of C/D = 0
and φ = 0◦ and 5 are shown in Figure 4a,b, respectively. A decreasing linear relationship is
found, with an increase in γD/c′ leading to a decrease in σs/c′. Figure 5a,b demonstrates the
trend of the cover-depth ratio C/D on the stability factor σs/c′ for φ = 25◦ and γD/c′ = 0 and
1, respectively. A nonlinear rising relationship is observed, with an increase in C/D resulting
in an increase in σs/c′. Moreover, the influence of the width-depth ratio B/D on the stability
factors σs/c′ of horseshoe tunnels with φ = 25◦ and γD/c′ = 0 and 1 is investigated and
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displayed in Figure 6a,b. The charts include four distinct values of C/D = 1, 2, 3, and 4. It
is discovered that a nonlinear decreasing relationship occurs, implying that higher B/D
values result in a lower stability factor σs/c′.

Table 2. Stability factor σs/c′ for horseshoe tunnels.

γD/c′ B/D φ C/D = 1 C/D = 2 C/D = 3 C/D = 4

0 0.5 0 3.04 3.821 4.425 4.912
5 3.7005 4.92 5.934 6.797

10 4.6385 6.6645 8.4965 10.08
15 6.07 9.689 13.2485 16.448
20 8.4375 15.551 23.156 30.5665
25 12.818 28.57 47.2085 68.587
30 22.1785 62.7385 121.257 200.599

0.75 0 2.714 3.533 4.1405 4.635
5 3.277 4.4865 5.4775 6.3235

10 4.061 5.9455 7.6755 9.2275
15 5.1965 8.4315 11.664 14.677
20 6.9845 13.068 19.8125 26.3335
25 10.156 22.9915 38.7855 55.9345
30 16.391 47.763 92.0795 151.6985

1 0 2.3925 3.2595 3.8705 4.3655
5 2.8495 4.0845 5.0485 5.8775

10 3.4925 5.3325 6.9585 8.4395
15 4.4195 7.3585 10.3445 13.159
20 5.828 10.9975 17.052 22.913
25 8.136 18.521 31.9775 46.489
30 12.5025 36.556 72.2805 117.8115

1.33 0 1.982 2.915 3.5345 4.0335
5 2.3405 3.606 4.5365 5.3415

10 2.815 4.6055 6.1085 7.4955
15 3.482 6.184 8.802 11.4065
20 4.4695 8.8815 13.938 19.237
25 6.0595 14.107 25.141 37.231
30 8.9065 25.7225 53.0995 87.328

2 0 1.369 2.2835 2.9445 3.449
5 1.5525 2.7525 3.683 4.4385

10 1.7905 3.431 4.7755 5.9915
15 2.1115 4.4345 6.5385 8.6405
20 2.582 6.0205 9.6315 13.69
25 3.2825 8.746 15.778 24.7005
30 4.4815 14.1115 30.125 52.294

1 0.5 0 1.6035 1.3725 0.9705 0.4465
5 2.1705 2.2555 2.1225 1.835

10 2.9795 3.674 4.1425 4.369
15 4.214 6.2065 8.074 9.568
20 6.2895 11.287 16.6635 21.7955
25 10.181 22.8725 38.4145 56.004
30 18.692 54.527 106.835 178.696

0.75 0 1.3515 1.1175 0.7105 0.212
5 1.82 1.867 1.7055 1.3975

10 2.464 3.0375 3.385 3.537
15 3.441 5.051 6.5905 7.864
20 4.9785 8.9385 13.39 17.761
25 7.7505 17.4825 30.127 43.9715
30 13.338 39.78 79.378 131.659
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Table 2. Cont.

γD/c′ B/D φ C/D = 1 C/D = 2 C/D = 3 C/D = 4

1 0 1.097 0.8765 0.4795 −0.0275
5 1.4865 1.508 1.32 0.9905

10 2.0195 2.47 2.7155 2.7855
15 2.7885 4.072 5.293 6.33
20 3.9495 7.0305 10.638 14.327
25 5.918 13.3085 23.4265 34.809
30 9.6975 28.8355 59.689 99.0255

1.33 0 0.778 0.5785 0.177 −0.3265
5 1.062 1.083 0.8585 0.4975

10 1.442 1.824 1.9455 1.899
15 1.98 3.01 3.8705 4.602
20 2.7975 5.096 7.6895 10.503
25 4.123 9.2305 16.528 25.319
30 6.469 18.8115 40.5245 69.0425

2 0 0.2685 0.0575 −0.3515 −0.8585
5 0.398 0.3715 0.089 −0.321

10 0.563 0.8185 0.757 0.5335
15 0.791 1.491 1.8475 2.077
20 1.126 2.5825 3.833 5.2025
25 1.646 4.4895 8.004 12.5485
30 2.529 8.361 18.2025 32.8185

2 0.5 0 0.1295 −1.1115 −2.534 −4.1
5 0.611 −0.449 −1.7415 −3.213

10 1.2895 0.623 −0.352 −1.642
15 2.329 2.612 2.5495 2.0485
20 4.0955 6.7755 9.487 11.888
25 7.4755 16.735 28.35 41.356
30 15.0435 45.0135 90.282 152.242

0.75 0 −0.082 −1.331 −2.742 −4.3085
5 0.314 −0.7865 −2.1095 −3.6025

10 0.8565 0.059 −1.0265 −2.401
15 1.657 1.575 1.189 0.3865
20 2.9525 4.6405 6.3395 7.8025
25 5.2945 11.7125 20.225 29.791
30 10.152 30.906 63.938 107.4515

1 0 −0.284 −1.542 −2.949 −4.4905
5 0.0455 −1.1025 −2.4485 −3.962

10 0.48 −0.4305 −1.623 −3.086
15 1.0965 0.7045 0.0185 −1.068
20 2.05 2.9205 3.7815 4.333
25 3.663 7.844 13.6145 20.4685
30 6.8415 20.625 44.0205 75.6995

1.33 0 −0.515 −1.8005 −3.215 −4.731
5 −0.273 −1.469 −2.8585 −4.3985

10 0.0325 −0.9895 −2.304 −3.875
15 0.4605 −0.2175 −1.257 −2.684
20 1.0885 1.189 1.099 0.6395
25 2.1385 4.16 7.137 10.6765
30 3.9975 11.468 25.024 45.0415

2 0 −0.9135 −2.2385 −3.6855 −5.2045
5 −0.798 −2.0605 −3.528 −5.122

10 −0.671 −1.8255 −3.326 −5.0805
15 −0.534 −1.489 −3.0155 −3.6745
20 −0.3395 −0.953 −2.371 −2.5215
25 −0.0315 0.039 −0.6185 −1.811
30 0.5055 2.216 4.7235 8.757
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The adaptive meshes concept is finally utilized to monitor the failure mechanisms
of unlined horseshoe tunnels in cohesive-frictional soil. Figure 7a–c illustrates samples
of final adaptive meshes for the selected values C/D = 5, γD/c′ = 0, and φ = 25◦ with
varying values of B/D = 0.5, 1, and 2. More details are described earlier. In addition,
the influence of analyzed parameters such as γD/c′, C/D, B/D, and φ on the horseshoe
tunnel failure mechanisms are explored and demonstrated in Figures 8–12. The illustrated
failure mechanisms are related to the shear dissipations of unlined horseshoe tunnels in
cohesive-frictional soil. Figure 8a–c, for varied values of B/D = 0.5, 1, and 2, clearly indicates
that the failure zone extent gets larger and higher off the ground surface as the tunnel gets
wider (higher B/D). In Figures 9a–d and 10a–d, it seems like the soil frictional angle of the
overburden factor does not have much influence on the failure mechanisms for the case of
the narrow tunnel as well as the overburden factor. Figure 11a–d illustrates the influence
of the cover-depth ratio on the failure mechanisms. The failure zone appears to extend in
both vertical and horizontal planes as the tunnel is placed deeper (higher C/D). Thus, the
deeper the tunnel, the greater the failure zone. In all figures, the type of failure mechanism
of the horseshoe tunnel is mostly unchanged, resembling a half-spiral opening failure.
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Figure 11. Shear dissipations for various C/D (B/D = 0.5, γD/c′ = 0 and φ = 20◦).

The current average FELA solutions of an unlined horseshoe tunnel are compared
to prior investigation to validate the stability factor obtained from this solution. The
comparison was made up in terms of stability numbers from the present solution to those
reported by Yamamoto et al. [19,20], as shown in Figure 12. It should be noted that the
solutions given by Yamamoto et al. [19,20] are restricted to circular and square tunnels
with B/D = 1. The soil unit weight is set to zero in comparison to eliminate the overburden
factor. Therefore, the current results are equivalent to those in Yamamoto et al. [19,20],
demonstrating that the developed FELA solution is exceptionally exact and trustworthy
in practice.
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5. Proposed Predictive Models
5.1. Multiple Linear Regression

Linear regression is the simplest method to construct a linear relationship between
scalar responses (output known as dependent variables) and explanatory variables (input
known as independent variables). In this study, four independent variables are considered;
therefore, the process is called “multiple linear regression”.

As indicated in Equation (2), the output is a dependent variable that may be deter-
mined from the combination of the input or independent variables.

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ε (2)

where
yi = dependent variable (output);
xi1, xi2, . . . xip = independent variables (input);
β0 = y-intercept (constant term);
β1, β1, . . . , βp = slope coefficients for each explanatory variable;
ε = the model’s error term (also known as the residuals).

5.2. Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) is a data prediction framework based on existing
features created from the human mind structure. In order to handle complicated informa-
tion, it mimics the neural system’s processing method in the human brain. With many
nodes (or neurons) wired together, a neural network is a computer model that may be used
for many different purposes.
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ANN comprises three layers: an input layer, a hidden layer, and an output layer, as
shown in Figure 13. In this study, the input layer consists of four nodes representing C/D,
B/D, γD/c′, and φ. The second layer is the hidden layer, consisting of one or more threshold
logic unit layers. Generally, the number of hidden layers and hidden neurons is chosen
via the trial-and-error method. It is generally recommended to start from one hidden layer.
The number of hidden neurons is varied from one to the number that can create the proper
model with high accuracy. This layer aims to convert the information into content that
the output layer can use to predict the data. It is within this layer that the weighted sums
of the inputs are calculated and a step function is applied to them before they are sent
off as an output through the use of the rectified linear unit (ReLU) activation function,
which provides nonlinearity in the network. The final layer is the output layer presenting
the dependent variables. In this paper, the output layer consists of one node, which is a
predicted stability factor of shallow elliptical tunnels in cohesive-frictional soils.
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5.3. Cross-Validation and Performance Measures

In this study, the stratified tenfold cross-validation is used due to the limited number
of datasets. This method can replicate the drawback of the splitting method into training
and testing datasets when the datasets are limited.

The proposed cross-validation method randomly divides the datasets into ten sections,
with the classes represented in about the same proportions as in the entire dataset. Before
assessing the error rate on the holdout set, each section is performed in turn, and the
remaining nine-tenths are later tested. As a result, the learning operation is repeated
ten times on different training sets. After that, these errors are averages to employ the
representative of the error estimation. However, it is highly recommended to repeat the
cross-validation process 10 times, since a single tenfold cross-validation is not reliable. This
leads to the learning algorithm being repeated 100 times on datasets that are all nine-tenths
the size of the original.

In this paper, three well-known statistical performance measures of the obtained
models are the coefficient of determination (R-squared, R2), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE). It should be noted that the high accuracy
prediction model leads to a high value of the coefficient of determination, whereas RMSE
and MAE calculate errors instead of accuracy, so the good performance of the prediction
model is indicated by lower values. These statistical performance measures are used to
compare the performance of the models.



Computation 2022, 10, 81 19 of 24

5.4. Predictive Equations
5.4.1. Multiple Linear Regression

A multiple linear regression model is first obtained consisting of the weight of each
parameter. The coefficients are evaluated in WEKA software. The multiple linear regression
equation is shown in Equation (3).

y = −11.1882x1 + 1.3637x2 − 5.4693x3 + 6.2233x4 − 5.7233 (3)

where y represents the stability factor σs/c′ whereas x1, x2, x3 and x4 are the dimensionless
input parameters namely, B/D, φ, γD/c′, and C/D respectively. The statistical values: R2,
MAE and RMSE are 0.6616, 11.8803, and 19.0166, respectively (see Table 3).

Table 3. Performance measures of each methodology.

Methodology R2 Mean Absolute
Error (MAE)

Root Mean Squared
Error (RMSE)

Multi Linear
Regression 0.6616 11.8803 19.0166

Artificial Neural
Network (ANN) 0.9963 1.4897 2.1889

5.4.2. Artificial Neural Network

In this study, the number of ANN modes is developed considering different numbers
of neurons in the hidden layer. The performance of the models against the number of
hidden neurons is plotted in Figure 14. It can be seen that after reaching a certain number
of neurons, the performance of ANN models is likely to stabilize. In this study, ANN
with the architecture of 4-7-1 is selected to be the best ANN model, as it shows the highest
accuracy and the lowest errors compared to other models. Figure 15 compares the results
obtained by the FELA solution and the ANN model. It is found that the predicted values
from ANN are in agreement with those from the FELA solution. Table 3 also compares the
performances of the MLR and ANN models. It is clear that the ANN model performs much
better than the MLR model.
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Figure 16 presents the multilayer network with the dimensions of input, weight, bias,
and the output matrices of the proposed ANN model for stability evaluation of shallow
horseshoe tunnels. From Figure 16, IW1 and IW2 represent the hidden weight matrix and
output weight matrix, respectively, and b1 and b2 represent the bias matrices in the hidden
and output layers.
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Predictive Equation (4) can be developed based on tansig function, weight and bias
from ANN model.

Predicted value =

[
∑N

i=1 IW2itansig(
J

∑
j=1

IW1ijxj + b1i) + b2

]
(4)

where N is the number of hidden neurons; X is the independent parameters (input); J is the
number of independent parameters. (b1i). Table 4 presents the neural network constants
of the optimal ANN model, including weight matrix and bias for the stability factor
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calculation of shallow elliptical tunnels in cohesive-frictional soils. The values obtained
from the optimal ANN networks can be used to develop predictive equation functions and
test new datasets with different variations of parameters within the required ranges.

Table 4. Neural network constants of the optimal model for stability prediction of shallow elliptical
tunnels in cohesive-frictional soils.

Hidden Layer
Neurons (i)

Hidden Layer Bias (b1)
Hidden Weight IW1

C/D (j = 1) B/D (j = 2) γD/c′ (j = 3) φ (j = 4)

1 −0.6618 −0.20694 −0.02904 −0.07786 0.152957

2 −1.35951 1.084979 −0.31878 −0.31652 1.316469

3 −0.63364 −0.76094 0.280919 −0.00101 0.12054

4 −5.65279 0.979189 −1.15515 0.439291 3.511314

5 −1.57382 1.605169 0.001409 0.82818 −0.74447

6 −4.5357 0.616293 −0.29021 −0.42419 2.613965

7 −0.75008 −1.03205 0.711475 0.377549 0.08785

Output layer
node (k)

Output layer
bias (b2)

Output weight IW2

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

1 2.844085 0.207948 −1.28044 0.623847 −3.51562 −1.838293 −2.60675 0.89989

6. Conclusions

The study aims to establish a machine learning-aided prediction of the stability of
shallow elliptical tunnels in cohesive-frictional soils. The four input dimensionless param-
eters include the dimensionless overburden factor γD/c′, the cover-depth ratio C/D, the
width-depth ratio B/D, and the soil friction angle φ. The influences of all input dimension-
less parameters on the solutions of the stability factor σs/c′ are investigated. The solutions
are computed using the finite element limit analysis (FELA). An Artificial Neural Network
(ANN) model is then developed based on the training data of FELA solutions. Since it
is time-consuming to develop the algorithm of the FELA and use the FELA software to
obtain the stability solutions of elliptical tunnels in sands on a case-by-case basis, a pro-
posed scheme of the ANN model is developed in this study. In addition, proper software
is not usually user-friendly, and additional resources capable of providing information
that is useful for decision-making are required. The combination of FELA solutions and
the ANN is then presented as a guide for geotechnical engineers. Note that the optimal
machine learning models for predicting the stability factor of this problem can be evaluated
based on some matrices. It is notable that only one hidden layer is sufficient to create
a high-performance neural network model, as R2 is already high and MSE is extremely
low, showing that the optimal model is reliable and can be used to accurately predict the
stability factor. Finally, the obtained trained networks can be further used to test new data
for predicting the stability factor of shallow elliptical tunnels in cohesive-frictional soils
using the weight matrix and bias derived in this study.
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