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Abstract: Long-term pavement performance (LTPP) was used to investigate factors contributing to
pavement skid resistance. The random effect model, with a Poisson distribution, was employed
to analyze the relationship between various variables and pavement friction as a response, while
accounting for the repetitive nature of panel-data observations. The results highlight a significant
improvement in the model fit compared with the standard Poisson model. In this study, all pairwise
interaction terms, instead of the additive impacts of various predictors, were considered. The results
of this study highlight that the impacts of various predictors on pavement friction are not additive,
but multiplicative. For instance, it was found that the impacts of pavement age, average annual
temperature, number of lanes and annual Equivalent Single Axle Load (ESAL) on the pavement
friction vary based on pavement type or on whether the pavement type is concrete or asphalt. The
findings provide important information regarding the maintenance of pavement by paying the
foremost attention to the pavement types for adjusting friction. This is one of the earliest studies
that takes complex relations across various predictors and pavement frictions into consideration. A
discussion regarding the implications of the findings is provided in the context of this study.

Keywords: pavement friction; random effect model; long-term deterioration; friction; LTPP

1. Introduction

Sufficient friction between tires and pavement plays a crucial role on the safety of
road users as the ability to accelerate, brake and steer a vehicle is impacted by the friction
properties of the pavement’s surface. Safety is dependent on decreases in vehicle braking
distance, which is expected to prevent crashes. For instance, it has been found that skidding
contributes to up to 35% of wet-weather crashes in the US [1], where 70% of those crashes
could have been prevented by improved pavement friction [2]. In addition, it has been
reported that about 14% of fatal crashes and 25% of all crashes occurred on wet road
conditions [3].

Pavement friction is a function of micro- and macrotexture, having an influential
impact on roadway safety [4]. The microtexture of pavement surfaces refers to the small-
scale of pavement aggregate surfaces, which achieve the required adhesion between tires
and the pavement’s surface. The macrotexture of the pavement surface represents the
large-scale texture due to aggregate particle arrangements.

In dry conditions, adhesion between a tire and the pavement is at a maximum, whereas
in wet conditions, adhesion is reduced significantly. Hence, macrotexture properties are
important in wet-weather conditions to provide appropriate drainage paths of water
beneath the tire; therefore, the adhesive component of friction provided by the microtexture
can be re-established. Therefore, skid resistance plays an important role, especially during
less-than-optimal weather and roadway conditions.
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Most state highway agencies consider a friction metric to quantify skid resistance on
pavement surfaces. The friction number (FN), also known as skid resistance number (SN),
is considered the most common index, being determined from a locked-wheel friction tester
(ASTM E 274). SN or FN is measured at a constant speed of 40 mph and within a predefined
length of road, using (R) ribbed or (S) smooth tires. At the early age of pavements, skid
resistance exhibits high FN values (greater than 55).

However, pavement friction deteriorates due to age-related factors such as traffic, age
and temperature [5], and consequently, pavement friction is expected to deteriorate, impact-
ing the safety of pavement. For instance, based on the long-term pavement performance
(LTPP), it has been shown that pavement friction reduces for both Portland cement concrete
(PCC) and asphalt concrete (AC) pavements, with a higher degree for asphalt pavement [6].

As a result, understanding changes in pavement friction is of critical importance for
maintaining the safety of roadways. The friction performance of pavement allows for defin-
ing the minimum skid resistance thresholds to promote safety. Two common thresholds
have been considered for addressing friction. The first category is the investigatory level,
which represents a flagged amount of friction at which an agency should start monitoring
skid resistance and related crashes.

The second threshold of pavement friction is the intervention level (i.e., the lowest
acceptable level), at which an agency must take immediate action to restore skid resistance.
However, the main components of friction over time and under various environmental
conditions lose their characteristics as well as the friction needed between a tire and the
road, which can be observed from various friction datasets. Ahammed (2009) recommended
addressing historical resistance performance and affecting factors to define the effectiveness
of friction properties on friction-related crashes and to define appropriate threshold values
for managing the road network [7].

Studies have been conducted to evaluate the impacts of various factors on pavement
friction characteristics, a few of which are outlined by the following paragraphs. Pavement
friction can vary seasonally on a short term basis based on factors such as temperature,
rainfall and surface contamination [8], or on a long term due to traffic resulting in wear and
polishing the surface by traffic or environmental factors [9]. Grooved and tined surfaces
maintained regularly provide higher friction over time, and the quality of aggregates is an
important factor for asphalt pavement friction [9].

Panel data analysis of the surface skid resistance of various pavement maintenance
treatments using LTPP was evaluated [10]. Various treatments including thin overlays,
slurry seals, cracked seals and chipped seals were considered. Precipitation, freezing
index, humidity, traffic and pavement age were found to be important in predicting
pavement friction.

Long-term monitoring friction coefficients for various asphalt pavement surfaces were
used [11]. The factors impacting the coefficients of friction were found to be the age of
wearing course, traffic intensity and weather conditions.

In another study, average temperature and the age of installation were some factors
impacting skid resistance [10]. Regression analysis was used in another study to model
seasonal variations of pavement skid resistance [12].

The performance of skid resistance was also addressed from other correlated perfor-
mance indices [13]. In that study, the measured average SN was seen to be significantly
lower on relatively rougher pavement sections. In another study, friction trends (side
force coefficient) with traffic levels (ESAL) and pavement aging for Italian highways were
investigated [14]. The data combined roughness and macrotexture. Prediction models were
developed to predict the friction number considering independent variables. Most of the im-
plemented models in the literature are empirical in nature and depend on the surrounding
conditions, including texture depths, tire properties and water film thickness [15].

Finite elements were used to study skid resistance under hot weather conditions [16].
In that study, a thermo-mechanical tire-pavement interaction model was developed, and
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consequently, the FE model quantified the effects of factors such as speed, inflation pressure,
wheel load and ambient temperature on skid resistance/braking distance.

In another study, a link between ski resistance and macro- and micro-texture was
found [17]. The results highlight that, under the effect of cumulative traffic, macrotexture
and skid resistance start presenting an inverse trend.

The parameters influencing the measurement and modeling of the skid resistance of
asphalt pavement were evaluated in another study [18]. The results show that the frictional
performance of asphalt pavement is satisfactory when using recycled materials in the
surface course instead of conventional ones.

Although studies have been conducted to investigate the impact of various envi-
ronmental factors, the multiplicative impacts of various factors have been ignored in the
literature. Are the impacts of various environmental factors on the friction of pavement
stable, or do they vary based on the pavement type? Is the impact of pavement aging
constant, or does it vary based on pavement type?

The current study is one of the earliest studies that look at the complex relationship
between different factors and pavement friction. The findings might provide policy makers
with more reliable ways of addressing the deterioration of pavement friction. Pavement
friction is a complex phenomenon, which is expected to be influenced by different factors,
including traffic and various environmental factors. However, the relationships between
those factors and pavement friction are not necessarily stable, and thus, the current work
was conducted to study various design factors including age, precipitation, temperature
and pavement types, while considering all pairwise interaction terms.

2. Theoretical Model

The description of this section is heavily based on the work in the literature review [19].
The process of the generalized linear mixed model (GLMM) can be summarized as defining
the objective function and consequently using an optimizer to solve it. During the process,
matrices of Z, or a term-wise matrix of random effects, Λ, or a term-wise relative covariance
factor, are created. For instance, the matrix of Z is defined as zi =

(
Jᵀi ∗ xᵀi

)
, where ∗

is Khatri–Rao, which can be written based on Kronecker products ⊗, J is the random
parameter grouping factor indices, and x is an explanatory variable.

The objective function minimizes the penalized least square, so the parameters are
estimated while minimizing the objective function. The objective function can be written
as:

r2(θ, β, u) =
∣∣∣∣∣∣W0.5

[
yobs − µy|u

]∣∣∣∣∣∣2 (1)

where W is the weight matrix, and in the above,

log
(

µy|u

)
= g(µy|u) = Xβ + ZΛθu (2)

and thus, µ = g−1(η) = eη , where u is the specific value of a random effect, and other
parameters are defined before. For the GLMM, the modification can be made to highlight
how the univariate and conditional distributions are formed and how µy|u depends on u.

Now, the penalized least square is used as a probability mass function (PMF) of the
Poisson model, which is needed for maximum likelihood estimation.

Here, the penalized least square (PLS) algorithm uses a vector of covariance parameters
of θ, and it returns the profiled deviance in the form of -2likelihood. The process can be
summarized as: (A) updating Λθ , which is used to update the Cholesky factor of Lθ and Λθ

can also be called a spars double lower-triangular matrix; (B) solving the normal equations
for finding the fixed effects coefficients βθ and the conditional mode of µ. Now that the
parameters are estimated, the linear predictors and residuals are updated.

The likelihood in a general term can be written as L =
∫
L(y|b, β)L(b |Σ (θ))db, where

with some algebra, the likelihood is simplified for estimating the parameters, where B (b) is
the random effects with a variance covariance matrix of ∑, which is based on θ and various
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standard deviations (SD), e.g., intercept. The variance of B is Var(B) = σ2ΛθΛᵀ
θ . Moreover,

for the GLMM model, u ∼ N
(
0, Iq

)
, such that B = Λθu.

Laplace approximation is used to approximate the deviance of the model. The sparse
Cholesky factor, L, is used to evaluate the update as

LLᵀ = P
(
Λᵀ

θ ZᵀMZΛθ + Iq
)

Pᵀ (3)

where M = dµ
dη = Var(y|u) is the diagonal Jacobian matrix. P is the fill-reducing q × q

permutation from Z.
Now, the negative of twice the log-likelihood corresponds to

− 2LL = dg(y, µ(u)) + ||u||2 + log(|L|2) (4)

where the deviance of y and µ is dg(y, µ(u)). As can be seen from above equation, log(|L|2)
depends on µ and consequently on β and θ. As a result, during the process of minimizing
of the above equations, parameters including βs are estimated. Moreover, it is clear that,
based on various models’ distributions, the formulations of log(|L|2) vary. In summary, the
model parameters are estimated by the minimization of the penalized least square (PLS).

At each step, after estimating the parameters, µ is estimated as log (µy|u_ = Xβ + ZΛθu)

and consequently as −2LL. Here, dg(y, µ(u)) is estimated as
(

yobs − µy|u

)2
. During the

process, the update of one parameter impacts the estimations of the other parameters. In
summary, the process is for solving the equation of[

Λᵀ
θ ZᵀZΛθ + I Λᵀ

θ ZᵀX
XᵀZΛθ XᵀX

]
=

[
Lθ 0

Rᵀ
ZX Rᵀ

X

][
Lᵀ

θ RZX
0 RX

]
(5)

where Λθ is the relative covariance factor, Z is the term-wise random effect, θ is a covariance
parameter, RZX is the cross product of the fixed effects, Rᵀ

XRX is the cross-product of the
fixed effect and L is defined before.

Finally, to highlight the process of the analysis, Figure 1 is provided to provide
better insight regarding accounting for the multidimensionality of the dataset and also for
correlations across observations related to similar categories.
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Figure 1. Methodological approach of this study to account for data heterogeneity.

3. Data

Friction information was obtained from the national database, containing records of
all friction, such as weather, IDs of experiments and whether the roadway experienced any
maintenance process during its life span. The LTPP is the major research area of the Strategic
Highway Research Program (SHRP) throughout North America. The collected data include
information on seven modules: Inventory, Maintenance, Monitoring (Deflection, Distress
and Profile), Rehabilitation, Materials Testing, Traffic and Climatic [17].

The objective of the LTPP study was to extend in-service pavement in the US and
Canada under various pavement materials and various environmental conditions, such
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as temperature, traffic and various maintenance practices. The LTPP study was specially
designed to evaluate the effectiveness of various treatments such as thin overlays, slurry
crack sealing, and chip sealing.

For LTPP program sites, the friction information is available for 53 sites due to vol-
untary aspects of the agencies. Here, we considered the control segments, which did not
experience any treatment. In other words, to be consistent, all observations that experienced
some forms of maintenance, e.g., chip sealing, during their life span were excluded from
the dataset. To have a fair comparison, and as the objective of this study was not to evaluate
the effects of those treatments on the friction of pavement, all pavements that experienced
any type of treatment were excluded from this study. This resulted in 3871 observations
across 655 sites, out of 8447 observations included in the dataset.

The friction numbers in the dataset were obtained with a locked-wheel pavement
friction tester based on ASTM E274 by using ribbed (ASTM E501) and smooth (ASTM
E524) tires. The process is produced by a complete slip condition and the measurement
of braking and drag forces during slides of the test wheel. The locked wheel provides a
friction coefficient, which is reported as friction numbers [5]. The time period of successive
friction measurements ranges from 2 months to 4 years. Friction numbers were used as the
response in this study. The frequency of the response of friction is depicted in Figure 2.
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Figure 2. Frequency of various friction numbers.

The observations were recorded multiple times during the study period, which cannot
be modeled by a traditional technique which does not account for correlations across
observations with the same ID. The data obtained from LTPP include variables such
as friction (skid) number, age, ESAL, annual average temperature, climatic region and
temperature during skid testing. Climatic zone is the only categorical variable with more
than binary categories, so the frequency of each category along with the percentages are
provided in Table 1.

Table 1. Descriptive statistics of important predictors consdierred in the statistical model.

Mean Var Min Max

Friction number 45.94 87.560 10 75

Age 5.320 10.344 0 20

Pavement type, concrete versus asphalt * 1.45 0.248 1 2

Climatic zone
Dry, Non-Freeze * (264) 7%, Dry, Freeze
(293) 8%, Wet, Freeze (1773) 45%, Wet,

Non-Freeze (1570) 40%

3.19 0.712 1 4
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Table 1. Cont.

Mean Var Min Max

Log (annual ESAL) 2.48 0.014 1.86 2.71

Average annual temperature average in C 13.89 16.660 3.1 25.60

No. of lanes, 2 versus 1 * 0.088 0.080 0 1
* Reference category.

Factors such as freezing index were not used in the analysis as the type of climate
zone in Table 1 is correlated with that item. Moreover, the random intercept parameter was
assigned to the ID of the observations to account for the repetitive measures of observations.
It is intuitive that, as the fixed effect model could not account for correlations across
observations from the same sites, it may not provide a reliable method, similar to the
random effect model. However, a comparison between the random effect model and the
standard models was also made by means of the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC).

4. Results

The results are presented in two subsections; firstly, the model comparison is presented,
followed by the model parameter estimates.

4.1. Model Comparison

It should be noted that, initially, various concrete pavement types were considered
separately, including Continuously Reinforced Concrete Pavement (CRCP), Jointed Plain
Concrete Pavement (JPCP) and Jointed Reinforced Concrete Pavement (JRCP). However, the
point estimates of those variables were found to be almost identical in the model. For instance,
considering the disaggregated type of model, we had CRCP with β̂CRCP sur f ace type = 0.26,
JPCP, with β̂JPCP sur f ace type = 0.18 and JRCP with β̂JRCP sur f ace type = 0.38, having AIC = 22,
720, BIC = 22, 867, and log Lik = −11, 336 (df = 24). Due to the better fit of the model, by
aggregating various concrete models, that model was considered instead of models with
disaggregated concrete pavement.

In addition, considering the models with and without random effects, significant
improvements in model fit were observed for the final mixed effect model with AIC
(22,715); BIC (22,813); logLik (−11,341, df = 16) compared with the standard generalized
linear model (GLM) with AIC (24,160); BIC (24,251); logLik (−12,064, df = 15). As a result,
the next subsection considers the mixed effect model while aggregating various types of
concrete pavement types.

4.2. Model Parameters

To account for a complex relationship between different variables, the interaction
terms across all those predictors were considered. Only the impact of climate zone was
found to be additive. As can be seen in Table 2, the zones with climate conditions of
dry-freeze and wet-freeze have lower road friction during the time, compared with the dry
area with no freeze.

Moreover, only climate zones of wet and no freeze are associated with lower friction,
compared with the no freeze and non-wet areas. However, it should be reiterated that the
associations between all other predictors and friction were found to be complex and not
additive, which the following paragraphs outline.

The results highlight that the association between pavement surface type and friction
varies based on the average temperature. Although concrete pavement has higher friction,
compared with asphalt, the higher average temperature resulted in a lower friction.
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Table 2. Results of identified factors on pavement friction numbers.

Fixed Effects:

Estimate Std. Error Pr (>|z|)

(Intercept) 4.11 0.06 <0.005

Age 0.00001 0.001 0.9

Pavement type 0.45 0.09 <0.005

Climatic Zone: Dry, Freeze −0.06 0.02 0.007

Climatic Zone: Wet, Freeze −0.05 0.02 0.007

Climatic Zone: Wet, Non-Freeze 0.07 0.02 <0.005

Annual ESAL 0.004 0.004 0.3

Average annual temperature average in C −0.03 0.002 <0.005

No. of Lane −0.004 0.03 0.9

Pavement type× Average annual
temperature average 0.02 0.002 <0.005

Pavement type× No. of Lane −0.10 0.03 0.004

Pavement type× annual ESAL −0.05 0.01 <0.005

Pavement type× Age −0.003 0.002 0.07

Random effects: (ID)

Groups name Variance Std. Dev.

SHRP_ID (Intercept): 0.02417 0.1555

Also, the association between surface type and friction was found to vary based on the
number of lanes. It was found that the associated slope between surface type and friction is
less steep for a two-lane highway, compared with a single lane. In other words, friction is
reduced more sharply for two-lane highways than for a single lane one. The number of
lanes accounts for many confounding factors that may not be recorded at the time of data
collection. The association between pavement surface type and road friction varies based
on ESAL; a higher ESAL reduces roadway friction with a higher magnitude.

The last interaction term is related to pavement surface type and the age of the
pavement. The results highlight that the association between pavement surface type and
pavement friction is reduced by a higher age of pavement.

To finalize, the results highlight that the impacts of various environmental characteris-
tics highly depend on the type of pavement. Moreover, the magnitude of the impacts of
the type of pavement is so high that it covers the impacts of other predictors. Moreover,
as can be seen from Table 2, ID was set to be random to account for repetitive measures
of observations.

To summarize, Figure 3 is presented to depict the interrelationships between various
variables. Negative and positive signs were also included to highlight the impacts of the
predictors. It should be recalled that, although the interaction terms were considered and
the interactive relationship for those terms between two variables simultaneously should
be considered, based on the magnitude main effects and the interaction terms, those signs
are set as in Figure 3. For instance, considering the interaction between age and pavement
type, β̂age = 0.00001 is much smaller than β̂pavement type×age = −0.003, so an increase in the
age of pavement results in a reduction in the friction number.
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5. Discussion

Although studies have been conducted to investigate the factors of pavement fric-
tions, to our knowledge, all those studies only considered the additive impacts of various
predictors. However, we challenge that assumption and extend the previous studies by
considering all pairwise interaction terms. We found that the gap still exists regarding the
real impacts of different variables and the friction number.

This study investigated the complex impacts of various environmental, traffic and age
effects on road friction. Due to the repetitive nature of observations over time, the mixed
effect model was considered to account for correlations across observations with similar ID.

The results of the statistical goodness of fit highlight an improvement in the model’s
fit for the model that considers interaction terms versus no interaction terms, and for the
random effect model with no random effects. Moreover, after finding the coefficients of
various concrete pavement types to be identical, and due to an improvement in the model’s
fit after considering those aggregated coefficients, the pavement type was considered with
two categories: concrete and asphalt pavement.

Although positive associations were found between pavement types and friction,
the impacts of pavement type on friction are not stable but vary based on the number of
lanes, average annual temperature, the age of the pavement and annual ESAL. The results
highlight that, although concrete pavement increases pavement friction, the slope of the
impact is reduced by the number of lanes, annual ESAL and an increase in annual average
temperature. However, it should be noted that the impact of pavement type is so high that
it covers the impacts of all those factors. Finally, it should be noted that, although asphalt
material impacts the friction of pavement, the material used on the surface can impact the
provided ski resistance as well.

6. Conclusions

In summary, although policy makers have a small influence on the impacts of age and
the number of lanes and no influence on average annual temperature, they can assure high
friction by considering concrete compared with asphalt pavement. Future studies should
also consider the multiplicative relationship between friction and other factors and various
maintenance measures.

Pavement maintenance is implemented to postpone severe pavement deterioration.
These measures are expected to improve pavement serviceability [20]. As a result, this study
is limited only to those pavements with no treatment during service life. Our future work
will focus on those pavements that experiences various types of treatments. Despite not
considering the treated pavements, the current study is important for gaining perspective
regarding the implicative relationships of different factors.
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