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Abstract: In recent years, agriculture products have contributed to 28.75% of Thailand’s GDP. China,
Vietnam, Myanmar, Cambodia, Laos and Vietnam are the main markets for agricultural products.
The annual export volume exceeds 119,222 million THB. The majority of them are shipped over
Thailand’s land borders to its neighbors. Small and medium-sized farmers make up more than 85% of
those who produce agricultural items. Numerous scholars have studied the transportation methods
used by the Greater Mekong Subregion (GMS) nations along the economic corridor, but the majority
of them have concentrated on import–export operations involving sizable firms, which are not
applicable to the transportation of agricultural products, particularly when attention is paid to small
and medium-sized farmers. In this study, mixed-integer programming (MIP) is presented to design
an agricultural product logistics network. In order to prolong the lifespan of the container used,
the MIP’s primary goal is to maximize the total chain profit while maintaining the lowest container
usage possible. The approach was developed to increase small and medium-sized farmers’ ability to
compete. Small and medium-sized farmers bring their products to an agricultural product collecting
center, also known as a container loading facility. After that, skilled logistics companies distribute the
goods. In order to convey the goods to the final clients in neighboring nations, the proper locations of
the containing loading centers, the correct transportation option and the borders must be decided.
The issue was identified as multi-echelon location–allocation sizing (MELLS), an NP-hard problem
that cannot be handled in an efficient manner. To solve a real-world problem, however, efficient
techniques must be supplied. AMIS, an artificial multiple intelligence system, was created to address
the suggested issue. AMIS was developed with the goal of leveraging a variety of methods for
local search and development. There are several well-known heuristics techniques employed in the
literature, including the genetic algorithm (GA) and the differential evolution algorithm (DE). With
respect to the improved solutions obtained, the computational results show that AMIS exceeds the
present heuristics, outperforming DE and GA by 9.34% and 10.95%, respectively. Additionally, the
system’s farmers made a total of 15,236,832 THB in profit, with an average profit per container of
317,434 THB and an average profit per farmer of 92,344.44 THB per crop. The container loading center
uses 48 containers, with a 5.33 container average per container loading center (CLC). The farmers’
annual revenues were previously less than 88,402 THB per family per year, so we can predict that the
new network may increase customers’ annual income by 4.459% for each crop.
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1. Introduction

The GMS is one of the developing world’s most successful cases of economic integra-
tion and transition. While the rest of Asia was busy expanding and integrating with the
global economy, the GMS remained extremely impoverished and isolated for a large part of
the 1970s and early 1980s. This is the result of protracted conflict and centralized planning
in Thailand, Cambodia, the Lao People’s Democratic Republic (Lao PDR), Myanmar and
Vietnam (TCLMV).

However, the “TCLMV” nations started a slow process of reform and liberalization
in the middle of the 1980s. As a result of the TCLMV nations’ shift to a market-based
system, the GMS has become one of the most active subregions around the globe. The
GMS has expanded more quickly over the past 20 years than all of East Asia and the Pacific
combined, with the TCLMV nations being a major contributor to this growth. Despite the
Asian financial crisis in 1997–1998, given their tenuous connections to the world’s financial
systems at the time, the TCLMV countries continued to experience good growth. This led
to a decade of increasing openness and integration with the global economy, though these
countries were not as resistant to the more recent global financial crisis (GFC), with steep
declines in growth that have only lately started to reverse. Agriculture, which historically
made up the largest portion of value added in the TCLMV countries, gradually declined
along with the steady economic expansion preceding the GFC. Industry, manufacturing
and services now make up a larger portion of the value added in the subregion.

The Asian Development Bank (ADB) launched the GMS Economic Program in 1992.
Cambodia, Lao PDR, Myanmar, Thailand, Vietnam and Yunnan Province of the People’s
Republic of China (PRC) were the initial participants in the GMS initiative. The PRC’s
Guangxi Zhuang Autonomous Region joined the GMS in 2004. A prime example of market
integration, as opposed to institutional integration, is the GMS program. Market integration
relies on unofficial institutions that provide public and quasi-public goods in order to lower
the transaction costs related to the international movement of goods, services and other
production factors, in contrast to institutional integration, which is characterized by legal
agreements and institutional arrangements that promote preferential trade among members.
The GMS agenda has focused on the supply of physical infrastructure with public good
features as a program of market-based integration (e.g., cross-border infrastructure). In fact,
most of the GMS economies still lack adequate infrastructure of any kind, and the GMS
program has prioritized removing this obstacle. Through projects such as the East–West,
North–South and Southern economic corridors, a network of roadways connecting the
region is being built, lowering the cost of moving people and commodities from one end to
the other.

Numerous academics have researched how to enhance the GMS region’s economy,
environment, social conditions and cross-border trade. Paul et al. [1] examined the potential
of crop–livestock integration to reduce trade-offs between the economic and environmental
effects of smallholder farming systems in transition. Different stages of agricultural tran-
sition can be seen in Ratanakiri, Xieng Khouang and the Central Highlands. Economic
and population growth, in conjunction with infrastructure development, improved market
access, and government policies have resulted in a variety of profound and multifaceted
transition pathways. These pathways differ geographically, with respect to characteristics
and rate of change, and represent different stages of agricultural transition in Vietnam,
Cambodia and Laos [2]. They are fueled by complex land use decision-making processes
and have resulted in a diverse landscape mosaic throughout the region [3]. Yang et al. [4]
showed that GMS regional power connectivity is a complicated undertaking that is influ-
enced by a variety of mutually reinforcing and unpredictable factors. In such circumstances,
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it makes sense for policymakers to focus their attention on specifically defined internal
electricity system problems such as inadequate infrastructure, a lack of techn–ical expertise,
and disorganized regulatory procedures in order to enhance regional power connectivity.
Wu et al. [5] examined useful remote sensing indicators for ecological and environmental
assessments that can serve as a solid foundation for decision making in support of the
sustainable development of the ecological environment in the greater Mekong subregion,
as well as technological support for the creation of a biodiversity corridor.

The majority of research articles concern transportation planning in the GMS region,
-with a focus on how to build infrastructure to effectively connect all the GMS countries.
Shibasaki et al. [6] analyzed the potential effects of infrastructure improvement and other
related policies on international logistics in Cambodia with a focus on the inland waterway
transport (IWT) connecting Phnom Penh (PP) and Ho Chi Minh (HCM) via the Lower
Mekong Delta, and they identified challenges and issues that need to be resolved to enhance
barge navigation along the Mekong. They also revealed the current status of international
transport in the GMS, particularly traffic routes to/from Cambodia.

The general map of the GMS’s economic corridors, which are utilized to carry com-
modities for both import and export purposes, is shown in Figure 1. The corridor construc-
tion of the main road is supported by ADB, and there is a yearly congress held to update
the construction progress in every GMS region. The products have been moved around
the GMS using all major roadways. The majority of transportation firms collaborate with
large import–export companies. A few previous articles have covered the topic of how to
encourage import–export to and from SMEs.

Today, exported agricultural products, including rice, cassava, sugarcane and rubber,
increasingly play a significant role in the economic system of the Greater Mekong Subregion
(GMS). More than 50% of GMS citizens are farmers, and 28.75% of their GDP is from the
agricultural sector. According to the Department of Business Economics, the Ministry of
Commerce and the Royal Thai Government, agricultural exports to Asian nations increased
by 25.19% from 2005 to the year 2020, totaling 119,222,250,000 THB. Over 85% of these
were exported through the borders of countries that are members of the GMS. In Thailand,
98.603% of farmers are small and medium operations; only 1.397% are large companies.
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Morini et al. [8] investigated the relationship between internal and external hurdles
in this context and identified the barriers affecting the export of small and medium-sized
nontech enterprises in emerging countries. They discovered that the main factors imped-
ing SME development in the import–export market were a lack of knowledge and scarce
resources. According to the World Bank, import–export businesses need to boost their
operations’ dependability, predictability, safety and competitiveness. Ports require a lot
of land, and automated cranes and vehicles make stacking crane changeover zones more
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productive, allowing for more effective land use and allocation. Modern automated ma-
chinery also helps prevent crashes and other physical harm because it is quick, affordable
and involves minimal maintenance. However, it is not simple for SMEs to join and take on
a significant role in the import–export industry.

This article proposes the following contributions to logistics research.

(1) We design a logistic network for the trade of agricultural products across GMS coun-
tries;

(2) Small and medium (SMEs) farming operations are the research’s target group to
promote the design of a logistical export network;

(3) The design of a logistics network for SME’s trade of agricultural products is illustrated
using mixed-integer programming;

(4) The novel heuristics is presented for the first time in this study and is compared to
well-known heuristics proposed in the literature;

(5) A multi-objective artificial multiple intelligence system is used in conjunction with
TOPSIS to optimize the total profit of the system while minimizing the number of
containers used to extend the container’s lifetime.

The paper is structured as follows. Section 2 presents the related literature, and Section 3
presents the mathematical model that represents the network design. Sections 4 and 5 present
the proposed methods and computational results, and Section 6 presents the research’s
conclusions and outlook.

2. Literature Review

The GMS is a group of six countries in the northeast of Southeast Asia: Cambodia, the
Lao People’s Democratic Republic, Myanmar, Thailand, Vietnam and China [9]. Land trans-
portation is the most popular transportation mode in the GMS. However, the operations
management standard of land transportation in the GMS needs to be improved. The quality
of roadway infrastructure in GMS countries is not the same. Road conditions in Thailand
and China are significantly better than they are in the other countries. Tollways and ring
roads are found only in Myanmar and Vietnam, where city congestion has obstructed the
efficient flow of goods delivered by trucks during rush hour [10,11].

Ramachandran et al. [12] proposed a holistic, multifaceted approach to strengthening
infrastructural linkages and facilitating cross-border trade by first building a transboundary
road that connects two economic nodes across marginalized areas. Step two involves
facilitating environmentally and socially responsible investment in the newly connected
areas as a means of creating livelihoods. The North–South Economic Corridor Strategy
and Action Plan describes investment potential as the corridor enters its second phase of
development (SAP). Andersson et al. [13] examined factors affecting the efficacy of freight
logistics services after the processes of economic liberalization and deregulation, with a
focus on the development of the Lao freight logistics industry. The study focused on two
important facets of the Lao freight logistics industry: (i) the development of a private freight
logistics industry after the New Economic Mechanism (NEM), which gradually opened the
Lao economy to the rest of the world; and (ii) the sector’s awareness of the opportunities
and difficulties presented by the Lao PDR’s membership in the ASEAN, the GMS and
hopefully the WTO. Munir et al. [14] proposed paying attention to mitigation strategies
based on global standards to protect Pakistan’s ecosystem, wildlife, habitat and ecology
if these economic corridors are to be considered green initiatives in the China–Pakistan
Economic Corridor (CPEC). As previously mentioned, the majority of articles discussing
GMS transportation focus on a variety of issues, including the impact on the environment,
the social implications and the design of infrastructure. However, there is a dearth of
research addressing the design of logistics networks, particularly for agricultural products,
which require more attention than other types of products.

The design of a logistics network begins with the supplier and considers every step of
the logistical process until the client receives the finished product. Information flow and
the overall flow of goods are both logistically organized. This includes the management
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of distribution centers, warehouses, container yards, trailer yards, consignment shops,
trans-shipment sites, hubs and consolidation centers, as well as all stages of the material
flow. For businesses, network design is a crucial topic. It requires in-depth research to
guide important choices, such as: establishing the physical flows between the various links
in the supply chain and distribution flows, as well as the location of the right number of
factories, platforms and warehouses and how to specialize (or not) factory production lines
and stock goods for the best customer delivery terms. The purpose of this research is to
design a logistics network for agricultural product trading between Thailand, Laos and
Cambodia. Firstly, district agricultural cooperatives (AC) are determined as the collectors
who received agricultural products from farmers in the district. Then, agricultural products
are transported to the wholesaler agricultural markets (WSAM), the border checkpoint (BC)
and the end markets in each country.

Logistics network design has been used in a variety of research fields, including
railway freight station planning [15], port planning [16] and airport planning [17]. For
instance, Teye et al. [16] investigated the location of a multimodal container port while
considering several user preferences. Irawan et al. [18] presented a two-stage capacitated
facility location issue with multicommodity and multilayer capacities, taking the order of
decisions into account. These analyses were conducted from the viewpoint of enterprise
logistics, including manufacturing companies and third-party logistics. The logistics park is
a transfer or distribution location developed by the local logistics authority to satisfy urban
development needs, in contrast to multimodal or intermodal logistics facilities. Despite the
fact that logistics parks are essential components of these systems, little attention has been
paid to them in the research [19].

The transportation problem for agricultural products has been widely studied by
many researchers [20–28]. Agricultural products are typically perishable. Perishable
products need intensive care during transportation to the destination. Distribution planning
problems with stochastic and time-dependent travel times with time-varying temperatures
were modelled [20,29–31]. Chueanun and Suwandechochai [32], Derigs et al. [33], Mendoza
et al. [34] and Reis and Leal [35] proposed different shipping strategies, different numbers
of actors in the transportation chain and different limitations of the transportation modes.
In our study, the transportation time was (the time from the origin to the destination)
needed to be within a certain limit. As our products need to be transported via border
checkpoints, this can delay the transportation time, with a hold-up while documents are
checked. We selected borders as candidates for the shipping route based on which were
most convenient for international trade shipping.

Transported agricultural products pass through different actors in the supply chain,
which form a transportation or service network. The service network design (SND) problem
has been modeled and presented by Pedersen et al. [36], Andersen et al. [37–39], Moccia
et al. [40], Thiongane et al. [41] and Li et al. [42].

Jiang et al. (2020) developed a bilevel optimization model to capture the decision-
making behavior of stakeholders under the presumption that there was only one planner
and one carrier in the regional logistics network. In this study, we improved the aforemen-
tioned characteristics and considered the salient characteristics of various local logistics
agencies and their coordination framework in the creation of logistics parks. An increasing
trend in logistics network design is to take coordinated procedures across various logistics
companies into account [43]. Meng et al. [44] constructed a multimodal hub-and-spoke
transport network for various stakeholders under the assumption that the budget was only
managed and used by the central planner. Wang et al. [45] investigated a regional link
capacity planning problem with numerous planners, considering user choice behavior, and
examined the effects of noncooperation and centralized cooperation methods among these
planners on the functionality of traffic networks. Neamatian Monemi et al. [46] looked
at the location of a hub while considering the competition between two logistics service
providers. For the logistics park placement issue, Rao et al. [47] offered an evaluation
system based on cost and the environment. Jiang et al. [48] presented the formulation of a
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mathematical model to evaluate the impacts of non-budget-sharing, centralized budget-
sharing and conditional budget-sharing methods on regional low-carbon logistics network
architecture for numerous cities. Reduced CO2 emissions from freight transport activities
inside a neighborhood logistics network are the main objective.

In conclusion, the objective function employed in earlier studies on logistical network
design is mostly focused on the total cost, total profit and environmental impact. According
to Youd [49], there was predicted to be a worldwide scarcity of shipping containers in
2020–2021. The COVID-19 pandemic, which was principally to blame, drastically increased
the cost of shipping and containers and lengthened business turnaround times. Therefore,
when creating the agricultural logistics network architecture for this research, we examined
not only the overall profit but also how to use the fewest containers possible during
shipping. According to another viewpoint from the literature, the design of an agricultural
product logistics network, in particular a network that aims to improve the situation of
small and medium farming enterprises in the model, has not been presented in the prior
literature. As a result, this is the main contribution of this research.

Tang et al. [50] relaxed the fixed capacity assumption of the logistics park and pro-
posed a hybrid Tabu search method to address this design problem with a variable capacity.
Other methods that scholars have presented to solve logistics network design are a hy-
brid heuristic algorithm comprising an improved k-medoids clustering algorithm and
an extended-reference-point-based nondominated genetic algorithm [48], iterated local
search [51], hybrid GA (HGA) [52], hybrid variable neighborhood search and MOEA [53].
In this research, we develop novel metaheuristics to solve the problem, because the heuris-
tics presented previously cannot be directly applied to solve the proposed problem. The
proposed method is called an artificial multiple intelligence system (AMIS), which is dis-
cussed for the first time in this paper. AMIS is a novel heuristic that employs Gardner’s
Theory of Multiple Intelligences [54]. The proposed method comprises four steps: (1) gener-
ate an initial set of work packages (WPs); (2) perform the WP execution process; (3) update
the heuristics information; and (4) repeat steps (2)–(3) until the termination condition is
met. Details of the proposed method are given in Section 3.

3. Problem Definition and Mathematical Model
3.1. Problem Definition

Fresh agricultural products are transported from the farmers or the farmer’s coopera-
tive to the container loading center (CLC). The container loading center (CLC) or domestic
distribution center is used as the agricultural product collecting and loading center. The
products from the farmers or the farmers cooperation are packed here. The containers
are shipped to the borders in order to pass through the base and the target country’s
customs area. Afterward, the containers are transported using a trailer head from the
country in which the end market is located. When the containers arrive at the end markets,
the agricultural products are unloaded. The objectives are (1) to maximize profit for the
entire agricultural chain, (2) to minimize the time until the container arrives with the end
customers and (3) to minimize the number of containers used in the system. The framework
of the proposed problem is shown in Figure 2.
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3.2. Mathematical Model Formulation

In this section, a mathematical model of MELAP for agricultural water resources is
introduced. The indices, parameters and decision variables used in the mathematical model
to represent the problem are shown below.

Indices

i Container loading center i (i = 1, 2, 3, . . . , I)
j Farmers j (j = 1, 2, 3, . . . , J)
g Container number g (g = 1, 2, 3, . . . , G)
k Border k (k = 1, 2, 3, . . . , K)
l End market l (l = 1, 2, 3, . . . , L)
v Vegetable type v (v = 1, 2, 3, . . . , V)

Parameters

I Number of Container Loading Centers (CLC)
J Number of farmers
G Total number of containers
K Number of border checkpoints
L Number of end markets
Dji Distance from farmer j to CLC i (km)
T1

kl Transportation fuel cost from border k to end market l (THB/km)
T2

ik Transportation fuel cost from CLC i to border k (THB/km)
T3

ji Transportation fuel cost from farmer j to CLC i (THB/km)
Mvl The demand of vegetable v at end market l (ton)
O1

vj Available vegetable v at farmer j

Hkl

{
1 if border k is allowed to deliver goods to end market l
0 otherwise
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GG Great number, which is set to 50,000
B4

vg Loading cost of vegetable v to container g (THB/ton)
B6

gk Operating time of trailer head changing of container g at border k
Pg Capacity of container g (m2)
Eik Distance from CLC i to border k (km)
V Total number of vegetable types
Svl Sale price of vegetable v at end market l (THB)
Nkl Distance from border k to end market l (km)
P2

gk Operating time of border k per one container
A Traveling time per kilometer (min per km)
B1

gk Operating cost of changing the trailer head at border k (THB)

B2
gi

{
1 if container g is located att CLC i
0 otherwise

B3
v Space required to pack 1 ton of vegetable v (m2/ton)

B5
gi Time that container g starts to load the vegetables at CLC i (min, starting at 6:00 a.m.)

B7
gl

Time that container g must arrive at end market l (number of min, counting from 6:00 a.m.
that day)

Decision Variables

Xjgi

{
1 if farmer j delivers goods to container g, located at CLC i
0 otherwise

Zgikl

{
1 if container g is delivered from CLC i to border k to end market l
0 otherwise

Yg

{
1 if container g is in use
0 otherwise

O2
vjgi

Number of vegetable v delivered to container g located at CLC i and delivered
from farmer j

O3
vg Number of vegetable v packed in container g

O8
gl Arrival time of container g at market l (min, starting at 6:00 a.m.)

There are two objective functions of the proposed problem, given in Equations (1) and
(2). Equation (1) tries to maximize the total profit of the system. It is composed of five terms:
(1) the income from selling vegetable v at end market l; (2) the total transportation cost of
container g from CLC I to border k and from border k to end market l; (3) the trailer head
changing cost at border k; (4) the transportation cost of vegetable v from farmer j to CLC i;
and (5) the loading cost of vegetable v into container g. Equation (2), the second objective
function, tries to minimize the number of containers used in the system in order to save on
container circulation, therefore prolonging the lifetime of the containers. Moreover, when
the number of containers in use is smaller, it means that the empty space in the container
is reduced; therefore, the efficiency of the container is increased. All 2 objectives have
been minimized and subjected to 11 constraints, as follows. Constraint (3) stipulates that
container g located at CLC i delivers to at most one pair of borders and end markets and
only when container g is located at CLC i. Constraint (4) stipulates that container g delivers
to end market l only when end market l is allowed to ship via border k. Constraint (5)
stipulates that vegetable v is shipped from farmer j to container g located at CLC i only
when farmers j deliver the goods to container g. Constraint (6) stipulates that farmers can
ship to container g located at CLC i only when container g is available at CLC i. Constraint
(7) stipulates that vegetable v is shipped from farmer j if it does not exceed its availability at
farm j. Constraint (8) defines the amount of vegetable v packed in container g. Constraint (9)
stipulates that vegetable v is be shipped to market l more than its demand. Constraint (10)
stipulates that container g’s vegetables do not exceed its capacity. Constraint (11) stipulates
that farmer j must deliver container g to CLC i before loading can start. Constraint (12)
stipulates that the container must arrive before its commitment time to market l, and
constraint (13) stipulates that the arrival time of container g at market l must be less than
the commitment time.

Objective Functions
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Max Z = ∑
v,g,i,k,l

SvlZgiklO3
vg − ∑

g,i,k,l
Zgikl

(
T2

ikEik + T1
kl Nkl

)
−∑

gikl
Zgikl B1

k −∑
j,g,i

T3
ji XjgiDji −∑

v,g
B4

vgO3
vg (1)

Min Z = ∑
g

Yg (2)

Subject to

∑k,l Zgikl ≤ B2
gi ∀(g = 1, 2 . . . , G ; i = 1, 2, 3, . . . , I) (3)

Zgikl ≤ Hkl ∀(g = 1, 2 . . . , G ; i = 1, 2, 3, . . . , I, k = 1, 2, . . . , K, l = 1, 2, . . . , L) (4)

O2
vjgi ≤ XjgiGG ∀(v = 1, 2, . . . , V, g = 1, 2 . . . , G ; i = 1, 2, 3, . . . , I, j = 1, 2, . . . , J) (5)

∑j Xjgi ≤ B2
gi ∀ (g = 1, 2, . . . , G, i = 1, 2, . . . , I) (6)

∑g,i O2
vjgi ≤ O1

vj ∀ (v = 1, 2, . . . , V, j = 1, 2, . . . , J) (7)

O3
vg = ∑j,i O2

vjgi ∀ (v = 1, 2, . . . , V, j = 1, 2, . . . , J) (8)

∑g,i,k ZgiklO3
vg ≤ Mvl ∀ (v = 1, 2, . . . , V, l = 1, 2, . . . , L) (9)

∑v B3
vO3

vg ≤ PgYg ∀ (g = 1, 2, . . . , G) (10)

ADji Xjgi ≤ B5
gi ∀ (g = 1, 2, . . . , G, j = 1, 2, . . . , J, i = 1, 2, . . . , I) (11)

Zgikl

(
P2

gk + Eik + Nkl + B6
gk

)
≤ B7

gl
∀(g = 1, 2 . . . , G ; i = 1, 2, 3, . . . , I, k = 1, 2, . . . , K, l = 1, 2, . . . , L) (12)

B8
gl ≤ B7

gl ∀(g = 1, 2 . . . , G , l = 1, 2, . . . , L) (13)

4. The Proposed Methods: Artificial Multiple Intelligence System (AMIS)

The AMIS is the novel metaheuristics inspired by Gardner’s Theory, or the Multiple
Intelligences Theory [55–58]. The idea of fine-tuning the heuristic search space is to try to
use multiple intelligences to operate the same task in order to obtain the most promising
solution. We designed the choices of intelligences for the system to select a suitable one. The
suitable one or the selected intelligence may change during the searching of the heuristics.
The AMIS is composed of four steps: (1) generate an initial set of work packages (WPs);
(2) perform the WP execution process; (3) update the heuristics information; and (4) repeat
steps (2)–(3) until the termination condition is met. The AMIS can be explained stepwise,
as follows.

4.1. Generate the Initial Set of Work Packages

The set of initial tracks was randomly generated. A track was decoded to represent the
solution for the proposed problem. The encoding and decoding method were as follows.

4.2. Perform the WP Execution Process

Integer encoding was used to represent the proposed problem. Table 1 shows an
example of the initial set of tracks (Xijt). A WP has dimensions of 1 × D, and Xijt . is WP
number i with position j at iteration t. D is the total number of positions, set to be the
number of farmers in the system plus the number of containers, the number of borders
and the number of end markets. If we have 4 farmers, 8 containers, 3 borders, and 2 end
markets, D equals 4 + 8 + 3 + 2 = 17. The example of the four WPs is given in Table 1.
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Table 1. Three examples of WPs.

WP

Farmer Container Border EM

1 2 3 4 1 2 3 4 5 6 7 8 1 2 3 1 2

0.32 0.70 0.82 0.53 0.32 0.23 0.68 0.26 0.16 0.40 0.78 0.86 0.21 0.25 0.91 0.69 0.23

1 0.66 0.45 0.46 0.78 0.65 0.76 0.97 0.93 0.67 0.47 0.07 0.78 0.43 0.09 0.59 0.68 0.50
2 0.27 0.39 0.79 0.14 0.40 1.00 0.31 0.43 0.11 0.16 0.20 0.44 0.15 0.11 0.96 0.01 0.44
3 0.32 0.70 0.82 0.53 0.32 0.23 0.68 0.26 0.16 0.40 0.78 0.86 0.21 0.25 0.91 0.69 0.23

4.3. Decode the Initial Work Package (WP)

The decoding method was used to mediate between the code shown in Table 2 and
the network design problem or the proposed method. Basic information on the proposed
problem is given in Tables 2–5.

Table 2. Demand for vegetables.

Demand

Vegetable A Vegetable B

End market 1 1500 2000
End market 2 1800 1800

Table 3. Selling price of vegetables.

Price

Vegetable A Vegetable B

End market 1 910 880
End market 2 920 860

Table 4. Amount of product available from each farmer.

Amount

Farmer 1 Farmer 1 Farmer 2 Farmer 1

Vegetable A 1500 2500 0 0
Vegetable B 0 0 2500 2000

Table 5. Container capacity.

Capacity

1 2 3 4 5 6 7 8

CLC 1 700 600 1000 800 0 0 0 0
CLC 2 0 0 0 0 800 700 900 1000

From the coded values shown in Table 1 and the basic data given in Tables 2–5, the
decoding method can be explained stepwise as follows.

(1) Sort the position according to the value in position j of WP i (Xijt) in an increasing
order. The results of the sorting are shown in Table 6.

(2) Start the assigning process of all involved actors in the chain. The assigning process is
as follows.

(2.1) Fulfill the demand of goods from EM according to the sorting results. The first
EM is the list of all needs.

(2.2) The selection of the transportation network (border, CLC and farmers) uses
the list as the rule (the first on the list is assigned first).
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(2.3) The amount of shipping based on the rule:

(1) Try to use all space in the containers;
(2) Farmers can split their product.

(2.4) The assigning process stops when

(1) There is no product available from the farmers;
(2) All demand is fulfilled;
(3) There are no containers available.

Table 6. Results of the sorting of WP number 1.

Before Sorting

Farmer Container Border EM

1 2 3 4 1 2 3 4 5 6 7 8 1 2 3 1 2

0.32 0.70 0.82 0.53 0.32 0.23 0.68 0.26 0.16 0.40 0.78 0.86 0.21 0.25 0.91 0.69 0.23

After Sorting

Farmer Container Border EM

1 4 2 3 5 2 4 1 6 3 7 8 1 2 3 2 1

0.32 0.53 0.70 0.82 0.16 0.23 0.26 0.32 0.40 0.68 0.78 0.86 0.21 0.25 0.91 0.23 0.69

The results of the assignment process are shown in Table 7.

Table 7. Results of the assignment process of WP number 1.

V
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M
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To
ta
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um

be
r

of
C
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ta

in
er

s
U

se
d

EM 2 A 5, 2, 4 1–1500 tons
2–300 tons 1 1,656,000 398 3

B 4, 1, 6 4–1800 tons 1 3,186,000 401 3

EM 1 A 3, 7 2–2000 2 1,840,000 357 2

B 8 4–200
3–700 2 2,632,000 276 1

Total 5,818,000 401 8

WPEp is the process whereby an individual WP selects the intelligence box (improve-
ment box) to improve the solution quality. The WP was iteratively executed, independently
of the previous iteration. The WP selected the WP in each iteration to perform WPEp. After
the WPEp was executed, the heuristics information was updated. Selecting the intelligence
boxes (IB selection) for WPEp was performed using Equations (14) and (15). Equations
(14) and (15) involve the basic idea that the attractiveness for the IB depends on the pre-
vious history of the solution quality of the WPs that have been executed previously. The
framework of the AMIS is shown in Figure 3.

Sbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1

∑B
b=1 FNbt−1 + (1− F)Abt−1 + KIbt−1

(14)

Pbt =


PMax i f Sbt ≥ PMax

Sbt i f PMin ≤ Sbt ≤ PMax

PMin i f Sbt ≤ PMin
(15)
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Here, Sbt is the attractiveness for IB b in iteration t. Pbt is the probability of selecting
IB b in iteration t. PMin and PMax are the minimum and maximum probability to select
an IB (predefined parameters). PMin is set to 0.2, and PMax is set to 0.8 (obtained from the
preliminary experiment). Nbt−1 is the number of WPs that select an intelligence box (IB)
b in the previous iteration. Abt−1 is the average objective value of all WPs that select IB b
in the previous iterations. Ibt−1. is a reward value, which increases by 1 if IB b finds the
optimal solution in the last iteration, but it is set to 0 otherwise. IB is the total number of
IBs. F is the scaling factor (F = 2), and K is the improvement factor (K = 1).

The WP iteratively executes the selected IB. In our research, nine intelligence boxes
were used. The basic idea for designing the intelligence boxes is to enhance the search
capability. Three types of intelligence boxes were used: (1) diversification search intelligence
boxes (Di), (2) intensification search intelligence boxes (In) and (3) a search that has both
Di and In types. The intelligence boxes used in this research are shown in Table 8 and
Equations (15)–(23).

Table 8. Intelligence box details.

IB Operators Group Value of

ACO-inspired move (AIM) In Yijq = ρYrjq + F1
(

Bgbest
j −Yrjt

)
+ F2

(
Ymjt −Yrjt

)
(16)

PSO-inspired move (PIM) In Yijq = Yrjq + F1
(

Bgbest
j −Yrjt

)
+ F2

(
Bpbest

hj −Yrjt

) (17)

DE-inspired move (DIM) In Yijq = Yrjq + F1
(
Ymjt −Ynjt

) (18)

ABCO-inspired move (BIM) In Yijq = Yrjq +∅rj
(
Ymjt −Ynjt

) (19)

Restart Di Yijq = Rij
(20)

Random transit (RT) Di Yijq =

{
Yijq−1 i f Rij ≤ CRh

Rijq otherwise

(21)

Intertransit (IT) Di Yijq =

{
Yijq−1 i f Rij ≤ CRh

Ynjq otherwise

(22)

Scaling factor (SF) Di Yijq =

{
Yijq−1 i f Rij ≤ CRh

RijYijq−1 otherwise

(23)

RT-AIM In/Di Yijq =

{
ρYrjq + F1

(
Bgbest

j −Yrjt

)
+ F2

(
Ymjt −Yrjt

)
i f Rij ≤ CRh

Yijq−1 otherwise
(24)

In the above table, ∅rj is a random real number in the range [−1, 1], and Rij is a

random number in the range [0, 1]. Bgbest
j is the best WP generated so far, and Bpbest

hj is the
best WP of WP h. F1 and F2 are predefined scaling numbers. In this research, we used 0.5
and 0.5 as F1 and F2, respectively. If WP i uses IB b as the improvement method, WP i is
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defined as belonging to the set Z of WPs, and others are members of set A. I = Z ∪ A. I is
the total number of WPs. We define sets Ynjt and Ymjt ∈ A and Yrjt ∈ Z. WP n and m are
randomly chosen from the WP in set A, whereas WP r is randomly selected from set Z. The
ρ position’s value evaporation rate is predefined and set to 0.05. The subiteration update
position of Yijq+1 is executed using Equation (25), when q is a predefined parameter.

Yijq+1 =

{
Yijq i f fir ≤ fiq and update fir = fiq and Yrjq = Yijq

Yrjq otherwise
(25)

An IB execution process was used to improve the solution quality. Each IB executed
q (constant predefined number) iterations. We call q a subiteration. CRh is an adaptive
parameter that is set to be the crossover rate (CR). In this research, it is set to 0.95 and is
gradually reduced to 0.6 depending on the current iteration and the number of iterations.
The current best solution is unchanged by using Equations (26)–(29), where G, CRmax, CRmin,
t and Tmax are the number of iterations, where the current best solution remains unchanged;
the maximum value of CR (0.95); the minimum value of CR (0.6); the current iteration; and
the maximum number of iterations, respectively.

S = CRmax − exp[−[
G

(t/Tmax)×100 ]] (26)

CRh =


S i f Tmin ≤ D ≤ Tmax

Tmax i f D ≥ Tmax

Tmin i f D ≤ Tmin
(27)

G =

{
G + 1 i f fiq ≤ fiq−1

1 otherwise
(28)

fiq = ∑V
v=1 wv f v

iq , (29)

Here, fiq and fiq+1 are the objective functions of Yijq and Yijq+1, respectively. f v
iq is

an objective function v ∈ (1,2,3, . . . ,V) of track Yijq, and V is the number of objectives of
the model. wv is the weight of objective v and ∑V

v=1 wv = 1. In this case, there are two
objectives: w1 represents the weight of objective 1, which is randomly selected from U [0.1,
0.9], and w2 is (1 − w1).

For each IB, q is a predefined parameter that is set to 100 iterations [59]. The Pareto
front was used to keep the nondominated solution. f 1(yr) and f 2(yr) are the objective
functions of objectives 1 and 2 of track r, respectively. Let < represent a set of feasible
solutions, with y = (y1, y2, . . . , yi) giving the set of decision vectors and f v(y) = ( f 1(y),
f 2(y), . . . , f V(y)) being the set of objective functions of vector y. y dominates y′ if, and only
if, f v (y) ≤ f v(y′) for all v = 1,2,3, . . . ,V.

4.4. Update the Heuristic Information

Some heuristic information needs to be updated in order to use it as information for
the following iterations. The rule to update is shown in Table 9.

Table 9. The updated role of the heuristic information.

Variables Updated Procedure

Nbt Total number of WPs that select IB b from iteration 1 to iteration t

Abt Average objective value of all IBs that select IB b

(
∑

Nbt
i=1 fit
Nbt

)

Ibt
Ibt = Ibt−1 = G

when G =

{
1 if black box contains the global best solution in iteration t
0 otherwise

Bgbest
j

Update global best WP

Bpbest
hj

Upde IB’s best WP
Rijq Randomly select the value in the position of all WPs, all positions
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4.5. Repeat the Work Package Execution Process until the Termination Condition Is Met

The stopping criterion here is the maximum number of iterations, which is set to
1000–2000 (resulting from the preliminary test). The pseudocode of the AMIS is shown in
Algorithm 1.

Algorithm 1. Artificial multiple intelligence system (AMIS)

Input: Population size (NP), Problem size (D), Mutation rate (F), Recombination rate (R), Number of intelligence boxes
(NIB)
output: Best_Vector_Solution
begin

Population = Initialize set of WPs
IBPop = Initialize InformationIB(NIB)
encode Population to WP

while the stopping criterion is not met do
for i = 1: NP

Vrand1, Vrand2, Vrand3 = Select_Random_Vector (WP)
for j = 1:D//Loop for the mutation operator

Vy [j]= Vrand1 [j] + F (Vrand2 [j]+ Vrand3 [j])
end for loop//end mutation operator
for j = 1:D//Loop for recombination operation

if (randj [0,1) < R) then
u [j]= Vi [j]

else
u [j]= Vy [j]

end for loop//end recombination operation
//selected Intelligence box by RouletteWheelSelection
selected_IB = RouletteWheelSelection(IBPop)
if (selected_IB = 1) then

new_u = AIM (u)
else if (selected_IB = 2)

new_u = PIM (u)
else if (selected_IB = 3)

new_u = DIM (u)
else if (selected_IB = 4)

new_u = BIM (u)
elseif (selected_IB = 5)

new_u = RT (u)
else if (selected_IB = 6)

new_u = IT (u)
else if (selected_IB = 7)

new_u = RT − AIM (u)
else if (selected_IB = 8)

new_u = SF (u)
else if (selected_IB = 9)

new_u = RESTART (u)
if (CostFunction(new_u) ≤ CostFunction(Vi)) then

Vi = new_u
//Loop to update the heuristics information of the intelligence box
for j = 1: NIB

decode WP to obtain the solution for the problem
Collect Pareto Front//Calculate TOPSIS

end For Loop//End the update to the heuristics information
end for Loop

end
return Best_Vector_Solution

end

4.6. The Methods Compared

We used two heuristics to compare with the AMIS: (1) the genetic algorithm (GA)
and (2) the differential evolution algorithm. The GA algorithm used in this research was
adopted from Metchell [60], and the DE was adopted from Pitakaso and Sethanan [24]. GA
and DE use the Pareto front process, as explained in the previous section.

5. Computational Results and Framework

We coded the mathematical model in Lingo V.16 and coded the AMIS, DE and GA
with C++, executing them using a PC Intel® Core™ i5-2467M CPU 1.6 GHz. Twenty-
one randomly generated datasets and one case study were evaluated to compare the
performance of the proposed methods. The computational results are divided into two
groups: in Section 5.1, the effectiveness of the AMIS is revealed, and in Section 5.2, the
behaviors of the AMIS in dealing with the proposed problem are described.
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5.1. The AMIS’s Effectiveness

The effectiveness of the suggested technique (AMIS) was evaluated by comparing
it to two existing heuristics: the differential evolution algorithm (DE) and the genetic
algorithm (GA), both of which were derived from previous works [4,61]. In this section,
we ran two different sets of experiments. A total of 22 test problems were used to gauge
how well each algorithm, including the AMIS, performs. Each has a different number of
vegetables, farmers, container loading centers, borders and end markets. The details of the
test instances are given in Table 10. The problem instances were divided into two groups:
(1) test instances with a small size(S-group) and (2) test instances with a large size (L-group).
The small test instances are the test instances that can find an optimal solution within 24 h.
The large test instances are the problems for which Lingo V.16 can find a lower bound, and
the best solution was found for 480 h.

Table 10. Details of the test instances.
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S-1 3 8 5 3 4 12 L-1 4 110 5 4 11 27
S-2 3 10 5 3 4 12 L-2 4 120 6 4 11 27
S-3 4 16 6 4 6 14 L-3 4 130 6 4 11 32
S-4 4 16 6 5 6 14 L-4 4 140 7 4 11 32
S-5 4 20 6 5 6 14 L-5 4 140 7 4 12 32
S-6 4 22 6 5 6 15 L-6 4 150 7 4 12 43
S-7 4 22 7 5 6 16 L-7 5 150 8 4 12 43
S-8 4 22 6 5 7 17 L-8 5 165 8 4 12 43
S-9 4 23 7 5 7 17 L-9 5 165 8 5 14 50

S-10 4 24 7 5 8 18 L-10 5 165 8 5 15 50
S-11 4 25 7 5 8 18 L-11 6 165 9 5 16 60

Instances S-1 to L-10 are randomly generated datasets, and L-11 is the case study in
GMSG. The details of the data generated are given in Table 11.

Table 11. Range of data randomly generated for each problem instance.

Parameters Value

Dji (km) U [10, 130]
Eik (km) U [10, 120]

Nkl (mm) U [20, 150]
T1

kl (THB/km) U [3, 5]
T2

ik Transportation fuel cost from CLC i to border k (THB/km) U [3, 5]
T3

ji Transportation fuel cost from farmer j to CLC i (THB/km) U [3, 5]
Mvl (kg) U [800, 1500]
O1

vj (kg) U [200, 600]
B4

vg (THB/kg) U [4, 9]
B6

gk (min) U [15, 25]
Pg (m2) U [500, 800]

Svl (THB/kg) U [1000, 1500]
P2

gk (min) U [10, 45]
B6

gk (min) U [15, 25]
B3

v (m2/kg) U [0.2, 0.8]
B4

vg (THB/kg) U [3, 10]
B7

gl (min) U [400, 550]
B1

gk (THB/kg) U [1000, 2500]
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The first experiment was performed on the small test instances. All 11 test instances
were tested to optimality using equal weights of two objectives in Lingo V.16: the AMIS,
DE and GA. Lingo V.16’s optimal solutions were recorded and are shown in Table 12. The
AMIS, DE and GA used computational time as the stopping criterion, and it was set to
20 min. It was executed five times, and the best objectives out of five runs were taken as
the representative of the method’s solution, as shown in Table 12.

Table 12. Objective functions of small test instances.
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S-1 1,506,483 7 43.34 1,506,483 7 1,506,483 7 1,506,483 7
S-2 1,396,667 7 48.82 1,396,667 7 1,396,667 7 1,396,667 7
S-3 2,953,586 9 75.28 2,934,171 9 2,953,586 9 2,953,586 9
S-4 3,287,781 10 80.13 3,287,781 10 3,267,148 10 3,287,781 10
S-5 3,952,272 10 92.45 3,944,837 10 3,952,272 10 3,952,272 10
S-6 5,430,174 11 99.84 5,430,174 12 5,409,188 12 5,430,174 11
S-7 6,337,066 13 117.37 6,278,967 13 6,337,066 13 6,337,066 13
S-8 6,630,979 13 124.94 6,630,979 13 6,630,979 13 6,630,979 13
S-9 6,724,513 14 187.56 6,698,138 15 6,687,127 15 6,724,513 14
S-10 6,929,796 15 230.18 6,845,673 16 6,855,643 16 6,929,796 15
S-11 7,147,344 15 256.69 6,991,436 16 7,021,286 16 7,147,344 15

Using the data in Table 12, we divided the profit generated from the entire chain
by the number of containers used to obtain the average profit per container and to find
the percentage difference of the proposed method with the optimal solution obtained by
Lingo V.16; the results are shown in Table 13. The objective function in the mathematical
model was modified to Equation (30). The results of the statistical test using the Wilcoxon
signed-rank test are given in Table 13.

Max Z =
∑v,g,i,k,l SvlZgiklO3

vg −∑g,i,k,l Zgikl
(
T2

ikEik + T1
kl Nkl

)
−∑gikl Zgikl B1

k −∑j,g,i T3
ji XjgiDji −∑v,g B4

vgO3
vg

∑g Yg
(30)

Table 13. Average profit per container of all methods.
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Lingo DE GA AMIS Lingo DE GA AMIS

S-1 215,211.86 215,211.86 215,211.86 215,211.86 0.00 0.00 0.00 0.00
S-2 199,523.86 199,523.86 199,523.86 199,523.86 0.00 0.00 0.00 0.00
S-3 328,176.22 326,019.00 328,176.22 328,176.22 0.00 0.66 0.00 0.00
S-4 328,778.10 328,778.10 326,714.80 328,778.10 0.00 0.00 0.63 0.00
S-5 395,227.20 394,483.70 395,227.20 395,227.20 0.00 0.19 0.00 0.00
S-6 493,652.18 452,514.50 450,765.67 493,652.18 0.00 8.33 8.69 0.00
S-7 487,466.62 482,997.46 487,466.62 487,466.62 0.00 0.92 0.00 0.00
S-8 510,075.31 510,075.31 510,075.31 510,075.31 0.00 0.00 0.00 0.00
S-9 480,322.36 446,542.53 445,808.47 480,322.36 0.00 7.03 7.19 0.00
S-10 461,986.40 427,854.56 428,477.69 461,986.40 0.00 7.39 7.25 0.00
S-11 476,489.60 436,964.75 438,830.38 476,489.60 0.00 8.30 7.90 0.00

Avg. 397,900.88 383,724.15 384,207.10 397,900.88 0.00 2.98 2.88 0.00
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From the computational results in Tables 12–14, we can see that DE generates a profit
per container that is on average 2.98% less than the optimal solution and the AMIS, and the
profit per container generated by GA costs on average 2.88% less than that of Lingo and
the AMIS.

Table 14. Statistical testing using the Wilcoxon signed-rank test on the results in Table 13.

DE GA AMIS

Lingo 0.028 0.036 1.00
DE 0.408 0.038
GA 0.36

Using the data in Table 14, we performed a further experiment to determine the effect
of weight on the profit per container. In this experiment, the weight of profit (w1) was set to
0.2, 0.5 or 0.8. The results for the profit per container of each weight are shown in Table 15.
The objective function was modified to create Equations (31) and (32).

Max A = w1[∑v,g,i,k,l Svl ZgiklO3
vg −∑g,i,k,l Zgikl

(
T2

ikEik + T1
kl Nkl

)
−∑gikl Zgikl B1

k −∑j,g,i T3
ji XjgiDji −∑

v,g
B4

vgO3
vg ]− w2 ∑g Yg (31)

Z =
A

∑g Yg
(32)

Table 15. Average profit per container using different weights w1.

No.
w1 = 0.2 w1 = 0.5 w1 = 0.8

Lingo DE GA AMIS Lingo DE GA AMIS Lingo DE GA AMIS

1 205,819.2 205,819.2 205,819.2 205,819.2 215,211.9 215,211.9 215,211.9 215,211.9 231,287.4 231,287.4 231,287.4 231,287.4
2 192,837.7 192,837.7 192,837.7 192,837.7 199,523.9 199,523.9 199,523.9 199,523.9 212,891.7 212,891.7 212,891.7 212,891.7
3 326,200.4 324,490.6 325,837.2 326,200.4 328,176.2 326,019 328,176.2 328,176.2 332,934.1 329,018.6 328,995.2 332,934.1
4 327,012.8 325,989.7 326,089.6 327,012.8 328,778.1 328,778.1 326,714.8 328,778.1 338,912.5 329,981.7 330,192.9 338,912.5
5 382,824.2 387,168.2 387,181.9 382,824.2 395,227.2 394,483.7 395,227.2 395,227.2 401,288.6 400,192.3 401,288.6 401,288.6
6 479,813.5 443,326.8 443,476.1 479,813.5 493,652.2 452,514.5 450,765.7 493,652.2 501,230.7 501,230.7 499,817.1 501,230.7
7 467,618.7 451,298.3 458,719.5 467,618.7 487,466.7 482,997.5 487,466.7 487,466.7 494,817.2 488,192.8 494,817.2 494,817.2
8 487,891.4 467,791.1 469,810.8 487,891.4 510,075.3 510,075.3 510,075.3 510,075.3 524,892.7 511,248.2 512,391.8 524,892.7
9 477,918.1 439,817.9 448,199.3 477,918.1 480,322.4 446,542.5 445,808.5 480,322.4 498,814.8 468,172.9 469,812.3 498,814.8

10 458,981.5 412,394.8 419,289.5 458,981.5 461,986.4 427,854.6 428,477.7 461,986.4 488,918.3 451,092.1 451,998.7 488,918.3
11 458,991.8 422,129.4 425,982.1 458,991.8 476,489.6 436,964.8 438,830.4 476,489.6 498,192.1 470,291.3 479,187.5 498,192.1

Avg. 387,809.9 360,527.3 373,022.1 387,809.9 397,900.9 383,724.2 384,207.1 397,900.9 411,289.1 399,418.2 401,152.8 411,289.1

From Table 15, we can see that the AMIS can find the optimal solution 100% of the
time, even when using a different weight of w1, whereas DE and GA can find the optimal
solution 24.24% and 30.30% of the time, respectively. We used the data from Table 13 to
compute the average profit per container using various values of w1, ranging from 0.2 to 0.8.
The average profit per container while using w1 equal to 0.2, 0.5 and 0.8 was, respectively,
377,292.30 THB, 390,933.27 THB and 405,787.28 THB. This indicates that the profit increases
when using a higher value of w1. By 7.55 percent and 3.99 percent, respectively, using w1
equal to 0.2 and 0.5 differs from using w1 equal to 0.8. This is because the value of w1 is
the concentration value of the model, focused on maximizing the average profit rather
than minimizing the overall number of containers used in the system. When focusing
on the average profit gained using various solution methods, we found that the average
profit of Lingo V.16 [62], DE [61], GA [4] and the AMIS is 398,999.98 THB, 381,223.19 THB,
386,127.32 THB and 398,999.98 THB, respectively. When compared to the results from Lingo
V.16, which always finds the optimal solution, the AMIS can find the optimal solution 100%
of the time, whereas Lingo V.16 is not applicable to problems with a large size within an
acceptable computational time. The AMIS can improve the solution quality of the GA
proposed by [4] by 4.66% and the DE proposed by [61] by 3.33%.

The number of containers used in the system rises as w1’s value rises. The number of
containers used increases when we focus more on making a profit, as previously mentioned,
because the value of w1 directs the model to concentrate on finding the maximum profit,
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which is in conflict with the total number of containers used, because the rental and
transportation costs of the containers used rise. The average number of containers used
when utilizing different values of w1 was 11.23, 11.68 and 12.94, respectively. When
employing the AMIS, DE and GA to solve the issue, the number of containers used exhibits
a similar pattern to the results when using total profit as the criterion for analysis. Solutions
generated by the AMIS are 12.92% and 13.01% better than those generated by the GA and
DE, respectively.

The proposed problem is a special case of a capacitated network flow problem, which
is defined as an NP-Hard problem [63]. However, it is not possible to solve the proposed
problem by the exact methods within a reasonable computation time. Therefore, for test
instances with a large size, the design of the experiment is different from that of test
instances with a small size. The next experiment was performed on 11 large-sized test
instances. The stopping criterion used in this experiment was computational time. Lingo
V.16 ran for 480 h; if it could not find an optimal solution, the best objective found within
the 480 h was used as a representative of the solution of Lingo V.16, and the DE, GA and
AMIS used an equal execution time, which was set to 60 min. The computational results are
shown in Table 16. The weight of w1 used in the experiment was 0.5, and thus the weight
of w2 was also 0.5.

Table 16. Computational results of test instances with a large size.

Lingo V.16
(Best Solution Found

within 480 h)
DE GA AMIS
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L-1 5,981,728 21 6,012,384 21 6,118,891 22 6,345,981 20
L-2 5,991,827 23 6,329,541 23 6,499,819 23 6,761,892 22
L-3 6,234,198 24 7,171,828 23 7,299,818 23 7,419,282 23
L-4 6,549,182 26 7,412,947 26 7,587,129 26 7,887,817 25
L-5 6,771,274 27 7,539,981 27 7,689,912 26 7,901,248 25
L-6 8,981,928 39 9,338,127 38 9,488,712 38 10,981,728 37
L-7 9,123,847 39 10,081,724 38 10,188,184 38 11,012,947 36
L-8 9,421,178 41 10,281,721 39 10,398,471 39 11,367,919 37
L-9 10,238,123 42 11,482,749 40 10,898,183 40 12,128,378 40

L-10 10,871,281 45 10,898,127 44 11,998,274 44 12,239,177 42
L-11 12,398,719 55 14,059,279 50 14,388,712 50 15,236,832 48

From the results shown in Table 16, we can discover the average profit per container
(Table 17). The Wilcoxon signed-rank test results are shown in Table 16.
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Table 17. Average profit per container.

Lingo DE GA AMIS

L-1 284,844.2 286,304.0 278,131.4 317,299.1
L-2 260,514.2 275,197.4 282,600.8 307,358.7
L-3 259,758.3 311,818.6 317,383.4 322,577.5
L-4 251,891.6 285,113.3 291,812.7 315,512.7
L-5 250,787.9 279,258.6 295,765.8 316,049.9
L-6 230,305.8 245,740.2 249,702.9 296,803.5
L-7 233,944.8 265,308.5 268,110.1 305,915.2
L-8 229,784.8 263,633.9 266,627.5 307,241.1
L-9 243,764.8 287,068.7 272,454.6 303,209.5

L-10 241,584.0 247,684.7 272,688.0 291,409.0
L-11 225,431.3 281,185.6 287,774.2 317,434.0

Avg. 246,601.1 275,301.2 280,277.4 309,164.5

From the computational results in Tables 16–18, we can conclude that the AMIS
significantly improves the solution quality of the proposed method, with the best objectives
found by Lingo V.16 within 480 h. The AMIS, DE, and GA improve the solution quality by
20.24%, 10.95% and 9.34%, respectively.

Table 18. Statistical test using the Wilcoxon signed-rank test on the results in Table 17.

DE GA AMIS

Lingo 0.0038 0.0044 0.0038
DE 0.1156 0.0038
GA 0.0038

5.2. The AMIS’s Behavior in Resolving the Proposed Problem

In the next experiment, we ran the DE, GA and AMIS for 1050 iterations to track the
progress of searching for the best results for each method with a case study that involved
165 farmers’ cooperation; the results are shown in Figure 4.
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From Figure 4, we can see that the AMIS starts with a better solution than the other
methods; it keeps searching for a good solution and rarely gets stuck on a local optimal
compared with other methods. The AMIS finds a new solution during 1050 iterations
79 times, whereas the GA and DE find new best solutions 47 and 52 times, respectively.
Even the DE more often finds a new best solution but gives a worse final solution compared
with the GA. We can see that, in a small area, the DE search’s new best solution does not
improve the current solution by much. This means that the DE search is good in a small
area. The GA can find the new best solution, but when it gets stuck on a local optimal, it
cannot escape from this area. The AMIS combines the good behavior of both methods. It
can find a good solution and can find a new best solution, and it can escape from the local
optimal, which makes it give better solutions than the other two methods.

In the next experiment, we assessed the effect of using three different types of intelli-
gence boxes: (1) an intensification search group (IN), (2) a diversification search group (DI)
and (3) a combination of IN and DI. The first group was composed of AIM, PIM, DIM and
BIM, and the second group was composed of Restart, RT, IT and SF. The last group, the
combination of DI and IN, composed only one box, AT-AIM. We decomposed the AMIS
into four subalgorithms: AMIS-DI, AMIS-IN, AMIS-AT and AMIS. AMIS-DI is the AMIS
that uses only DI as the intelligence boxes. AMIS-IN, AMIS-AT and AMIS are the AMIS
types that use only IN as the intelligence boxes; that use AT-AIM, DIM, BIM, RT and IT as
the intelligence boxes (details of the AMIS subalgorithms are given in Table 19); and that
use all types of intelligence boxes as the IB, respectively. All algorithms were evaluated with
large test instances. All algorithms were evaluated five times per instance, with the best
solution from all five tests taken as the representative of the algorithm. The computational
time was used as the stopping criterion and was set to 60 min for all algorithms. The
computational results are shown in Table 20, and the statistical test is shown in Table 21.

Table 19. Details of the AMIS subalgorithms.

Types of AMIS AMIS-DI AMIS-IN AMIS-AT AMIS

ACO-inspired move (AIM) • •
PSO-inspired move (PIM) • •
DE-inspired move (DIM) • • •

ABCO-inspired move (BIM) • • •
Restart • •

Random transit (RT) • • •
Intertransit (IT) • • •

Scaling factor (SF) • •
RT-AIM • •

Remark: • represented the subalgorithm used in each type of AMIS.

Table 20. Average profit per container using different AMIS algorithms.

AMIS-DI AMIS-IN AMIS-AT AMIS

L-1 287,239.0 289,918.5 291,827.8 317,299.1
L-2 283,018.8 289,137.6 287,139.3 307,358.7
L-3 311,082.4 312,018.2 312,811.7 322,577.5
L-4 306,719.1 305,891.5 304,879.3 315,512.7
L-5 307,718.5 306,081.4 307,918.6 316,049.9
L-6 278,909.7 282,389.9 283,918.5 296,803.5
L-7 284,438.4 283,369.2 282,399.1 305,915.2
L-8 281,298.6 288,183.9 287,183.5 307,241.1
L-9 292,398.9 291,928.5 290,148.7 303,209.5

L-10 282,398.4 283,391.7 284,712.4 291,409.0
L-11 308,471.5 309,812.4 308,712.3 317,434.0

Avg. 293,063.0 294,738.4 294,695.6 309,164.6
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Table 21. Statistical testing using the Wilcoxon signed-rank test of the results in Table 20.

AMIS-IN AMIS-AT AMIS

AMIS-DI 0.1096 0.1096 0.0034
AMIS-IN 0.1096 0.0034
AMIS-AT 0.0034

From the computational results in Tables 20 and 21, we can see that AMIS outper-
formed all the other AMIS that use different types of intelligence boxes. Using only a
diversification search generates a solution not significantly different from using only an
intensification search. Compared with the average profit per container generated from
AMIS-DI, AMIS-IN and AMIS-AT, they generate a lower profit than the AMIS by 5.21%,
4.67% and 4.68%, respectively. Figure 5 shows the behavior of the AMIS using different
types of intelligence boxes.
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From Figure 5, we can see that AMIS-AT behaves the same as the AMIS but obtains
worse results; this is because AMIS-AT uses fewer intelligence boxes than AMIS. However,
the final solution is worse than that of AMIS. We can conclude that the number of IBs used
in the AMIS plays an important role in obtaining a better solution. The types of IBs also
play a major role in the solution quality. We can see that AMIS-DI, which uses only the DI
type of intelligence boxes, can generate a lot of new solutions, but the solutions are not as
good as from other methods due to the lack of intensification search; therefore, the final
solution is worse than the other AMIS. AMIS-IN can find a good solution, but when it is
stuck in the local optimal area, it cannot escape from that search area; therefore, the solution
is also worse than the AMIS or AMIS-AT.

The performance of the metaheuristics is dependent on the exploration and exploita-
tion behaviors of the heuristics [64]. Additionally, Lin et al. [65] stated that, by developing a
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solid balance between the exploration and exploitation of the overall framework, adopting
local search approaches can increase the solution quality. This is consistent with our find-
ings, as seen in Table 20 and Figure 5. The balance between exploratory and exploitative
behaviors is improved when using a wider range of local search types. As a result, the
answer clearly demonstrates that the AMIS performs better than the AMIS-DI, AMIS-IN
and AMIS-AT subalgorithms, which use just one group of local searches. The findings of
Mei et al. [66], Li et al. [67] and Li et al. [68], which developed local search-based heuristics
to handle the traveling thief problem, the heterogeneous container loading problem and
capacitated air cargo loading planning, respectively, are consistent with this conclusion.
Even when the basic algorithm for the agricultural network design problem uses a number
of local search techniques, it behaves in a manner similar to that in the previously discussed
problem.

In general, comparing the solution approaches is a multi-objective task involving (1)
the average Pareto-optimal solution (ANP) and (2) the average ratio of the Pareto-optimal
solution (ARP). This defines N as the number of iterations in one experiment. n1, n2, . . . nk
is the number of Pareto-optimal solutions found in the kth experiment, and K is the total
number of experiments. ANP and ARP are calculated using Equations (33) and (34):

ANP =
n1 + n2 + n3 + . . . + nk

K
(33)

ARP =
n1
N + n2

N + n3
N + . . . + nk

N
K

. (34)

For this experiment, we selected the L-11 problem (case study). We varied the number
of iterations from 300 to 1500, and the Pareto points were collected and reported in Table 22.

Table 22. ANP and ARP of all proposed methods.

#Iterations
DE GA AMIS

#Pareto Points Ratio #Pareto Points Ratio #Pareto Points Ratio

1 150 18 0.12 17 0.11 24 0.16
2 150 20 0.13 19 0.13 25 0.17
3 250 22 0.09 24 0.10 32 0.13
4 250 25 0.10 23 0.09 30 0.12
5 400 28 0.07 30 0.08 37 0.09
6 400 31 0.08 27 0.07 39 0.10
7 650 33 0.05 32 0.05 43 0.07
8 650 32 0.05 33 0.05 44 0.07
9 920 37 0.04 35 0.04 51 0.06
10 920 38 0.04 36 0.04 54 0.06

ARP 0.08 0.07 0.10
ANP 0.06 0.06 0.08

From Table 22, we can conclude that the AMIS outperformed the other methods due
to it finding a higher ratio of ARP and ANP. It has a higher ARP ratio than DE and GA by
23.92% and 26.17%, respectively, whereas ANP and the AMIS find a higher ratio than the
DE and GA by 25.01% and 25.01%, respectively.

According to Meng et al. [69], utilizing various methods to locate the Pareto front
results in varying degrees of solution quality. The likelihood of obtaining a better solution
increases with the use of more efficient local search algorithms. As can be seen from the
solution in Table 22, the AMIS provided a higher value for ARP than the GA or DE, as
suggested in Yang et al. [4] and Pitakaso et al. [61], because it employed a more efficient
local search method. This conclusion is in line with that of [59,70–75], which apply various
local search techniques, such as the best transition methods, scaling factors and random
transition methods, to solve various types of problems. The outcome demonstrates that
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using a more effective algorithm yields better results for the target problems. In this case,
the DE and GA use four types of local searches, which enhance the search efficiency. The
AMIS allows for the use of different local searches in each iteration, and the selection of the
local search for subsequent iterations is independent of the current selection. Therefore, not
only the local search can boost the solution quality of the AMIS to exceed that of the DE
and GA. The goal and benefits of the AMIS can be achieved using this mechanism, which
can simultaneously boost exploration and exploitation behavior. The studies by Meng
et al. [69], Rahdar et al. [76] and Su et al. [77] that used switchable neighborhood search
approaches to lend the primary algorithm better search behaviors ultimately produced
results that surpassed the comparative heuristics and provided support to this theory.

From Figures 6–8, we see than the AMIS can plug the gap of each Pareto front better
than the other two methods. The GA and DE have a distance between some Pareto points
that is greater than that of the AMIS, which means that the mechanism of the AMIS can
discover more Pareto solutions than the GA and DE.
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The next experiment is the result of L-11, or the case study. The case study includes
6 types of goods, 165 farmers, 9 container loading centers, 5 borders, 16 end markets and
60 available containers. The results are shown in Table 23.
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Table 23. Computational results of the case study.

Farmers

V
eg

et
ab

le
Ty

pe
s

B
or

de
rs

En
d

M
ar

ke
ts

Pr
ofi

t(
T

H
B

)

N
um

be
r

of
C

on
ta

in
er

s
U

se
d

CLC-1 6, 7, 18, 26, 47, 48, 49, 50, 60, 74, 86, 87, 114, 115, 116, 131, 132,
133, 134, 163, 164 1, 4, 6 2, 4, 5 5, 10, 12, 16 168,827 6

CLC-2

2, 15, 24, 37, 38, 39, 59, 66, 71, 72, 90,
102, 103, 104, 105, 127, 128, 129, 130, 143, 144, 145, 146, 160,

161, 162,
165

1, 4, 5, 6 2, 3, 4, 5 3, 5, 7, 9, 13 2,049,835 7

CLC-3 5, 21, 29, 30, 31, 56, 69, 70, 77, 88, 89, 112, 113, 147, 148, 149 2, 3, 4, 5 1, 2, 4 1, 3, 4, 10 1,782,910 5
CLC-4 3, 17, 40, 43, 44, 45, 46, 78, 79, 80, 81, 82, 117, 118, 119, 120 1, 3, 4, 6 3, 4, 5 8, 11, 13, 14 1,698,129 5
CLC-5 8, 9, 10, 11, 25, 65, 67, 68, 91, 92, 93, 94, 110, 111, 150, 151, 152 2, 3, 4, 5 1, 2, 3, 3 2, 4, 7, 8 1,495,643 5

CLC-6 16, 22, 51, 52, 53, 54, 55, 83, 84, 85,
121, 122, 123, 124, 153, 154, 155, 156 1, 4, 6 1, 2, 3 1, 4, 5, 6 1,769,154 5

CLC-7 1, 19, 27, 28, 57, 61, 62, 73, 74, 106,
107, 108, 109, 157, 158, 159 3, 4, 5, 6 3, 4, 5 8, 12, 13, 16 1,625,233 5

CLC-8 12, 20, 32, 33, 34, 35, 36, 42, 95, 96, 97, 125, 126 3, 5, 6 3, 4, 5 7, 8, 9, 14 1,311,389 4

CLC-9 4, 13, 14, 23, 41, 58, 63, 64, 75, 76, 98,
99, 101, 135, 136, 137, 138, 139, 140, 141, 142 2, 4, 5, 6 1, 2, 3, 4, 5 1, 5, 6, 12,

15 1,825,712 6

Total 15,236,832 48
Maximum 2,049,835 7
Average 1,692,981 5.33

From Table 23, we note that 165 farmers delivered their goods to 9 CLCs. CLC-1
to CLC-9 received different goods from different farmers. They received goods from 21,
27, 16, 16, 17, 18, 16, 13 and 21 farmers, respectively. The total profit of the system was
15,236,832 THB; the average profit per containers was 317,434 THB; and the average profit
per farmer was 92,344.44 THB. The number of containers used was 48, and the average use
by the CLC was 5.33 containers.

Figure 9 shows a logistics scheme of durian and maize from Thailand to the GMS
countries. The network flow started from the farmers of each agricultural product in
Thailand, connected to the agricultural center markets, moved to the border and finally
was transported to the market in Lao PDR.
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WGS1984 Zoon 48N).

6. Conclusions and Future Outlook

In this research, we designed a road transportation network for international agricul-
tural product trading. The case study took place in the GMS area and included international
trading between Thailand, Laos and Cambodia. The maximum profit and the number
of containers used in the system were taken into consideration due to the possibility of
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extending the lifetime of the containers. Small, medium and large-scale farmers, hubs for
collecting and distributing agricultural products, borders, the main road in the GMS and
the end consumer market in GMS countries were the actors in our model. As a result,
this is the first time the logistics network design for agricultural products has included
small and medium-sized farmers. This result is reinforced by the work of Xie et al. [78]
and Codini et al. [79], which raised the competitiveness of the SME business in the whole
country. The inclusion of small and medium-sized farmers in the model can increase the
overall performance of the agricultural logistical network. The model created using mixed-
integer programming includes small and medium-sized farmers. To increase their abilities
to fulfill consumer demand, small and medium-sized farmers deliver their products to
agricultural product collection and distribution centers or container loading hubs. This
conclusion is supported by Vyt et al. [80] and Weng et al. [81], who found that using a
collection/distribution center can lower unanticipated costs, such as time and penalties for
running out of resources, and it can make it more convenient to have alternative resource
origins from both suppliers or to choose the best mode of transportation. Choosing the
correct locations for collecting centers leads to increased profits and quicker delivery, which
is in line with our conclusions.

After we designed the network and identified potential modes of logistics and trans-
portation, the next challenge was to choose the best logistical network to handle the problem.
Four types of solution approaches were used to design the network. These were: (1) formu-
lating a mathematical model and solving it to optimality by using optimization software
Lingo V.16; (2) the differential evolution algorithm [61]; (3) the genetic algorithm [4]; or
(4) the artificial multiple intelligence system. The computational results show that Lingo
v.16 and the AMIS generated the best solutions for small test instances, but Lingo V.16
cannot solve to optimality for large test instances. Lingo V.16 and the AMIS gave at best a
15.24% better solution than the GA and DE for small test instances, whereas for large f test
instances, the AMIS can find a better solution than the GA and DE by up to 20.22%. For
the larger test instances, Lingo V.16 gave the best solution for the 480 h runtime, which is
worse than that of the AMIS by 20.24%.

By concentrating on the AMIS, we can see that the type of intelligence box employed
in the AMIS mechanism affects how effective the AMIS is. The results of simply using a
diversification or intensification search are worse than those produced by combining all
forms of intelligence. Additionally, using a different number of intelligence boxes results
in a different outcome (in the experiments, we used five or nine intelligence boxes). In
order to obtain the optimum solution, the algorithm designer must combine all types of
intelligence boxes in the AMIS. Using nine intelligence boxes yields a better result than
using five IBs. The GA and DE only employed four enhancement approaches each, and
the AMIS used nine that were all based on the idea of balancing the exploration and
exploitation behavior of the AMIS. This is the first factor that contributed to the AMIS’s
superior solution quality compared to the GA’s and DE’s. Another reason is that the AMIS
independently chooses iterative improvement approaches. According to Meng et al. [69],
Rahdar et al. [76] and Su et al. [77], it can improve the search quality by employing a
number of improvement techniques to strengthen the search functionality. This indicates
that the AMIS’s performance is based on the effectiveness of the strategies for improving it,
as described by earlier studies. We can now draw the conclusion that the AMIS, due to the
search capabilities, considerably improves the solution quality to address the agricultural
product logistical network design problem when compared to the current heuristics.

The AMIS was used to address a real-world case problem. The Pareto front’s probable
locations were whittled down using TOPSIS in order to select the most advantageous spot.
The use of TOPSIS in conjunction with the AMIS has been recommended by Chainarong
et al. [74,75] as a method for choosing the most promising option. From the network design
of the case study, we can conclude that the total profit of the system is 15,236,832 THB,
which can be interpreted as an average profit per container of 317,434 THB. Each farmer
obtains an average profit of 92,344.44 THB per day. In this article, one of the objective
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functions is initially used to determine the optimal number of containers employed in the
logistics system. The computational results show that 48 of the 60 containers in the system
are in use. Twenty percent of all containers should, therefore, have longer lifespans.

This research can be extended in the following ways: (1) including other types of
transportation, such as by air and water, in the system; (2) extending the area of the case
study to cover all types of transportation; and (3) covering more types of international
trading products.
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