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Abstract: The article continues the study of the market model based on jump-telegraph processes.
It is assumed that the price of a risky asset follows the stochastic exponential of a piecewise linear
process, equipped with jumps that occur at the moments of a pattern change. In this case, the standard
option pricing formula was derived previously, while exotic options for this model have not yet
been explored. Within this framework, we are developing procedures for pricing binary barrier
options. This article concerns the “cash-(at hit)-or-nothing” binary barrier option. The main tools of
this analysis are methods developed for first-pass probabilities. Some known results related to the
ruin probabilities follow directly from these settings.

Keywords: piecewise deterministic stochastic process; jump-telegraph process; martingales; binary
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1. Introduction

The stochastic approach to modelling nature and society is quite common and useful
for understanding the world. In general, various types of Wiener/Levy processes are
used for these purposes, which, it is also generally recognised, have a number of serious
drawbacks. Among other things, these models are characterised by an infinite propagation
velocity, which contradicts the generally accepted naive idea. Another disadvantage is
the singularity and unlimited variation of paths. In this article, our goal is to develop a
mathematical methodology and the application of such improvements that avoid these
shortcomings. Our approach is based on the so-called telegraph processes.

In the traditional setting [1,2], the telegraph process describes the position X(t) at time
t, t ≥ 0, of a particle, which moves on the line with constant velocities ±1 alternating at the
random time epochs of an underlying Poisson process. Namely, X(t) = ξ

∫ t
0 (−1)N(s)ds,

where ξ = ±1/2 is the (random) initial direction and N = N(t) is a counting Poisson
process; ξ and N are mutually independent.

Recently, various generalisations of this process have been proposed, also aimed at
financial applications. First, the process X can be set as an inhomogeneous with different
particle speeds and different rates of regime switching, which is reasonable since the sym-
metric case is very restrictive. Secondly, a purely jump component with deterministic [3]
and independent random jumps [4] that occur when switching velocities is added to the
telegraph process. At the same time, it is worth noting that the addition of jumps is neces-
sary not only to better match the model to real markets but also for purely methodological
reasons since the model of a continuous telegraph process leads to arbitrage opportunities.

To make the presentation more precise, consider a two-state Markov process ε =
ε(t) ∈ {0, 1}, which is controlled by alternating switching rates λ0 and λ1. Let N = N(t) be
an inhomogeneous Poisson process counting switchings. Consider a sequence of mutually
independent random variables {Yn}n≥1 independent of ε.
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Consider a jump-telegraph process X(t) + J(t), t ≥ 0, with constant alternating
velocities c0, c1, and random jumps Yn:

X(t) =
∫ t

0
cε(s)ds, J(t) =

N(t)

∑
n=1

Yn.

In this paper, we continue to explore the one-asset market model with dynamics S(t)
of a risky asset price, which follows a stochastic exponential of X + J:

S(t) = S0Et(X + J) = S0 exp
(∫ t

0
cε(s)ds

)
·

N(t)

∏
n=1

(1 + Yn).

This approach to market modelling substitutes a Wiener process in the classic Black–
Scholes model with a telegraph process with jumps, which better fits the traditional view
of price evolution.

This idea is now well understood. It should be noted that this model continues to
develop in various directions, see a comprehensive review in [5], where the main attention
is paid to option pricing within this model.

Note that the standard call option pricing formula has the same structure as the classic
Black–Scholes formula. Meanwhile, exotic options are much less studied. This paper is
focused on the “cash-(at hit)-or-nothing barrier binary option”, which involves the payment
of a unit of capital when the level x, fixed in advance, is first reached.

2. Market Model and Measure Transform

Let ε = ε(t) ∈ {0, 1}, t ≥ 0, be a Markov process with two states, defined on a
complete probability space (Ω,F ,P) and switching at random times {τn}n≥1, τ0 = 0,
controlled by two alternating rates λ0 and λ1.

In this setting, a piecewise linear stochastic process X(t) =
∫ t

0 cε(u)du, t ≥ 0, can be
regarded as an asymmetric integrated telegraph process. The two pairs of parameters
(c0, λ0), (c1, λ1), c0 ≥ c1, completely determine the distribution of X(t). For any t > 0,
the distribution of X(t) is supported on [c1t, c0t] with atoms at the extreme points:

P{X(t) = c0t | ε(0) = 0} = e−λ0t, P{X(t) = c1t | ε(0) = 1} = e−λ1t, (1)

and, for c1t < x < c0t,

P{X(t) ∈ dx | ε(0) = 0}/dx

=
[
λ0 I0

(
2
√

λ0λ1ξ0(x, t)ξ1(x, t)
)
+

(
λ0λ1

ξ0(x, t)
ξ1(x, t)

)1/2

I1

(
2
√

λ0λ1ξ0(x, t)ξ1(x, t)
)]

θ(x, t),

P{X(t) ∈ dx | ε(0) = 1}/dx

=
[
λ1 I0

(
2
√

λ0λ1ξ0(x, t)ξ1(x, t)
)
+

(
λ0λ1

ξ1(x, t)
ξ0(x, t)

)1/2

I1

(
2
√

λ0λ1ξ0(x, t)ξ1(x, t)
)]

θ(x, t).

(2)

Here, ξ0(x, t) =
x− c1t
c0 − c1

, ξ1(x, t) = t− ξ0(x, t), 0 < ξ0(x, t), ξ1(x, t) < t,

θ(x, t) =
exp(−λ0ξ0(x, t)− λ1ξ1(x, t))

c0 − c1
,

and I0(·), I1(·) are modified Bessel functions, see, e.g., [5].
In search of a model without the disadvantages mentioned in the introduction, we

will use the telegraph process instead of the Wiener process usually exploited for financial
markets modelling. Note that simply replacing the Wiener process with a telegraph process
of this form leads to arbitrage opportunities. This feature was not taken into account in the
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first attempts to construct such a generalisation of the Black–Scholes market model, where
an integrated telegraph process was used instead of Brownian motion, see [6–8]. At the
same time, these pioneering works are still interesting. For example, in article [7], stochastic
order comparisons of price processes were presented, which later were not developed.
Article [8] is devoted to some optimisation problems related to finding the optimal time to
sell a stock, which also need to be developed.

Various ways have been suggested in the literature to avoid arbitrage, but the simplest
and most natural is to add jumps after each speed switching. Here, we will focus on
this issue.

Consider a compound Poisson process J = J(t) = ∑
N(t)
n=1 Yn with independent random

jumps of the amplitudes Y = Yn, Yn > −1. Assume that the distributions h0 and h1 of the
jump amplitudes Yn change alternately as the market state ε = ε(t) switches.

We study a market model consisting of a single risky asset with a price S(t), t ≥ 0,
which follows the ordinary stochastic equation

dS(t) = S(t−)d(X(t) + J(t)), t > 0. (3)

Integrating (3), we have a geometric jump-telegraph process of the form S(t) =
S0Et(X + J), t ≥ 0. Here, Et(·) is the stochastic (Doléans–Dade) exponential, so that S(t) =
S0eX(t)κN(t), where κN(t) = ∏

N(t)
k=1 (1 + Yn). See, for example, [9].

For simplicity, let the interest rates r0 ≥ 0 and r1 ≥ 0 be constant in each market state,
so that the bond price is a geometric telegraph process,

B(t) = exp
(∫ t

0
rε(s)ds

)
, t ≥ 0. (4)

Thus, the discounted asset price, B(t)−1S(t), is again a geometric jump-telegraph
process.

The martingale properties of such a model are characterised by the following well-
known results.

Theorem 1. Let X + J be a jump-telegraph process.

(a) The jump-telegraph process X + J and its stochastic exponent S(t) = Et(X + J), t ≥ 0,
are martingale if and only if

c0 + λ0y0 = 0, c1 + λ1y1 = 0. (5)

Here, y0 and y1 are the average amplitudes of the jumps associated with states 0 and 1,
respectively,

y0 = E0[Y] =
∫ ∞

−∞
zh0(dz), y1 = E1[Y] =

∫ ∞

−∞
zh1(dz).

(b) For models (3)–(4), there is an equivalent martingale measure P̃ if and only if there exists
a pair of positive measurable functions ϕ0, ϕ1 such that

− r0 + c0 +
∫ ∞

−1
zϕ0(z)h0(dz) = 0, −r1 + c1 +

∫ ∞

−1
zϕ1(z)h1(dz) = 0. (6)

Under the new measure P̃, the Poisson rates λi, i ∈ {0, 1}, are changed to

λ∗0 =
∫ ∞

−1
ϕ0(z)h0(dz), λ∗1 =

∫ ∞

−1
ϕ1(z)h1(dz), (7)
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and the jump amplitudes are distributed as

h∗i (dz) =
ϕi(z)

λ∗i
hi(dz), i ∈ {0, 1}, (8)

For the proof, see [4] (Theorem 2.2 and 3.1).
In particular, note that conditions (5) require that the average jump value be opposite

to the current velocity direction.
Consider an option with a payoff H = Hτ that occurs at time τ. After the martingale

measure P̃ is chosen, the price of this option is given by a pair

c0 = EP̃

[
B(τ)−1Hτ | ε(0) = 0

]
, c1 = EP̃

[
B(τ)−1Hτ | ε(0) = 1

]
.

In this paper, we are focused on the so-called binary barrier options in which the
payoff H is either some fixed amount or nothing depending on the breakdown of the fixed
threshold. See an overview of various binary barrier options and their pricing methods
in [10].

3. Pricing “Cash-(At Hit)-or-Nothing Barrier Binary Option”

We are interested in pricing of the option in the simple case when the payoff is received
at the moment the barrier x is breached. To be specific, let S0 < x.

Consider an option of getting 1 when the asset price exceeds the threshold x, i.e., the
option with a payoff function H(x) = 1{maxt>0 S(t)>x}, where 1A is the indicator of event A.
It is assumed that the payoff is received at time

T(x) = inf{t > 0 | S(t) > x} (9)

when the stock price S(t), t > 0, reaches the barrier x for the first time. We assume that the
interest rate r is strictly positive, since for r = 0 the option price is always 1.

Let P̃ be the martingale measure. The option price is given by a pair (depending on the
state of the market at underwriting) of bond-discounted payoff expectations with respect
to the martingale measure P̃,

c0 = EP̃

[
e−rT(x) | ε(0) = 0

]
, c1 = EP̃

[
e−rT(x) | ε(0) = 1

]
. (10)

By definition, 0 ≤ φi(x) ≤ 1, ∀x.
Note that the first time T(x) when the stock price S(t) reaches the threshold x coincides

with the first passage time T (x̄) of X(t) + log κ(t) through the threshold x̄ = log[x/S0].
In what follows, we study the first passage time problem for the logarithm of the stock

price. To get the answers for the market model (3) and (4), it suffices to modify the results
obtained below by replacing x → x̄ = log(x/S0).

3.1. “Bull Market” and Positive Threshold

We consider first the model with alternating positive trends c0 > c1 > 0, and negative
jump amplitudes. This means that the bull market is correcting down at the switch points.
The latter means that the alternating distributions h0 and h1 of Yn-corrections to the rising
market prices

S(t) = S0 exp(X(t)) ·
N(t)

∏
n=1

(1 + Yn)

are supported on the interval (−1, 0].
Let T (x) = T(log(x/S0) denote the first passage time through the threshold x, by the

jump-telegraph process X(t) + log κ(t). Since both velocities are positive, note that this
process breaches the barrier x by continuously moving between jumps.
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By conditioning on the first velocity switching, the following identities in law are valid,

T0(x) D
=

x
c0
1{τ>x/c0} + [τ + T1(x− c0τ − log(1 + Y))]1{τ<x/c0},

T1(x) D
=

x
c1
1{τ>x/c1} + [τ + T0(x− c1τ − log(1 + Y))]1{τ<x/c1},

(11)

where τ is the holding time before the first jumping and Y is the first jump amplitude. Here,

“ D
= ” denotes the equality in distribution. We denote by Ti(·) the first passage time if the

initial state i, i ∈ {0, 1}, is given.
Let the interest rate r = r0 = r1 be positive.
Applying (11) to the Laplace transforms

φ0(x) = EP̃

[
e−rT (x) | ε(0) = 0

]
, φ1(x) = EP̃

[
e−rT (x) | ε(0) = 1

]
,

cf (10), we obtain a pair of coupled integral equations,

φ0(x) = e−(λ0+r)x/c0+
∫ x/c0

0
λ0e−(λ0+r)t

(∫ 0

−1
φ1(x− c0t− log(1 + y))h0(dy)

)
dt,

φ1(x) = e−(λ1+r)x/c1+
∫ x/c1

0
λ1e−(λ1+r)t

(∫ 0

−1
φ0(x− c1t− log(1 + y))h1(dy)

)
dt,

x > 0. (12)

Since T (x)→ 0 a.s. for x ↓ 0, then φ0(0) = φ1(0) = 1. Further, since T (x) > x/c0 a.s.,
then φ0(x), φ1(x)→ 0 as x → +∞.

Equation (12) can be rewritten as equations in convolutions:

φ0(x) =ψβ0(x) +
λ0

c0
ψβ0 ∗ (h0 ∗ φ1)(x),

φ1(x) =ψβ1(x) +
λ1

c1
ψβ1 ∗ (h1 ∗ φ0)(x),

x ≥ 0, (13)

where ψβ(x) = exp(−βx)1{x≥0}, and

h ∗ φ(x) =
∫ 0

−1
φ(x− log(1 + y))h(dy), ψβ ∗ φ(x) =

∫ x

0
φ(x− y)ψβ(y)dy;

β0 =
r + λ0

c0
, β1 =

r + λ1

c1
.

We hope that the use of some informal notations, when convolutions with a jump
distribution and with a function are denoted in a similar way, will not cause misunder-
standings.

The system of integral Equation (12) has a unique bounded solution [11]. To write this
solution explicitly, note that ψβ, is an eigenfunction of the convolution with measure h(·),

h ∗ ψβ(x) =
∫ 0

−1
exp(−β(x− log(1 + y)))h(dy) = ĥ(β)ψβ(x), x > 0,

where

ĥ(β) =
∫ 0

−1
(1 + y)βh(dy) > 0,

if the latter integral converges. Further,

ψβ ∗ ψα(x) =
∫ x

0
e−α(x−y)e−βydy =

ψα(x)− ψβ(x)
β− α

, α 6= β.
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We find a solution of (13) in the form

~φ(x) = (φ0(x), φ1(x)) =
N

∑
n=0

ψαn(x)~zn, (14)

with indefinite coefficients~zn = (An, Bn) and αn, Reαn > 0, αn 6= β0, β1, n ∈ {0, 1, . . . , N}.
Substituting this function into (13), we obtain the following algebraic system:

N

∑
n=0

Anψαn(x) =ψβ0(x) +
N

∑
n=0

λ0ĥ0(αn)/c0

β0 − αn
Bn
[
ψαn(x)− ψβ0(x)

]
,

N

∑
n=0

Bnψαn(x) =ψβ1(x) +
N

∑
n=0

λ1ĥ1(αn)/c1

β1 − αn
An
[
ψαn(x)− ψβ1(x)

]
,

(15)

which is equivalent to

An =
λ0ĥ0(αn)

c0(β0 − αn)
Bn, Bn =

λ1ĥ1(αn)

c1(β1 − αn)
An, (16)

n ∈ {0, 1, . . . , N};
N

∑
n=0

An = 1,
N

∑
n=0

Bn = 1. (17)

From (16), it follows that α = αn are the positive roots of the algebraic equation

λ0λ1ĥ0(α)ĥ1(α) = c0c1(α− β0)(α− β1). (18)

Notice that for a real positive α, the value ĥ(α) is real, 0 < ĥ(α) < 1, so if the interest
rate is strictly positive, then

(c0α− λ0 − r)(c1α− λ1 − r)|α=0 = (λ0 + r)(λ1 + r) > λ0λ1 = λ0λ1ĥ0(α)ĥ1(α)|α=0.

Therefore, since the function α → ĥ(α) > 0, α ∈ (0, ∞), is decreasing, Equation (18)
always has exactly two positive roots, α0, α1, such that

0 < α0 < min(β0, β1) ≤ max(β0, β1) < α1.

Hence, the solution of system (13) is given by (14) with N = 1. The explicit form of
coefficients~z0 and~z1 follows from Equations (16)–(18):

A0 =
k0(k1 − 1)
k0k1 − 1

, A1 =
k0 − 1

k0k1 − 1
, B0 =

k1 − 1
k0k1 − 1

, B1 =
k1(k0 − 1)
k0k1 − 1

, where

k0 =
λ0ĥ0(α0)

c0(β0 − α0)
=

c1(β1 − α0)

λ1ĥ1(α0)
, k1 =

λ1ĥ1(α1)

c1(β1 − α1)
=

c0(β0 − α1)

λ0ĥ0(α1)
.

(19)

Example 1. Consider the case of c0 ≥ c1 ≥ 0 and identically distributed exponential downward
jumps with

h0(dy) = h1(dy) = h(dy) = b(1 + y)b−1
1{−1<y<0}dy, b > 0, (20)

and let β0 = β1 = β. Notice that the distribution of jump Y, −1 < Y < 0, given by (20),
corresponds to the exponential distribution of the r.v. − log(1 + Y),

P{− log(1 + Y) > x} = P{Y < −1 + e−x} = exp(−bx), x > 0.
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Since

ĥ0(α) = ĥ1(α) =
∫ 0

−1
(1 + y)αh(dy) = b

∫ 0

−1
(1 + y)α+b−1dy =

b
α + b

,

Equation (18) becomes

λ0λ1
b2

(α + b)2 = c0c1(α− β)2,

which splits into two quadratic equations that can be solved explicitly. The positive roots are

α0 =
1
2

(
β− b +

√
(β + b)2 − 4a

)
< β, α1 =

1
2

(
β− b +

√
(β + b)2 + 4a

)
> β, (21)

where a = b
√

λ0λ1

c0c1
, and

(α0 − β)(α0 + b) = +a, (α1 − β)(α1 + b) = −a. (22)

By virtue of (22),

k0 =
λ0b

c0(b + α0)(β− α0)
=

λ0b
c0a

=

√
λ0c1

λ1c0
> 0,

k1 =
λ1b

c0(b + α1)(β− α1)
= −λ1b

c1a
= −

√
λ1c0

λ0c1
< 0,

(23)

hence, k0k1 = −1. Therefore, φ0(x) and φ1(x) are determined by (14) with coefficients (see (19))

A0 =
1
2
(1 + k0), A1 =

1
2
(1− k0), B0 =

1
2
(1− k1), B1 =

1
2
(1 + k1). (24)

Notice that in the symmetric case with β = λ0/c0 = λ1/c1 and a zero interest rate r = 0,
we have k0 = 1, k1 = −1. Since α0|r=0 = (β− b)1{β≥b}, then (14) simplifies to

φ0(x) = φ1(x) = exp(−α0x) =

{
exp(−(β− b)x), if β > b ,
1, otherwise,

(25)

which coincides with known results, see [12].
The same follows for the Cramér–Lundberg model λ0 = λ1, c0 = c1, r ≥ 0.
Further, by [13] (Formulas (2.2.5)–(18)), the inverse Laplace transform of the function

q→ exp(aq− a
√

q2 − z2)− 1, q > z,

is given by
az√

t2 + 2at
I1

(
z
√

t2 + 2at
)

,

where I1(·) denotes the modified Bessel function of the first order. Due to (21), the probability
density function p(t; x) of T(x), p(t; x) = L−1

q→t(exp(−α0(q)x)) takes the form

p(t; x) = e−λt

[
δ(t− x/c) +

x
√

λb√
t(ct− x)

I1

(
2
√

λbt(ct− x)
)]

, t > −x/c,

where δ(·) is the Dirac delta-function, corresponding to movement without switching.

Generally speaking, the dynamics φ0 and φ1 of option prices are quite diverse. Some
of numerical results based on (14), (18), and (19) for exponentially distributed downward
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jumps are shown in Figures 1–3. Figure 2 shows two opposite behaviours of the option
price. Panel (a) depicts the case when in state 0 the price experiences large and frequent
jumps compared to small but rare ones (in state 1). In this case, φ1(x)� φ0(x). Panel (b)
shows the opposite case, where the risky asset price experiences large infrequent jumps
(state 0) versus small but frequent jumps (state 1). In this case, φ0(x) > φ1(x).

0 0.5 1 1.5 2 2.5 3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 1. The option price φ0(x), 0 ≤ x ≤ 3 for the interest rates r = 0.05/0.10/0.15 (from top to
bottom): (a) in the symmetric case, c0 = c1 = 1, λ0 = λ1 = 1, b0 = b1 = 1, (here φ0 = φ1); (b) in the
case c0 = 1, c1 = 0.5, λ0 = 1, λ1 = 4, b0 = 1, b1 = 0.1 .
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0 0.5 1 1.5 2 2.5 3
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0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

(a)

0 0.5 1 1.5 2 2.5 3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b)

Figure 2. The option price φ0(x) and φ1(x), x > 0, in two “opposite” cases. (a): c0 = 1, λ0 = 10,
b0 = 0.1 and c1 = 0.1, λ1 = 0.1, b1 = 10. Interest rate r = 0.1. Here, φ1 � φ0; (b): c0 = 1,
λ0 = 0.1, b0 = 0.1, and c1 = 0.5, λ1 = 10, b1 = 10, Two pairs of the curves correspond to different
interest rates, r = 0.05 (top pair of curves) and r = 0.1 (lower pair of curves). In both cases,
φ0(x) > φ1(x).
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0 0.5 1 1.5
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Figure 3. The option price φ0(x), x = 2, in the case c0 = 1, c1 = 0.5, r = 0.1 : (a): versus the
switching rate λ = λ0 = λ1, λ ≤ 1.5, for the different values b0 = b1 = b = 0.5/1.0/1.5 (from bottom
to top); (b): versus the mean jump amplitude, m = b−1, b = b0 = b1, 0.5 ≤ m ≤ 2, for different
switching rates λ0 = λ1 = λ = 0.5/1.0/1.5 (from top to bottom).

Consider another simplified case where there are explicit formulae.

Example 2. Let jump amplitudes be distributed with (20), and β0 = b0 and β1 = b1. In this case,
Equation (18) becomes

(α2 − b2
0)(α

2 − b2
1) = a2, a2 =

λ0λ1b0b1

c0c1
. (26)
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If b2
0b2

1 > a2, then Equation (26) has exactly two real positive roots α0 and α1, and two real
negative, −α0, −α1,

0 < α0 < b2
0 ∧ b2

1, α1 > b2
0 ∨ b2

1,

α0 =

√√√√ b2
0 + b2

1 −
√
(b2

0 − b2
1)

2 + 4a2

2
, α1 =

√√√√ b2
0 + b2

1 +
√
(b2

0 − b2
1)

2 + 4a2

2
.

In this case, the solution is obtained by (14) with coefficients given by (19).
In the case b2

0b2
1 < a2, the Equation (18) has only one positive real root α1 (and one negative one

−α1; there are also a couple of conjugate imaginary roots). The solution is φ0(x) = φ1(x) = e−α1x.

3.2. “Bull Market” and Negative Threshold

A process with positive trends c0 > c1 > 0 breaches the threshold x < 0 only by
jumping. It cannot pass this level without switching, and the problem becomes much more
difficult. Similarly to Section 3.1, we obtain the integral equations

φ0(x) =
∫ ∞

0
λ0e−(r+λ0)tH0(x− c0t)dt +

∫ ∞

0
λ0e−(r+λ0)tdt

0∫
−1+exp(x−c0t)

φ1(x− c0t− log(1 + y))h0(dy), (27)

φ1(x) =
∫ ∞

0
λ1e−(r+λ1)tH1(x− c1t)dt +

∫ ∞

0
λ1e−(r+λ1)tdt

0∫
−1+exp(x−c1t)

φ0(x− c1t− log(1 + y))h1(dy), (28)

where the cumulative distribution function

Hi(x) = P{log(1 + Y) < x | ε(0) = i} = P{Y < −1 + ex | ε(0) = i}, i ∈ {0, 1},

b0, b1 > 0, corresponds to the jump occurring in state i. The first terms of these equations
appear under the condition of breakdown of the threshold after the first jump, the second
terms correspond a small jump, not enough to immediately exercise the option.

In the case of exponentially distributed log-jumps, Equations (27) and (28) become
slightly simpler. Indeed, let (negative) jumps have alternating distributions with the
accumulated distribution function

Hi(x) = Pi{log(1 + Y) < x} = ebix ∧ 1, i ∈ {0, 1},

see (20).
Note that∫ ∞

0
λe−(r+λ)tH0(x− ct)dt =

∫ ∞

x/c
λe−(r+λ)teb(x−ct)dt =

λe−(r+λ)x/c

r + λ + bc
,

and changing the order of integration, we obtain∫ ∞

0
λe−(r+λ)tdt

∫ 0

x−ct
φ(x− ct− log(1 + y))b(1 + y)b−1dy

=
∫ 0

−∞
φ(z)beb(x−z)dz

∫ ∞

x−z
c ∧0

λe−(r+λ+bc)tdt

=
bλ

r + λ + bc

[∫ 0

x
φ(z)eb(x−z)dz +

∫ x

−∞
φ(z)e−(r+λ)(x−z)/cdz

]
Therefore, Equations (27) and (28) take the form
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φ0(x) =
λ0

r + λ0 + b0c0

[
eb0x + b0

∫ 0

x
eb0(x−z)φ1(z)dz + b0

∫ x

−∞
e−(r+λ0)(x−z)/c0 φ1(z)dz

]
,

φ1(x) =
λ1

r + λ1 + b1c1

[
eb1x + b1

∫ 0

x
eb1(x−z)φ0(z)dz + b1

∫ x

−∞
e−(r+λ1)(x−z)/c1 φ0(z)dz

]
.

(29)

With additional symmetry assumptions λ0 = λ1 = λ, c0 = c1 = c, and b0 = b1 = b,
these equations give the ruin probability. In this symmetric case, we have φ0 = φ1 = φ, and,
under the net profit condition bc > λ, the ruin probability P{T (x) < ∞} is given explicitly:

P{T (x) < ∞} = φ(x)|r=0 =
λ

bc
exp(x(b− λ/c)),

which can be proved by plugging this expression into coinciding Equation (29). This repeats
the known results, see, e.g., [12] (5.3.8).

3.3. “Bear Market” and the Cram ér–Lundberg Ruin Model

Let both trends be negative, 0 > c0 > c1, x < 0, and jumps positive. This case is
symmetric to bullish market with negative corrections described in Section 3.1. In this case,
the Laplace transform ~φ of T (x) is given by Formula (14) with the negative exponential
rates α1, α2 given by the Equation (18) .

4. Appendix: How to Choose a Martingale Measure

Since Equation (6) can has infinite number of solutions ϕ0, ϕ1, this model typically
has infinitely many risk-neutral measures. In order to choose an appropriate martingale
measure, we presume some additional restrictions.

1. Jump risk is not priced. Note that the telegraph process X = X(t) and the accom-
panying Markov process ε can be considered as a source of systematic risk, while
jump amplitudes can be classified as unsystematic. Under such assumptions, it is
reasonable to assume that a change of the measure does not affect the distribution of
jump amplitudes. This idea resembles the approach proposed by R.C.Merton [14].
This corresponds to a constant solution of the Equation (6), which coincides with the
new switching intensities, i.e., ϕ0 = λ∗0 = (r0 − c0)/y0 and ϕ1 = λ∗1 = (r1 − c1)/y1.
To choose a risk-neutral measure, we apply the measure transformation determined
by the Radon–Nikodym derivative,

dP̃
dP = Et(X∗ + J∗) = exp(X∗(t))κ∗N(t), (30)

where X∗(t) =
t∫

0
c∗

ε(u)du, J∗(t) =
N(t)
∑

n=1
y∗

ε(τn−), κ∗N(t) =
N(t)
∏

n=1
(1 + y∗

ε(τn−)) with deter-

ministic constants c∗0 , c∗1 and y∗0 , y∗1 satisfying the martingale condition (5), i.e.,

c∗0 + λ0y∗0 = 0, c∗1 + λ1y∗1 = 0. (31)

For the measure P̃ specified in this way, the distribution of jump amplitudes does
not change, but the market regimes switch with changed rates λ∗0 , λ∗1 , which are
determined by

λ∗0 = λ0(1 + y∗0) = λ0 − c∗0 , λ∗1 = λ1(1 + y∗1) = λ1 − c∗1 . (32)

By virtue of (31), it is clear that transformation (30) leads to a risk-neutral measure P̃
for this market model if and only if

c∗i = λi + ci/yi and y∗i = −c∗i /λi = −1− ci/(λiyi), i ∈ {0, 1}.
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With this martingale measure, the switching rates λ∗0 and λ∗1 are given by

λ∗0 = − c0

y0
, λ∗1 = − c1

y1
. (33)

See [3,5] for details.
2. Jump risk is insured. To choose another risk-neutral measure, we supply the market

with an additional security, which magnifies its value by a fixed rate every time there
is a change of the market state, i.e., let

Ŝ(t) =
N(t)

∏
n=1

(1 + ŷn) (34)

Here, the process Ŝ(t) is governed by the same Poisson process N, and it has de-
terministic jump values ŷn, ŷn > 0. This security can be considered as insurance
that compensates losses and gains provoked by state changes and helps to hedge
the option with a general payoff function H = f (S, Ŝ). A market formed by three
assets B, S, Ŝ is still incomplete, but now we can use the following approach to make a
reasonable choice of risk-neutral measure. First, we change the measure with respect
to the switching intensities. Assume the magnification coefficients ŷn alter according
to alternating market states, ŷn ∈ {ŷ(0), ŷ(1)}. Applying the Radon–Nikodym deriva-
tive (30) to the asset Ŝ, we define the equivalent measure with switching intensities
λ∗i = ri/ŷ(i). We then make one more change of measure, conserving the form of the
distribution of the jump values Yn.
The following example illustrates this approach.

Example 3 (Log-exponential distribution). Let jumps Yn be distributed with the alter-
nating probability density functions hi(dy) = bi(1 + y)−1+bi1{−1<y<0}dy, i ∈ {0, 1},
where b0, b1 > 0, see (20), which is equivalent to the negative exponential distribution of
log(1 + Yn) with the probability density function bi exp(bix)1{x<0}.
Consider a measure transformation that preserves the form of the jump distribution, which is
defined by a solution to (6) of the form ϕi(x) = δi(1 + y)di1{−1<y<0}, i ∈ {0, 1}. By virtue
of (6), the positive parameters δi and di satisfy the equation

−ri + ci +
biδi

(bi + di)(1 + bi + di)
= 0.

Since by virtue of (7), we have

λ∗i = biδi

∫ 0

−1
(1 + y)−1+bi+di dy =

biδi
bi + di

,

therefore,

di = −1− bi +
λ∗i

ci − ri
and δi =

λ∗i
bi

(
−1 +

λ∗i
ci − ri

)
, (35)

where the new switching intensities λ∗i are determined at the first step: λ∗i = ri/ŷ(i).
Since di > 0, we have the condition for the insurance coefficients ŷ(i) :

0 < ŷ(i) < ri(ci − ri)
−1(1 + bi)

−1,

which is sufficient for the existence of a risk-neutral measure.
The new distributions of jump amplitudes are

h∗i (dy) = (bi + di)(1 + y)−1+bi+di dy · 1{−1<y<0}, i ∈ {0, 1}.
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