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Abstract: In population genetics, parameters describing forces such as mutation, migration
and drift are generally inferred from molecular data. Lately, approximate methods based
on simulations and summary statistics have been widely applied for such inference, even
though these methods waste information. In contrast, probabilistic methods of inference
can be shown to be optimal, if their assumptions are met. In genomic regions where
recombination rates are high relative to mutation rates, polymorphic nucleotide sites can be
assumed to evolve independently from each other. The distribution of allele frequencies at
a large number of such sites has been called “allele-frequency spectrum” or “site-frequency
spectrum” (SFS). Conditional on the allelic proportions, the likelihoods of such data can be
modeled as binomial. A simple model representing the evolution of allelic proportions is the
biallelic mutation-drift or mutation-directional selection-drift diffusion model. With series
of orthogonal polynomials, specifically Jacobi and Gegenbauer polynomials, or the related
spheroidal wave function, the diffusion equations can be solved efficiently. In the neutral
case, the product of the binomial likelihoods with the sum of such polynomials leads to finite
series of polynomials, i.e., relatively simple equations, from which the exact likelihoods can
be calculated. In this article, the use of orthogonal polynomials for inferring population
genetic parameters is investigated.

Keywords: site frequency spectrum; mutation; drift; biallelic diffusion; directional
selection; orthogonal polynomials; inference
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1. Introduction

Population genetics is concerned with the evolution of frequencies of heritable variants (alleles) at
specific positions in the genome (loci) in natural and domestic populations. The main forces influencing
this evolution of allele frequencies are: mutation, migration, drift, linkage, and selection.

In genomic regions, where recombination rates are high relative to mutation rates, polymorphic
nucleotides or sites can be assumed to evolve independently, i.e., linkage can be ignored. The distribution
of allele frequencies at a large number of such sites in a sample has been called “allele-frequency
spectrum” or “site-frequency spectrum” (SFS). Some classes of sites are assumed not to be influenced
directly by selection, e.g., some regions in short introns (non-coding insertions in protein coding genes)
and fourfold degenerate sites (sites at third positions in codons that do not influence the amino acid in
the polypeptides) [1]. With these classes of sites, only mutation and demographic forces, e.g., drift and
migration, are assumed to be relevant.

In most organisms studied so far, e.g., fruit flies (Drosophila) or mammals including humans, most
sites in moderate samples (up to about 100 individuals) are monomorphic; only at some sites a single
allele segregates in the population, while sites with more than two segregating alleles are extremely rare.
With such a low proportion of polymorphism, a simple biallelic model is adequate, even though each
site may assume four states corresponding to the four bases: adenine, cytosine, guanine, and thymine.

Most naturally, the evolution of allele frequencies is modeled forward in time as a Markovian random
walk from one generation to the next. The best known such model, the Wright–Fisher model [2,3], uses
diploid individuals and binomial sampling of individuals for the transition to the next generation. For
large population sizes and if parameters are scaled appropriately, the Wright–Fisher model and other
similar models, e.g., the Moran model [4], converge to the same diffusion equation. In population
genetics, the use of diffusion equations is associated with the work of Motoo Kimura (1924–1994) [5,6].
In the diffusion limit, allele frequency counts are usually replaced by the allelic proportion x, a
continuous quantity ranging between zero and one. Often, solutions that are difficult or impossible
to derive with the discrete models can be obtained relatively easily with the diffusion approach. The
diffusion model can either be taken as an approximation to the discrete models or as a model in its
own right.

While occasionally new results are presented, this article is mainly a review. Population genetic
parameters are inferred from site frequency spectra with the diffusion approach. Note that sudden
changes in parameters, such as the (effective) population size, may lead to discontinuous jumps in the
process, which cannot naturally be modeled by diffusion. These are not subject of this article. Neither
are alternative approaches, such as branching processes. In particular, orthogonal polynomials (modified
Jacobi and Gegenbauer polynomials) are used to solve the diffusion equation. Furthermore, the use of
the oblate spheroidal wave function for solving a model with directional selection and drift is presented.
Other methods to analyze diffusion models, such as the calculation of moments [7,8], are not covered.
Due to the importance of Ewen’s book [9] in the field of theoretical population genetics, subjects not
covered in the book receive special attention. In particular, data analysis with the diffusion approach is
reviewed also for equilibrium data, which generally do not require the use of orthogonal polynomials,
but the equilibrium distributions may serve as prior distributions in a Bayesian context.
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The currently available tools implementing these approaches are limited: functions for Jacobi and
Gegenbauer polynomials as well as the oblate spheroidal wave function are available in the formula
manipulation programs “Mathematica” [10] and “Maple” [11] for computation and visualization. Song
and Steinrücken [12] provide methods and an implementation to solve the Kolmogorov backward
equation using modified Jacobi and Gegenbauer polynomials.

2. Mutation and Drift Diffusion

2.1. Moran and Diffusion Models

Assume a population of N haploid individuals; each may assume the state of zero or one,
corresponding to the two arbitrarily labeled alleles. With the decoupled Moran model [13–15], either
(i) (mutation) at a rate of µ = µ0 + µ1, a random individual i is picked to mutate to type one with
probability α = µ1/µ or to type zero with probability β = µ0/µ; or (ii) (genetic drift) at a rate of one,
a random individual i is replaced by another random individual j. Setting θ = µN , the rate of change of
the allelic proportion x of the mean per unit time is caused by mutation:

Mδx =
1

N2
θ(α− x)N (1)

and that of the variance by genetic drift:

Vδx =
2

N2
x(1− x)N2 (2)

Scaling space with 1/N and time with 1/N2 and taking the appropriate limits, the Kolmogorov
forward (or Fokker–Planck) generator of the process becomes:

Lf =

(
∂2

∂x2
x(1− x)

)
−
(
∂

∂x
θ(α− x)

)
(3)

The forward diffusion equation:
∂

∂t
φ(x, t) = Lfφ(x, t) (4)

then describes the evolution of the probability of the allelic proportion x forward in time t, i.e., in
the same temporal direction as the transitions in the discrete Wright–Fisher and Moran models. By
contrast, coalescence theory looks backward in time (e.g., [16]). (In the following, the use of orthogonal
polynomials to solve this diffusion equation will be explained. This is necessarily rather technical;
however, for most results only rather elementary mathematical manipulations are needed.)

2.2. Solution of the Mutation-Drift Diffusion Using Modified Jacobi Polynomials

2.2.1. Relationship of the Forward and Backward Diffusion Equation; Sturm–Liouville Form

While this article focuses on the Kolmogorov forward equation, some results can more easily be
derived using the Kolmogorov backward generator:

Lb = x(1− x)
∂2

∂x2
+ θ(α− x)

∂

∂x
(5)
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On the interval [0, 1] we are looking for solutions of the Kolmogorov backward equation:

∂

∂t
φ(x, t) = Lbφ(x, t) (6)

of the form φ(x, t) = e−λitfi(x):

− λifi(x) =

(
x(1− x)

d2

dx2
fi(x)

)
+

(
θ(α− x)

d

dx
fi(x)

)
(7)

where i indexes the eigenvectors.
The forward equation can be transformed to Sturm–Liouville or self-adjoint form by substituting

xαθ−1(1− x)βθ−1fi(x) = gi(x):

−λigi(x) =
d2

dx2
(x(1− x)gi(x))− d

dx
(θ(α− x)g(x))

−λixαθ−1(1− x)βθ−1fi(x) =
d2

dx2
(
x(1− x)xαθ−1(1− x)βθ−1fi(x)

)
− d

dx

(
θ(α− x)xαθ−1(1− x)βθ−1fi(x)

)
=

d

dx

(
xαθ(1− x)βθ

d

dx
fi(x)

)
+

d

dx

(
θ (−α + x)xαθ−1(1− x)βθ−1fi(x)

)
− d

dx

(
θ (−α + x)xαθ−1(1− x)βθ−1fi(x)

)
=

d

dx

(
x(1− x)xαθ−1(1− x)βθ−1

d

dx
fi(x)

)
=

d

dx

(
xαθ(1− x)βθ

d

dx
fi(x)

)

(8)

For Sturm–Liouville equations [17] of the form:

− λw(x)f(x) =
d

dx

(
p(x)

d

dx
f(x)

)
− q(x)f(x) (9)

it can be shown that all eigenvalues λi are real and can be ordered such that λ0 < λ1 < λ2 < · · · <
λi < · · · → ∞. Corresponding to each eigenvalue λi is a unique (up to a normalization constant)
eigenfunction fi(x), which has exactly i zeros in the interval. The normed eigenfunctions form an
orthonormal basis: ∫ b

a

fi(x)fj(x)w(x) dx = δi,j (10)

where δi,j denotes the Kronecker delta, i.e., δi,j is zero for i 6= j and one for i = j, of the Hilbert space
L2([a, b], w(x)dx). The function w(x) is called the weight function.

The Kolmogorov backward Equation (7) can be obtained from the above Sturm–Liouville equation
(the last line of Equation (8)):
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−λixθ1−1(1− x)θ0−1fi(x) =
d

dx

(
xαθ(1− x)βθ

d

dx
fi(x)

)
= xαθ(1− x)βθ

d2

dx2
fi(x)

+ xαθ−1(1− x)βθ−1θ(α− x)
d

dx
fi(x)

−λif(x) = x(1− x)
d2

dx2
fi(x) + θ(α− x)

d

dx
fi(x)

(11)

Thus, multiplication with the weight function:

w(θ,α)(x) = xαθ−1(1− x)βθ−1 (12)

transforms a solution of the backward equation into that of the forward equation (see also Formula (1.7)
in [18]).

2.2.2. Modified Jacobi Polynomials

The backward Equation (7) is closely related to the differential function fulfilled by the classical
Jacobi polynomials [19]. One can either modify the backward Equation (7) to fit the Jacobi polynomials
(e.g., [18]) or the Jacobi polynomials to fit the backward equation (e.g., [12]). We will follow the
latter strategy.

Define the modified Jacobi polynomials:

R
(θ,α)
i (x) = P

(αθ−1,βθ−1)
i (2x− 1) (13)

where the P (α,β)
i (z) are the classical Jacobi polynomials [19]. It can be shown that these modified Jacobi

polynomials fulfill the backward Equation (7) with the corresponding eigenvalues:

λi = i(i+ θ − 1) (14)

With the weight function w(θ,α)(x), the modified Jacobi polynomials are orthogonal:∫ 1

0

R
(θ,α)
i (x)R

(θ,α)
j (x)w(θ,α)(x) dx = ∆

(α,θ)
i δi,j (15)

where δi,j denotes the Kronecker delta, i.e., δi,j is zero for i 6= j and one for i = j. The proportionality
constant depends on i, θ, and α:

∆
(α,θ)
i =

Γ(i+ αθ)Γ(i+ βθ)

(2i+ θ − 1)Γ(i+ θ − 1)Γ(i+ 1)
(16)

The set of R(θ,α)
i (x) forms a basis of the Hilbert space L2([0, 1], w(θ,α)(x)dx) [12].

For i ≥ 1, the R(θ,α)
i (x) satisfy the recurrence relation:

R
(θ,α)
i+1 (x)

(i+ 1)(i− 1 + θ)

(2i+ θ)(2i− 1 + θ)
=

R
(θ,α)
i (x)

(
x− 1

2
+
θ2(β2 − α2)− 2θ(β − α)

2(2i+ θ)(2i− 2 + θ)

)
−R(θ,α)

i−1 (x)
(i− 1 + αθ)(i− 1 + βθ)

(2i− 1 + θ)(2i− 2 + θ)

(17)
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while R(θ,α)
0 (x) = 1 and R(θ,α)

1 (x) = θ(x− α) [12].
Recall that multiplication with the weight function w(θ,α)(x) transforms an eigenvector of the

backward equation into that of the forward equation. If θ > 0, the forward equation has a stationary
beta density beta(x |αθ, βθ) proportional to the weight function:

Pr(x | θ, α, β, t→∞) =
1

∆
(α,θ)
0

w(θ,α)(x)R
(θ,α)
0 (x) =

Γ(θ)

Γ(αθ)Γ(βθ)
xαθ−1(1− x)βθ−1 (18)

2.2.3. Series Expansion; Approximation of Functions by Orthogonal Polynomials

We have now established that the backward density is given by an expansion of the form:

f(x | θ, α, β, t) = c0 +
∞∑
i=1

e−i(i+θ−1) t ciR
(θ,α)
i (x) (19)

The constants ci need to be determined such that the initial conditions are met, i.e., a probability
density f(x), defined within the interval, is represented by the series expansion:

f(x) = c0 +
∞∑
i=1

ciR
(θ,α)
i (x) (20)

The coefficients ci in an expansion up to order n are determined by minimizing a weighted least
squares error function.

Since the following considerations hold generally for all orthogonal polynomials, we now use
arbitrary intervals between a and b, the symbol fi(x) for the ith orthogonal polynomial, and w(x) for the
weight function associated with the fi(x):

E(c0, . . . , cn) =

∫ b

a

w(x)

(
f(x)−

n∑
i=0

cifi(x)

)2

dx (21)

Differentiating with respect to ci:

dE(c0, . . . , cn)

dci
= −2

∫ b

a

w(x)fi(x)

(
f(x)−

n∑
j=0

cjfj(x)

)
dx (22)

and setting equal to zero, we get:∫ b

a

w(x)fi(x)f(x) dx =
n∑
i=0

∫ b

a

fi(x)cjw(x)fj(x) dx (23)

From the orthogonality relation, we have
∫ b
a
f 2
i (x)w(x) dx = ∆iδi,j . Thus, we set the coefficients for

the backward equation to:

ci =
1

∆i

∫ b

a

w(x)fi(x)f(x) dx (24)

The forward expansion can be obtained from the backward expansion by multiplication with the
weight function (see Equation (11)):

f(x | θ, α, β, t) = w(θ,α)(x)

(
c0 +

∞∑
i=1

e−i(i+θ−1) t ciR
(θ,α)
i (x)

)
(25)
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As in the case of the backward expansion, the constants ci are determined such that the initial
conditions are met, i.e., an initial probability density f(x), defined within the interval between a and
b, is represented by the series expansion of orthogonal polynomials fi(x) with the weight function w(x):

f(x) = w(x)

(
c0 +

∞∑
i=1

ci fi(x)

)
(26)

The coefficients are now determined by minimizing the weighted least squares error function:

E(c0, . . . , cn) =

∫ 1

0

w(x)−1

(
f(x)−

n∑
i=0

ciw(x)fi(x)

)2

dx (27)

With similar considerations as for the backward case, we find:

ci =
1

∆i

∫ b

a

fi(x)f(x) dx (28)

Returning to the mutation drift diffusion, we note that often an initial density corresponding to a
Dirac delta function at a point p in [0, 1], f(x) = δ(x− p), is considered (e.g., [20]); then:

ci(p) =
Ri(p)

∆i

(29)

Substituting these coefficients into Equation (25), we get:

f(x | θ, α, p, t) = w(θ,α)(x)

(
c0 +

∞∑
i=1

e−i(i+θ−1) t Ri(x)
Ri(p)

∆i

)
(30)

This corresponds to Formula (4.68) in [9], where the eigenfunctions are assumed to be normed, such
that division by the proportionality constant ∆i is unnecessary. (Note that exchanging x and p transforms
the right side of this equation into that of the corresponding backward equation; compare Formula (5)
in [12], where the backward equation is used.)

Returning to the modified Jacobi polynomials, we note that, from the orthogonality relation
Equation (15) and R(θ,α)

0 (x) = 1, it can be deduced for all i ≥ 1 and thus also for all times:

0 =

∫ 1

0

R
(θ,α)
i (x)R

(θ,α)
0 (x)w(x) dx =

∫ 1

0

R
(θ,α)
i (x)w(θ,α)(x) dx (31)

Therefore the probability mass over the whole interval [0, 1] comes only from the equilibrium term,
i.e., the beta density Equation (18); all other terms R(θ,α)

i (x)w(θ,α)(x) with i ≥ 1 shift this mass within
the interval. Note that a polynomial times a beta density results in a weighted sum of beta densities.

2.2.4. Example: A Change in the Scaled Mutation Rate with Modified Jacobi Polynomials

As an example, assume that the population had been in equilibrium with parameters α and θa,
to switch to a new mutation bias θc at time tc. Then the expansion until time tc contains only the
equilibrium beta density. The change of the mutation bias necessitates a change in the eigenvectors
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from w(θa,α)(x)R
(θa,α)
i (x) to w(θc,α)(x)R

(θc,α)
i (x). The coefficients for the new eigensystem are

(compare Formula (28)):

ci =
1

∆θc,α
i

∫ 1

0

R
(θc,α)
i (x)

1

∆θa,α
0

w(θa,α)(x)R
(θa,α)
0 (x) dx (32)

The evolution of the proportion f(x) between tc and the present time is given by the series expansion
Equation (25) with the ci from Equation (32).

While one such change may not be too cumbersome to implement in a computer program,
approximating rapidly changing population sizes by many piecewise linear changes can be, since then
equilibrium has not been reached and for each change a sum over all terms in the expansion is needed,
such that Equation (32) needs to be modified to:

ci =
1

∆i

∫ 1

0

R
(θc,α)
i (x)w(θa,α)

∑
i

τi(t)R
(θa,α)
i (x) dx (33)

where the τi(t) are the time-dependent coefficients.

2.3. Statistics of Site Frequency Spectra

2.3.1. Equilibrium

For θ > 0, the beta density beta(x |αθ, βθ) is the equilibrium or stationary solution of the forward
diffusion process [3].

Given a single sample of size M � N with a frequency y of the first allelic type, the likelihood
conditional on the population allelic proportion x is naturally a binomial:

Pr(y |x,M) =

(
M

y

)
xy(1− x)M−y (34)

The joint distribution of y and x after multiplication with the equilibrium beta density Equation (18) is:

Pr(y, x |α, θ,M) =

(
M

y

)
Γ(αθ)Γ(βθ)

Γ(θ)
xy+αθ−1(1− x)M+βθ−y−1 (35)

Integrating out x results in the likelihood, a beta-binomial compound distribution:

Pr(y |α, θ,M) =

(
M

y

)
Γ(θ)

Γ(αθ)Γ(βθ)

∫ 1

0

xy+αθ−1(1− x)M−y+β−1 dx

=

(
M

y

)
Γ(θ)

Γ(αθ)Γ(βθ)

Γ(y + αθ)Γ(M − y + βθ)

Γ(M + θ)

(36)

Site frequency spectra (SFS) can be considered samples of identical sample size M from L biallelic
loci, indexed by l (1 ≤ l ≤ L), with the allelic proportions xl drawn independently from a beta density
with common α and θ. Let L0, . . . , LM represent the counts of alleles of the first type in the samples.
The likelihood then is a product of beta-binomials:

Pr(L0, . . . , LM |α, θ,M) =
L!∏M
i=0 Ly!

M∏
y=0

((
M

y

)
Γ(θ)

Γ(αθ)Γ(βθ)

Γ(y + αθ)Γ(M − y + βθ)

Γ(M + θ)

)Ly

(37)
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Interest is centered on obtaining (maximum-likelihood) estimates of θ and α given the vector of allelic
counts (L0, . . . , LM) or, in a Bayesian context, their posterior distribution given a suitable prior. As a
function of α, the distribution is a polynomial; as a function of θ, the distribution is a rational function.
A rational function can be integrated by partial fraction decomposition. If auxiliary variables that count
the number of mutations in each allelic class conditional on θ, α, y and M are introduced, an expectation
maximization algorithm may be used for finding the maximum likelihood estimates [21].

2.3.2. Outside Equilibrium

If the population size or the mutation bias has changed recently, a population will be outside
equilibrium. Then instead of the equilibrium beta density Equation (18) the expansion in Equation (32)
or Equation (33) needs to be used. Since in both cases, the series conforms to a weighted sum of
beta distributions, integration to obtain the likelihood can be performed relatively easily; however, the
author is not aware of an implementation of this algorithm. With formula manipulation programs, e.g.,
“Mathematica” [10] or “Maple” [11], the Jacobi polynomials are readily available, such that it is possible
to program these algorithms relatively easily.

3. Selection and Drift Diffusion with Mutations from the Boundaries

Another tradition in theoretical population genetics follows the fate of a single mutant allele to
calculate, e.g., the probability of fixation of the mutant allele or the time until its fixation or loss [9].
While the allele is polymorphic, directional selection with a scaled strength of γ and drift are the forces
usually considered. Importantly, mutation is assumed to be negligible within the polymorphic region,
i.e., in 1/N ≤ x ≤ (N − 1)/N . While only drift (or selection and drift) governs the dynamics within
the polymorphic region, mutations may be considered as boundary terms. The fact that no mutations
are considered within the polymorphic region means that expansions using the Gegenbauer polynomials
instead of the Jacobi polynomials can be used. This change simplifies calculations.

Two different ways of approaching the problem with selection are presented: in the Appendix, the
forward equation is transformed to the spheroidal wave equation, for which excellent computation tools
are available; in the main text, the strategy of Song and Steinrücken [12] is followed, which will likely
be more familiar to population geneticists.

From the corresponding Moran model, e.g., [15], the change in the mean is now inferred to be:

Mδx =
1

N2
γx(1− x)N (38)

After scaling, the corresponding forward diffusion equation is for 1/N < x < (N − 1)/N :

∂

∂t
φ(x, t) =

(
∂2

∂x2
x(1− x)− ∂

∂x
γx(1− x)

)
φ(x, t) (39)

Again from the corresponding Moran model, it can be deduced that the flow from x = 1/N to
x = 0 consists of drift and that between x = (N − 1)/N and x = 1 of selection and drift; after
appropriate scaling: 

F (1/N)
dt

= N−1
N
φ(1/N, t)

F ((N−1)/N)
dt

= (1 + γ/N)N−1
N
φ((N − 1)/N, t)

(40)
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By multiplication with the weight function w(x) = eγxx−1(1 − x)−1 and substituting the series
expansion, the forward Equation (39) can be transformed to Sturm–Liouville form:

−λieγxx−1(1− x)−1fi(x) =

(
d2

dx2
x(1− x)− d

dx
γx(1− x)

)
eγxx−1(1− x)−1fi(x)

=
d2

dx2
eγxφ(x, t)− γ d

dx
eγxfi(x)

=
d

dx

(
eγx

d

dx
fi(x)

) (41)

From this the backward equation can be obtained:

−λieγxx−1(1− x)−1fi(x, t) =
d

dx

(
eγx

d

dx
fi(x)

)
= γeγx

d

dx
φ(x, t) + eγx

d2

dx2
fi(x)

−λifi(x) = γx(1− x)
d

dx
fi(x) + x(1− x)

d2

dx2
fi(x)

(42)

Again, we are looking for an eigensystem of this Sturm–Liouville problem. We proceed indirectly,
by first obtaining a solution for the neutral system, i.e., without selection, and then deriving eigenvectors
as linear combinations of this eigensystem.

3.1. Pure Drift within the Polymorphic Region

Consider the pure drift forward generator:

Lf =
∂2

∂x2
x(1− x) (43)

and the corresponding backward generator:

Lb = x(1− x)
∂2

∂x2
(44)

As before, either the generator can be modified to that of the classical Gegenbauer polynomials [19]
as in [20], or the Gegenbauer polynomials to fit the generator. Choosing the latter strategy again, the
orthogonal polynomials solving the backward equation are the modified Gegenbauer polynomials [12]
with the weight function:

w(x) = x−1(1− x)−1 (45)

and the proportionality constant:

∆i =
i+ 1

(i+ 2)(2i+ 3)
(46)

The first two polynomials are G0(x) = −x(1− x) and G1(x) = x(1− x)(2− 4x) and the recurrence
relation to calculate all other polynomials is:

Gi+1(x)
(i+ 3)(i+ 1)

2(i+ 2)(2i+ 3)
= Gi(x)

(
x− 1

2

)
−Gi−1(x)

(i+ 1)

2(2i+ 3)
(47)
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Furthermore, the eigenvalues are:

λi = (i+ 2)(i+ 1) (48)

As before, the eigenvectors of the forward series expansion Ui(x) can be obtained from those of the
backward expansion by multiplication with the weight function w(x):

Ui(x) = (x(1− x))−1Gi(x) (49)

Since all eigenvalues are greater than zero, there is no equilibrium term in this expansion. Without
replenishing mutations, probability weight is lost continually towards the boundaries zero and one. It is
convenient to already include this behavior into the eigenfunctions by including boundary terms at zero
and one [22,23], where the deduction made corresponds to what is expected to fix eventually. One can
show that: 

∫ 1

0
Ui(x) dx = (Ui(0) + Ui(1))/λi∫ 1

0
(1− x)Ui(x) dx = Ui(0)/λi = (−1)i

i+2∫ 1

0
xUi(x) dx = Ui(1)/λi = 1

i+2

(50)

Therefore the forward eigenvectors Hi(x) are defined as:

Hi(x) =
(−1)i

i+ 2
δ(x) + Ui(x) +

1

i+ 2
δ(1− x) (51)

where δ(x) is the Dirac delta function.
A probability density f(x) defined between zero and one can be represented by an expansion of

the Hi(x):

f(x) = b1δ(x− 1) + b0δ(x) +
∞∑
i=2

(ciHi(x)) (52)

where: b0 =
∫ 1

0
xf(x) dx

b1 = 1− b0 =
∫ 1

0
(1− x)f(x) dx

(53)

Should f(x) have point masses at the boundaries, these are included in this integration. The
coefficients ci can be calculated using:

ci =
1

∆i

lim
N→∞

∫ 1−1/N

1/N

x(1− x)Ui(x)f(x) dx (54)

where the limit indicates that the integration includes only the polymorphic region, i.e., no point masses
at the boundaries.

In contrast to the classical solution of Kimura [20], this solution also accounts for the dynamics at the
boundaries. For the case of an initial Dirac delta distribution at a proportion p inside the polymorphic
region, Tran et al. [23] derive the analogous eigenexpansion using the classical Gegenbauer polynomials
(Equation (20) in [23]).

For real data, we do not know the true proportion p and rather have an estimate of p given a sample.
Then polynomials are more useful as initial distributions, which will be illustrated with examples below.
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3.1.1. Equilibrium of Mutations from the Boundaries and Drift; Outgroup Information

With information from a closely related species, i.e., outgroup information, and small scaled mutation
rates, polymorphic alleles can be polarized into ancestral (already present in the outgroup) or derived (not
observed in the outgroup and thus arisen by a recent mutation). The requirements on the outgroup are
strict. If the outgroup is too closely related to the focal species, polymorphism may still segregate in the
outgroup (in a phylogenetic context this is known as “incomplete lineage sorting”). If the outgroup is
too far from the focal species, fixed differences may have established or multiple mutations may have
occurred. Both too close and too far relationships thus obscure polarization. Information from different,
closely related species allows for better inference of ancestral states [24,25]. In practice, however, the
monomorphic classes in the ingroup are usually combined.

Suppose again that time is scaled in units of N and that mutations arise from the ancestral state at a
constant rate ϑ. Then the equilibrium distribution of proportions is ϑ/x, i.e., inversely proportional to the
distance from the origin (compare Formula (9.18) in [9]). Note that the integral from 1/N to (N−1)/N ,
i.e., over the range for polymorphic alleles, is approximately:∫ 1−1/N

1/N

ϑ/x dx = ϑ log(x) |(N−1)/N1/N = ϑ log(N − 1) (55)

Representing the probability mass at the boundary zero with a delta function, we thus arrive at the
following density:

Pr(x | θ,N) = δ(x)(1− ϑ log(N − 1)) + ϑ/x (56)

For a sample of polymorphic alleles of size M , with y the number of derived alleles observed in
the sample, assume again a binomial likelihood. Combining this likelihood with the density (56) and
integrating out the allelic proportion x in the limit N →∞ results in:

Pr(y |ϑ,M) =

∫ 1

0

(
M

y

)
xy(1− x)M−yϑ/x dx

= ϑ
M

M − y

(57)

Let L0, . . . , LM represent the counts of derived alleles in the samples. With site frequency data and
in equilibrium, all information is contained in the number of polymorphic alleles Lp =

∑M−1
i=1 Li as

opposed to the monomorphic alleles. The likelihood of a polymorphic sample then becomes:

Pr(Lp |α, θ,M,L) = ϑ
L!

Lp!(L− Lp)!
(ϑ

M−1∑
i=1

1/i)Lp(1− ϑ
M−1∑
i=1

1/i)L−Lp (58)

The maximum likelihood estimator of ϑ is:

ϑ̂ =
Lp

L
∑M−1

i=1 1/i
(59)

This estimator coincides with the Ewens–Watterson estimator [26,27]. It can also be derived using
the Poisson Random Fields (PRF) approach [28].

While the similarities between Equations (36) and (57) are obvious, the underlying models are
different; in particular, θ and ϑ are defined differently.
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3.1.2. Equilibrium of Mutations from the Boundaries and Drift; No Outgroup Information

Assuming no outgroup information and equilibrium, i.e., the same model as used for deriving
Equation (36), but small scaled mutation rates and the other Poisson Random Field (PRF) assumptions,
RoyChoudhury and Wakely [29] derive the distribution of polymorphic sites in a sample of L loci and
M haploid individuals to be Poisson with mean:

2Lαβθ
M−1∑
i=1

1/i (60)

If we set ϑ = 2αβθ, this leads to a maximum likelihood estimator of variability that is identical to
that of Ewens and Watterson:

ϑ̂ =
Lp

L
∑M−1

i=1 1/i
(61)

The same estimator can also be derived without assuming a PRF, but instead expanding the likelihood
(Equation (37)) into a power series in ϑ at zero, keeping only terms up to first order in ϑ [21]. The
likelihood (Equation (37)) then becomes proportional to:

Pr(L0, Lp, LM |α, ϑ, L,M) ∝ (β − 1

2
ϑ
M−1∑
i=1

1

i
)L0(ϑ

M−1∑
i=1

1

i
)Lp(α− 1

2
ϑ
M−1∑
i=1

1

i
)LM (62)

With a model with mutations from both boundaries, the equilibrium density analogous to that in
Equation (56) is [30]:

Pr(x |αθ,N) = δ(x)(β − αβθ log(N)) +
ϑ

x(1− x)
+ δ(x)(α− αβθ log(N)) (63)

The joint distribution of this density and the binomial likelihood is for polymorphic alleles, i.e.,
1 ≤ y ≤ (M − 1):

Pr(x, y |αθ,M) = ϑ

(
M

y

)
xy−1(1− x)M−y−1 (64)

Integrating this joint distribution over x in the limit ofN →∞ also results in the marginal distribution
Equation (62).

The two monomorphic classes L0 and LM may be combined to obtain a marginal likelihood,
from which the same maximum likelihood estimator as in Equation (61) can be derived. As long as
ϑ
∑M−1

i=1
1
i
� 1 (which is usually fulfilled), the Poisson approximation can be derived from the marginal

likelihood of Lp given L, M , and ϑ [21]:

Pr(Lp |ϑ, L,M) =

(
L

Lp

)
(ϑ

M−1∑
i=1

1

i
)Lp(1− ϑ

M−1∑
i=1

1

i
)L−Lp

≈
(Lϑ

∑M−1
i=1

1
i
)Lpe−ϑ

∑M−1
i=1

1
i

Lp!

(65)

Then Lp

HM
is a maximum likelihood estimator for Lϑ, which corresponds to the parameter θ of

RoyChoudhury and Wakeley [29].



Computation 2014, 2 212

Only with small scaled mutation rates, maximum likelihood estimators of ϑ can be obtained relatively
easily. With most real data, small scaled mutation rates, i.e., ϑ < 0.0125, are usually observed. This
is also the parameter range, where use of outgroup data would enhance analyses, but the outgroups are
never ideal. In fact, data will usually conform to a “joint frequency spectrum”, where sample sizes in
different populations or species may differ. If data from a second population come from a single diploid
individual in Hardy–Weinberg equilibrium, the haploid sample size there will be two. Use of such data
requires non-equilibrium approaches as in [31]. For small scaled mutation rates, a probabilistic model
using orthogonal polynomials is formulated in [30].

3.1.3. Example for the Use of Gegenbauer Polynomials: Evolve and Resequence

As is obvious from the preceding subsections, samples from a single time point from a population
assumed to be in an equilibrium of mutations from the boundaries and drift do not require orthogonal
polynomials. To demonstrate the use of orthogonal polynomials, data that might occur in an “Evolve and
Resequence” experiment, e.g., [32], will be analyzed in this subsection. Assume that a base population
of, e.g., N = 200 fruit flies (Drosophila melanogaster) is taken from a wild population that is assumed
to be in equilibrium. In a cage, the population evolves without selection for t/N generations. Within
the short times customary in such studies, mutations are unlikely and can be ignored. At a certain locus,
the initial sample size from the base population is M = 5; y = 3 alleles are of the first allelic type.
Conditional on the allelic proportion x, the likelihood is binomial and the joint distribution is given in
Equation (35):

Pr(y = 3, x |M = 5, α, θ) = αβθ

(
3

2

)
x3(1− x)2 x−1(1− x)−1

= 3αβθ x2(1− x)

(66)

This is actually a polynomial of degree three and proportional to a beta(x | 3, 2) density, which can
be represented exactly by a series of the modified Gegenbauer polynomials Hi up to the appropriate
degree. The loss of variation from a beta(x | 3, 2) distribution within the polymorphic region over t/N
generations is shown in Figure 1.

Consider two time points and an even smaller sample size that allows calculation in the text. In
particular, assume that the sample size of the initial sample is M0 = 3 with two alleles of the first type
y0 = 2. Thus the joint distribution of the sample y0 and the allelic proportions x is:

Pr(y0 = 2, x |M0 = 3, α, θ, t = 0) = αβθ

(
3

2

)
x2(1− x)x−1(1− x)−1

= 3αβθ x

(67)

This polynomial can be represented by the modified Gegenbauer polynomials of degree up to one:
c1 = −3

4
αβθ and c0 = −3

2
αβθ. At time t1, before considering the second sample, the probability mass

of the joint density has diminished in the polymorphic region:

Pr(y0 = 2, 0 < x < 1 |M0 = 3, α, θ, t = t1) = αβθ

(
−3

2
e−2t1(−1)− 3

4
e−6t1(2− 4x)

)
(68)
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while it has grown at the boundaries:

Pr(y0 = 2, x = 0 |M0 = 3, α, θ, t = t1) = αβθ

(
3

2
· 1

2
(1− e−2t1)− 3

4
· 1

3
(1− e−6t1)

)
(69)

and

Pr(y0 = 2, x = 1 |M0 = 3, α, θ, t = t1) = αβθ

(
3

4
(1− e−2t1) +

1

4
(1− e−6t1)

)
(70)

Figure 1. Distribution of the allelic proportion x starting from a dbeta(x | 3, 2) distribution
(thick line). The thin lines represent the loss of variation through genetic drift at generations
t/N = (0.05, 0.15, 0.25, 0.35, 0.45).
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The likelihood of a second sample at time t1 of size M1 = 3 with y1 = 3 alleles of the first type, i.e., a
monomorphic sample, is binomial: x3. The joint probability consists of an interior and a boundary part.
From the interior part of the joint distribution, x can be integrated out:

Pr(y0 = 2, y1 = 3 |M0 = 3,M1 = 3, α, θ, t = t1, 0 < x < 1) =

αβθ

∫ 1

0

x3
(

3

2
e−2t1 +

3

4
e−6t1(−2 + 4x)

)
dx =

αβθ

(
3

8
e−2t1 − 3

8
e−6t1 +

3

5
e−6t1

) (71)
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Summing the interior and the boundary parts, the likelihood of the two samples is obtained:

Pr(y0 = 2, y1 = 3 |M0 = 3,M1 = 3, α, θ, t = t1) =

αβθ

(
3

8
e−2t1 − 3

8
e−6t1 +

3

5
e−6t1 +

3

4
(1− e−2t1) +

1

4
(1− e−6t1)

) (72)

Note that the parameters αβθ pertain to the base population. With respect to drift during the
experiment, the single parameter in this likelihood is t1, i.e., the time in generations normed by the
(effective) population size. Usually, the number of generations is known in “evolve and resequence”
studies, such that the (effective) population size N can be estimated. This may or may not coincide with
the census population size, which is also usually known.

Note that the above computation is much simpler than the use of the transition probabilities of the
Wright–Fisher model with the effective population sizeN as a parameter [33,34]. As the data at the time
that those articles were published (about 2000) were usually microsatellites, rather than single-nucleotide
polymorphisms, these methods provide for multiple alleles.

Using the statistical language “R” [35] with the high-precision algebra package “Rmpfr”, likelihoods
for sample sizes of about 50 can be calculated within minutes with this method.

3.2. Selection and Drift

In the following subsection, the approach of Song and Steinrücken [12] is followed (their section:
“Diffusion with Genetic Selection and No Mutation”). While the numerical methods of these authors
are less advanced than those implemented in the commercial packages (see the Appendix), their
general method based on the modified Jacobi polynomials is also applicable in cases with mutation
and dominance.

Our goal is to find eigenfunctions Vi(x) and the associated eigenvectors Λi of the backward generator:

Lb(x)Vi(x) =

(
γx(1− x)

d

dx
+ x(1− x)

d2

dx2

)
Vi(x) = ΛiVi(x) (73)

The Vi(x) are orthogonal with respect to the weight function w(x) = eγxx−1(1− x)−1, such that:∫ 1

0

Vi(x)Vj(x)w(x) dx ∝ δi,j (74)

Substituting Ki(x) = e−
γ
2
xGi(x) into this equation, it can be verified that the Ki(x) are also

orthogonal with respect to the same weight function:∫ 1

0

Vi(x)Vj(x)w(x) dx = Ki(x)Kj(x)x−1(1− x)−1 dx = δi,j
i+ 1

(i+ 2)(i+ 3)
(75)

Therefore, even though the Ki(x) are not eigenfunctions of the backward generator Lb(x), linear
combinations of the Ki(x) can be used to represent Vj(x):

Vj(x) =
∞∑
i=0

uj,iKi(x) (76)
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where the uj,i are constants to be determined. Substituting Ki into the backward operator results in:

LbKi(x) = e−
γ
2
x

(
x(1− x)

d2

dx2
Gi(x)− γ2

4
x(1− x)Gi(x)

)
= −e−

γ
2
x
(
λiGi(x) + γ2

4
x(1− x)Gi(x)

) (77)

Using this result together with Equations (73) and (76) leads to:

∞∑
i=0

uj,i

(
λiGi(x) + γ2

4
x(1− x)Gi(x)

)
= Λi

∞∑
i=0

uj,iGi(x) (78)

For i ≥ 0, with the recurrence relation Equation (47), one can show that:

γ2

4
x(1− x)Gi(x) = a

(−2)
i Gi−2(x) + a

(0)
i Gi(x) + a

(+2)
i Gi+2(x) (79)

where: 
a
(−2)
i = −γ2

16
i(i+1)

(2i+1)(2i+3)
, for i ≥ 2, otherwise 0

a
(0)
i = γ2

8
(i+1)(i+2)

(2i+1)(2i+5)

a
(+2)
i = −γ2

16
(i+1)(i+4)

(2i+3)(2i+5)
.

(80)

For j ≥ 0, multiplying this system of equations with Gj(x) and integrating with respect to the weight
function x−1(1− x)−1 yields a system of equations. In matrix form, this system can be written as:

λ0 + a
(0)
0 0 a

(−2)
2 0 0 · · ·

0 λ1 + a
(0)
1 0 a

(−2)
3 0 · · ·

a
(+2)
0 0 λ2 + a

(0)
2 0 a

(−2)
4 · · ·

0 a
(+2)
1 0 λ3 + a

(0)
3 0 · · ·

0 0 a
(+2)
2 0 λ4 + a

(0)
4 · · ·

...
...

...
...

... . . .





uj,0

uj,1

uj,2

uj,3

uj,4
...


= Λj



uj,0

uj,1

uj,2

uj,3

uj,4
...


(81)

The eigenvalues Λj correspond to the eigenvalues of the operator Lb with the associated eigenvectors
uj = (uj,0, uj,1, uj,2, uj,3, uj,4, . . . ). Note that this band-diagonal system can be subdivided into two
independent tridiagonal systems for even and odd i and j. While this system has infinite size, it can
be truncated at dimension D to obtain an approximation, with little loss [12]. The eigenvalues of
tridiagonal matrices with real coefficients can be obtained relatively quickly. Furthermore, approximate
solutions to the eigenvalues can be improved using continued fractions [36]. Nevertheless, so far the only
implementation seems to be that in [12], where the backward equation is considered. The eigenvectors
of the forward equation can be obtained by multiplication with the weight function eγxx−1(1− x)−1. A
solution of the forward diffusion equation has not been implemented yet, as far as the author is aware of.

4. Conclusions

A biallelic locus subject to the population genetic forces such as mutation, drift and selection can
be modeled using diffusion equations. These diffusion equations can be solved using orthogonal
polynomials; the case of pure drift using the Gegenbauer polynomials, the case of mutation and drift
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using Jacobi polynomials, and the case of selection and drift using spheroidal wave functions. The
theory for using series of orthogonal polynomials to solve the corresponding diffusion equations has
been elaborated in detail. By adjusting the coefficients in the expansion any initial distribution may be
approximated. In genomic regions of relatively high recombination rates and low mutation rates, each
polymorphic nucleotide can be assumed to evolve independently. Samples from such regions have been
called site frequency spectra. Assuming equilibrium, the joint distribution of the allelic proportion x and
the data y of each such site can be modeled as a linear combination of eigenvectors of the forward
equation up to an order determined by the sample size. With this, it is thus possible to condition
on samples from two time points, as with ancient DNA or “evolve and resequence” studies, or use
outgroup information.

A major advantage of using diffusion equations and orthogonal polynomials over competing methods,
e.g., approximate Bayesian computation [37], which uses summary statistics, or even alternative methods
based on the solution of diffusion equations [31], is that the relevant distributions may be calculated
exactly and without loss of information, or can at least be approximated very efficiently. Furthermore, the
well-developed theory of orthogonal polynomials connects population genetics to other more advanced
disciplines, e.g., theoretical physics.
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Appendix. The Oblate Spheroidal Wave Function

In this appendix, the oblate spheroidal wave function is used to solve a directional selection-drift
model. The Kolmogorov forward equation is parametrized as follows:

∂φ(x, τ)

∂τ
=

∂2

∂x2
(x(1− x)φ(x, τ))− 4γ

∂

∂x
(x(1− x)φ(x, τ)) (A1)

where γ is the scaled directional selection coefficient. This equation can be transformed to the spheroidal
wave equation, to which a lot of research has been dedicated from about the time of Kimura’s work until
now [36,38–41].

We will transform the scaled forward Equation (A1) to the Sturm–Liouville form (specifically to the
oblate spheroidal wave equation with m = 1). Initially,

φ(t, x) = e−λte2γxv(x) (A2)

is substituted into the scaled forward Equation (A1) to obtain:

x(1− x)
d2v(x)

dx2
+ 2(1− 2x)

dv(x)

dx
−
(
2 + 4γ2x(1− x)− λ

)
v(x) = 0 (A3)

Setting x = (1 − z)/2 (such that (−2 ∂
∂z

) = ∂
∂x

, x(1 − x) = (1 − z2)/4; the boundaries are then −1

and 1), the next equation, used by Kimura [20], is obtained:

(1− z2)d
2v((1− z)/2)

dz2
− 4z

dv((1− z)/2)

dz
+
(
λ− 2− γ2(1− z2)

)
v((1− z)/2) = 0 (A4)
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It can be transformed to the Sturm–Liouville form by setting g(z)(1− z2)−1/2 = v((1− z)/2), since:

d

dx
(1− z2)−1/2 = z(1− z2)−3/2

d2

dx2
(1− z2)−1/2 = (1− z2)−3/2 + 3z2(1− z2)−5/2

(A5)

Whence,

0 = (1− z2)d
2v((1− z)/2)

dz2
− 4z

dv((1− z)/2)

dz
+
(
λ− 2− γ2(1− z2)

)
v((1− z)/2)

0 = (1− z2)d
2(1− z2)−1/2g(z)

dz2
− 4z

d(1− z2)−1/2g(z)

dz

+
(
λ− 2− γ2(1− z2)

)
(1− z2)−1/2g(z)

0 = (1− z2)(1− z2)−1/2d
2g(z)

dz2
+ (1− z2)2z(1− z2)−3/2dg(z)

dz

+ (1− z2)
(
(1− z2)−3/2 + 3z2(1− z2)−5/2

)
g(z)

− 4z(1− z2)−1/2dg(z)

dz
− 4z2(1− z2)−3/2g(z)

+
(
λ− 2− γ2(1− z2)

)
(1− z2)−1/2g(z)

0 = (1− z2)d
2g(z)

dz2
+ 2z

dg(z)

d
z + (1 + 3z2(1− z2)−1)g(z)

− 4z
dg(z)

dz
− 4z2(1− z2)−1g(z) +

(
λ− 2− γ2(1− z2)

)
g(z)

0 =
d

dz

(
(1− z2)dg(z)

dz

)
+

(
λ− 1− z2

1− z2
− γ2(1− z2)

)
g(z)

0 =
d

dz

(
(1− z2)dg(z)

dz

)
+

(
λ− 1− z2

1− z2
− z2

1− z2
− γ2(1− z2)

)
g(z)

0 =
d

dz

(
(1− z2)dg(z)

dz

)
+

(
λ− γ2(1− z2)− 1

1− z2

)
g(z)

(A6)

The last line is in Sturm–Liouville form (see Equation (9)). It also corresponds to

0 =
d

dz

(
(1− z2)dg(z)

dz

)
+

(
λmn (γ) + c2(1− z2)− m2

1− z2

)
g(z) (A7)

which is generally used for spheroidal wave functions ([19], Chapter 21). As can be seen from
Equation (9), the weight function is unity, such that the forward and backward equations are identical.
The condition c2 < 0 actually defines the oblate spheroidal wave functions. For c2 = 0, corresponding to
the case without selection, Equation (A7) reduces to the differential equation of the associated Legendre
function ([19], Chapter 8):

0 =
d

dz

(
(1− z2)dg(z)

dz

)
+

(
l(l + 1)− m2

1− z2

)
g(z) (A8)

While the spheroidal wave functions and the associated Legendre functions solving the above
equations are not strictly polynomials, much of the theory of orthogonal polynomials also applies to
them, such that any initial function can be approximated by a series of Legendre functions.
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Importantly, the computation of spheroidal wave functions has been advanced relatively recently and
implemented in commercially available computer packages [36,41]. Computation is also based on a
similar band-diagonal system of equations as in Equation (81). The formula manipulation program
“Mathematica” [10] defines the spheroidal wave function slightly differently from above [41]:

d

dz

(
(1− z2)dSmn(z)

dz

)
+

(
λmn − c2z2 −

m2

1− z2

)
Smn(z) = 0 (A9)

Set

L2Smn =
d

dz

(
(1− z2)dSmn(z)

dz

)
+

(
−c2z2 − m2

1− z2

)
Smn(z) (A10)

while the original operator L1 = L2 + c2. The eigenvalues and eigenvectors are then:

L2Smn = λmnSmn

(L2 + c2)Smn = (λmn + c2)Smn

L1Smn = (λmn + c2)Smn

(A11)

From this, we see that the eigenvectors are identical and the eigenvalues differ by c2.
The Mathematica package “Spheroidal.m” [42] also defines the spheroidal wave equations, this time

with the first operator L1. Packages are also available for “Maple” [11]. As far as the author is aware
of, these tools are the only ones currently available to compute and visualize directional forward and
backward selection-drift diffusion models relatively easily.
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