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Abstract: The purpose of this study is the development of an automated two-dimensional airfoil
shape optimization procedure for small horizontal axis wind turbines (HAWT), with an emphasis on
high thrust and aerodynamically stable performance. The procedure combines the Computational
Fluid Dynamics (CFD) analysis with the Response Surface Methodology (RSM), the Biobjective
Mesh Adaptive Direct Search (BiMADS) optimization algorithm and an automatic geometry and
mesh generation tool. In CFD analysis, a Reynolds Averaged Numerical Simulation (RANS) is
applied in combination with a two-equation turbulence model. For describing the system behaviour
under alternating wind conditions, a number of CFD 2D-RANS-Simulations with varying Reynolds
numbers and wind angles are performed. The number of cases is reduced by the use of RSM. In the
analysis, an emphasis is placed upon the role of the blade-to-blade interaction. The average and
the standard deviation of the thrust are optimized by a derivative-free optimization algorithm to
define a Pareto optimal set, using the BiMADS algorithm. The results show that improvements in the
performance can be achieved by modifications of the blade shape and the present procedure can be
used as an effective tool for blade shape optimization.
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1. Introduction

Wind power has been receiving increasing attention as one of the most promising renewable
energy sources. Wind turbine technologies for improved performance have been developed within the
last two decades, where many aspects, including aerodynamics and aeroelasiticy, have been the subject
of intensive theoretical, computational and experimental research [1]. As the airfoil profile shape has a
crucial impact on the aerodynamic efficiency of a wind turbine, an important research area for wind
turbine technology has been blade design. Within this context, automatic blade shape optimization
procedures, which have a longer tradition in other areas such as compressors [2] and turbines [3] have
also been used for the aerodynamic and structural optimization of wind turbine blades. The more
classical intuition and experience based non-automatic optimization [4] has been used. In our study,
we focus on Horizontal Axis Wind Turbines (HAWT).

Jureczko et al. [5] applied a genetic algorithm (GA) to optimize wind turbine blades, where the
emphasis was put on structural stability. The aerodynamic loads were calculated by the Blade Element
Momentum (BEM) theory. Genetic algorithms along with the BEM theory were used also by Mendez
and Greiner [6] for aerodynamic optimization with respect to blade chord and twist angle. Burger
and Hartfield [7] examined the feasibility of using the combination of the vortex lattice method with
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a GA for the optimization of the aerodynamic performance of horizontal axis wind turbine blades.
Clifton-Smith and Wood [8] applied differential evolution strategies to optimize numerically small
wind turbine blades with the double purpose of maximizing power coefficient and minimizing starting
time. Here, the power coefficient was calculated by the standard BEM theory.

Liu et al. [9] developed an optimization model based on an extended compact genetic algorithm
to maximize the annual energy output of a 1.3 MW stall-regulated wind turbine. The flow field was
computed by the XFOIL code [10], which is based on an inviscid linear-vorticity panel method, which
can take viscous effects by superimposed sources into account. Compared to the original blades,
the designed blades showed better aerodynamic performance.

A multidisciplinary design approach along with a gradient based optimization algorithm was
used to solve the optimization problem of a wind turbine blade by Kenway and Martins [11]. The blade
aerodynamics was modelled by the BEM theory. The blade was constructed using 7 design variables:
chord, twist, spar (thickness, location and length), airfoil thickness and rotation rate. To demonstrate
the potential for site-specific optimization, a 5 kW wind turbine case was used with results showing
a possible output increase of 3–4%. In the analysis by Xudong et al. [12], the costs were also
considered along with the aerodynamic/aeroelastic model and the cost of energy based on annual
energy production was minimized, where the aerodynamic model was based on the BEM theory.
Ceyhan et al. [13] studied the aerodynamic performance of horizontal axis wind turbine blades using
the BEM theory and GA. The fitness function was based on the BEM theory, where two design variables,
the chord and twist distributions, were optimized for optimum power production. An increase of
40–80% in power production was recorded on a 100 kW HAWT.

Li et al. [14] presented an improved optimization technique using response surface methods
to optimize the lift-to-drag ratio for 2D wind turbine airfoils. Grujicic et al. [15] developed a
two-level optimization scheme consisting of an inner and outer level. In the inner level, for a given
aerodynamic design of the blade, which was based on a CFD analysis, the blade mass was minimized.
Bottasso et al. [16] applied a complex multi-disciplinary approach for optimally sizing large, multi-MW
wind turbines, seeking a compromise between the maximization of the annual energy production and
the weight of the machine, assuming the weight is well correlated with the cost. The multi objective
design is not formulated as a Pareto optimal problem but rather as a combined cost problem defined
as the ratio of the annual energy production to the total weight.

An approach to optimizing the power factor and the power output of the wind turbine (bi-objective
problem established by weights) using data-mining and evolutionary computation was presented
by Kusiak and Zheng [17]. Song et al. [18] developed a MATLAB tool using BEM theory to perform
aerostructural dynamic analysis of wind turbine blades on a 20 kW wind turbine. These authors
optimized the chord length and twist angle at each blade element to maximize the wind energy
utilization factor of each blade element. Wang et al. [19] presented a multi-objective algorithm where
the maximum power coefficient at the design wind speed (9 m/s) and the minimum blade mass were
chosen as two optimization objectives; a conflicting problem. The aerodynamic loads acting on the
blade were calculated using the modified BEM theory.

Later in 2012, Graaso [20] focused on the airfoil design at the tip region of the blade using
numerical optimization. Genetic and gradient based algorithms were used, on a hybrid optimization
platform, to design a new family of airfoils dedicated to the root region of the wind turbine blade.
This approach improved aerodynamic efficiency (lift-to-drag ratio) together with the sectional moment
of resistance for the structural part of the problem. The flow was computed by the XFOIL code.

Chen and Agarwal [21] applied a GA for shape optimization of flatback airfoils, which was
enhanced by combination with an artificial neural network algorithm. A considerable acceleration of
the procedure by the use of artificial neural networks was reported, without, however, a quantification.
For calculating the flow field, a CFD approach was employed. Ribeiro et al. [22] coupled CFD based
flow analysis with an optimization algorithm for wind turbine airfoil design. Single and multi-objective
GA were employed and artificial neural networks were used as a surrogate model. In the study,
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the effect of the domain size on the prediction and the effect of parallelization on speed-up were
discussed. The use of artificial neural networks was shown to reduce the computational time by
almost 50%.

Jeong et al. [23] minimized the fluctuations of the unsteady aerodynamic load under turbulent
wind conditions. It was noted that the out-of-plane fluctuating unsteady aerodynamic load is more
significant than the in-plane loads for structural fatigue of the blade. The RMS out-of-plane bending
moment was reduced by about 20% and its mean was reduced by about 5%. Semi-empirical methods
were used to estimate the sound pressure.

Ju et al. [24] developed a robust design optimization procedure for wind turbine airfoils by
maximizing the lift to drag coefficient ratio and the lift coefficients of the airfoil, along with a sensitivity
minimization of the roughness at the leading edge associated with the geometry profile uncertainty.
The flow field information was obtained by a CFD approach.

The optimization of spar caps in wind turbine blades was examined by Liao et al. [25]. The thickness
and the location of spars were chosen as the optimization variables. The FAST aero-elastic simulator
was used along with unsteady BEM. Polat and Tuncer [26] optimized blade shapes for the maximization
of power production at a specific wind speed, rotor speed and rotor diameter, applying a GA, within
the framework of a parallel computing environment, using XFOIL as the flow solver.

Sessarego el al. [27] performed the multi-objective optimization of wind-turbine blades using a
non-dominated sorting genetic algorithm. Annual energy production, flapwise root-bending moment
and the mass of the turbine blade were considered as the objective functions. The aerodynamic model
was based on BEM. Shen et al. [28] performed a multi-objective optimization of wind turbine blades
using the lifting surface method as the aerodynamic model. Maximization of annual energy production
and minimization of blade load including thrust and blade flap-wise moment were considered as the
objective functions.

Hassanazadeh et al. [29] carried out the aerodynamic shape optimization and the analysis of
small wind turbine blades using BEM and GA. Annual energy production was considered as the
objective function. Porrajabian et al. [30] performed the aero-structural design optimization of a
small wind turbine. Starting time of turbine and output power were considered simultaneously as
the objective function. The design variables consisted of the chord, twist and the shell thickness.
The aerodynamic model was based on the BEM theory. Dal Monte et al. [31] presented a procedure
for aerodynamic-structural optimization of wind turbine blades, where the structural modelling was
based on the finite element method and the aerodynamic part was based on the BEM theory. A more
detailed survey of performance optimization techniques applied to wind turbines is presented in a
recent review by Chehouri et al. [32].

Inspecting the previous work on the automatic optimization of wind turbine blade shapes,
one can see that aerodynamic analysis has been most frequently based on the BEM method but
rarely on the solution of the Navier-Stokes equations via CFD. Thus, a distinguishing feature of the
present contribution from the majority of the previous work is the CFD based analysis of the flow
field. In previous work on the automated optimization of wind turbine blade shapes, CFD based flow
analysis was also reported by Bottasso et al. [16], Li et al. [14], Chen and Agarwal [21], Riberio et al. [22],
Ju and Zhang [24]. Bottasso et al. [16] presented the applied the multi-disciplinary constrained
optimization, however, hardy provided any detail information on the structural or flow (CFD) analysis.
Li et al. [14] applied a CFD approach for the aerodynamic analysis. However, many details of the
applied models and methods such as the turbulence model, discretization schemes were not provided
and a grid independence study was not performed. In the work of Chen and Agarwal [21] a grid
independence study was performed and the applied turbulence model was discussed. However, in
conjunction with the latter, some important details are not sufficiently addressed such as the near-wall
treatment that is crucial for prediction of the boundary layer development and flow separation.

Riberio et al. [22] and Ju and Zhang [24] presented a more detailed CFD analysis, where the details
of the mathematical and numerical formulation were adequately addressed. A difference of the present
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mathematical CFD formulation compared to those of Riberio et al. [22] and Ju and Zhang [24] resides
in the applied turbulence model. In [22,24] a one-equation turbulence model was used, where in the
present study a principally more accurate two-equation turbulence model is employed. Furthermore,
in References [22,24] only the angle of attack (AoA) was varied, while the approach velocity magnitude
was kept constant. In the present study, the flow angle (FA) for the prevailing blade angle (BA) and the
magnitude of the approach velocity, that is, the Reynolds number are varied independently from each
other, which span a higher dimensional space from which an optimal blade shape is sought. Here,
BA is the angle between the blade chord and the plane of rotation and FA is the angle between relative
approach velocity vector and the plane of rotation (obviously the AoA results from the FA for a given
BA). Considerable variations of FA are quite likely for small HAWT, as many of them use furling,
whereby the rotor yaws out of the wind as a measure of protection against overspeed. In the previous
studies [14,21,22,24], an essentially infinite domain size was considered, whereas in the present work,
the effect of the domain size and the blade-to-blade interaction are addressed.

There are also differences in the applied optimization methods between the present and previous
studies. In [14] the Response Surface Methodology (RSM) [33] was used as the optimization method.
In [21,22,24] GA enhanced with artificial neural networks were used as the optimization procedure.
In the present work the RSM is used to describe the effect of flow variables for the unmodified blade
shape, which was an input for the subsequent optimization. The optimization of the blade shape
was performed by a Biobjective Mesh Adaptive Direct Search (BiMADS) optimization algorithm.
Furthermore, beyond high trust, a stable performance under varying wind conditions is considered as
an additional goal within the present bi-objective optimization, whereas the latter objective was not
addressed in the previous, comparable investigations.

2. Model Description

2.1. Overview of the Optimization Procedure

The optimization cycle is depicted in Figure 1. The blade shape is represented by a finite number
of degrees of freedom (to be described, below, in more detail). They are denoted as “geometry parameters”
in Figure 1. The optimization cycle is started by the optimization algorithm, which generates the
geometry parameters and transfers them to the mesh generator to create a CFD grid. At the first cycle,
the geometry parameters are, however, not generated by the optimization algorithm but stem from
the original geometry. The Response Surface Methodology (RSM) module defines the aerodynamic
operation points according to certain rules (to be defined later in more detail) that are fed to the
computational flow solver (CFD) as boundary conditions, together with the computational mesh.
Based on the CFD results, two values are calculated and passed over to the optimization module by
the RSM module. These are the average thrust, that is, the tangential force (the force component in
the direction of rotation that generates the power) and its standard deviation within the considered
space of flow variables. The maximization of the former (maximum power) and the minimization of
the latter are the objective functions (efficient and stable operation under varying wind conditions).
The optimization algorithm (to be described later in more detail) proposes a new set of geometry
parameters for the better fulfilment of these objectives, which closes the cycle.

2.2. Mathematical and Numerical Modelling of the Aerodynamics

The flow is assumed to be two-dimensional (2D) and statistically in the steady state. For a rotating
turbine with fixed blades, this setting resembles a blade-to-blade surface at a fixed radial section,
where the turbine rotational speed and the wind speed are constant in time, in a moving (i.e., rotating)
reference frame. In the sense of a quasi-three dimensional procedure, which is also quite common
in steam [34] and gas [35] turbines, a three-dimensional model can be constructed by an assembly of
such blade-to-blade sections. It shall be noted that the resemblance is, however, approximate in so far,
that a curved blade-to-blade surface resulting from a radial section is represented by a flat plane in
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2D. The air flow is assumed to be incompressible, which is reasonable at the usually prevailing Mach
numbers in HAWT applications. The Navier-Stokes equations along with the continuity equation are
solved computationally.
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The Computational Fluid Dynamics (CFD) analysis is based on the general-purpose code
CFD ANSYS Fluent [36], applying the Finite Volume Method (FVM) for discretizing the governing
differential equations. Flow turbulence is modelled within a RANS (Reynolds Averaged Numerical
Simulation) approach [37], where the time-averaged equations are solved for the time-averaged
variables in steady-state. A more accurate approach would be Large Eddy Simulations (LES) [38,39],
which, being a three-dimensional and unsteady approach, would, however explode the frame in
the present case. Turbulence is modelled by a two-equation turbulence model, that is, by the Shear
Stress Transport (SST) model [36,40], which were shown to perform quite reliably especially for
wall-driven turbulent flows with potential to predict transitional effects [41–43]. No wall-functions are
used near the wall, resolving the near-wall layer. The coupling of the discretized Navier-Stokes and
continuity equations are treated by a coupled solver [36,44]. The convective terms are discretized by a
formally third-order accurate QUICK discretization scheme [36,45] for the Navier-Stokes equations
and a second-order upwind scheme [36,46] for the transport equations of the two turbulence variables.
Convergence criterion for the residual of each equation was set to 10−5.

2.3. Flow Solution Domain and Boundary Conditions

The airfoil is positioned in a rectangular domain, with periodic boundaries on both sides in the
circumferential direction, along with an inlet and an outlet boundary. The solution domain and the
boundary definitions are sketched in Figure 2, where the velocity vector relative to the airfoil, the flow
angle (FA) and blade angle (BA) are also indicated.

The inlet and outlet boundaries are placed ten and twenty chord lengths (C) away from the
airfoil, respectively, which may be considered to be sufficiently far [47] that the boundaries do not
influence the results. At the inlet, uniform distributions of the velocity components (the approach
velocity V relative to the airfoil, Figure 2) and turbulence quantities are prescribed. The inlet values of
the turbulence quantities are estimated assuming a turbulence intensity of 4% and a macro-mixing
length [37] of 25% of the chord length. At the outlet, a constant static pressure is prescribed along with
zero-gradient conditions for the remaining quantities. At the pair of periodic boundaries, obviously,
periodic boundary conditions are applied. The extension of the domain between the two periodic
boundaries (L) corresponds to the space between two neighbouring blades in a turbine wheel. In an
application, in general, this size varies with the number of blades on the wheel, as well as the radial
position of the considered blade-to-blade section.
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2.4. Generation of Computational Grid for Flow Simulation

A high-quality O-grid is generated around the blade, which interfaces with the essentially H-type
block-structured grid in the outer domain. Via an in-house developed procedure based on the ANSYS
ICEM grid generator [36] and replay scripts, different grids for different blade positions and different
blade surface shapes can automatically be generated. Prompted by the optimization algorithm by the
transfer of the geometry controlling parameters, the mesh generation module calculates the Hermite
curves, manipulates the replay script (which stems from the previous grid) accordingly and prompts
the ANSYS ICEM grid generator to generate the new mesh with the new replay script and transfers
the mesh to the RSM module (Figure 1). These processes are controlled by scripts written in GNU
Octave [48]. Since no-wall functions for turbulence modelling have been used, the grid resolution near
the wall needs to be sufficiently fine. In generating the grids, it is ensured that the non-dimensional
wall-distance y+ [37] is everywhere smaller than 1 for the next-to-wall cells and at least 3 cells remain
within the region y+ < 5. The structure of a typical grid is displayed in Figure 3. From case-to-case,
changes in the grid are confined to the O-grid surrounding the airfoil. The variations in the airfoil
profile cause a grid modification only in this region and different BA can be obtained by the respective
rotations of the O-grid connected to the airfoil.
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2.5. Parametrization of the Airfoil Shape

For the optimization, the airfoil geometry needs to be parametrized. Historically, different approaches
have been used. For the present purposes, the Hermite curves, which are closely related with Bezier
curves, are found to be most suitable for generating airfoil shapes with a limited number of parameters
and with sufficient geometrical precision. A Hermite curve is defined by two points (Pi) and two
tangent vectors (with lengths lij and directions αi) on both its ends. With this function, the geometry of
the airfoils has been generated by using four piecewise Hermite curves (HCi), two representing the
suction and two the pressure side, as shown in Figure 4.
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The Hermite curve segments are connected with each other in a continuous fashion at points P2,
P3, P4 by ensuring that the end-point of one curve is the same as the starting point of another and the
local tangent vectors belonging to the curves that are joined at this point have the same direction for
ensuring C1 continuity. The mathematical expression of the Hermite curve i (HCi), bounded by points
Pi and Pj (with j = I + 1), is provided below (Figure 4).
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where the vector
→
x i contains the coordinate pair of any point on the curve HCi, the variable t is a

parameter varying along the curve between 0 (at Pi) and 1 (at Pj) and

→
PIii =

→
P i +

→
e ll(αi) lii;

→
PI ji =

→
P j +

→
e ll(αi)lji

with
→
e ll(αi) denoting the unit direction vectors along tangents, pointing away from the corresponding

edge points.
Assuming production by glass fibre-reinforced synthetic material moulding, a trailing edge with

finite thickness is considered, which is defined by points P1 and P5 that are connected by a tiny straight
line. In addition to the coordinates of the five points, the directions of the vector couples as well as
their lengths describe the shape of the airfoil. The number of degrees of freedom can be reduced by
introducing certain constrains on these parameters, which will be addressed below.

2.6. Response Surface Methodology and the Optimization Algorithm

Response Surface Methodology (RSM) [33] is a general approach to describe the response of
certain output variables to the changes in the independent variables, that is, the influencing variables.
For a well distributed number of “design points” in the space of the independent variables, a regression
function, that is, an objective function, is created using the least-square approach, which can be used as
basis for different optimization purposes. RSM can be used as an optimization scheme of its own [14].
However, in the present case, with a quite large number of influencing variables (when the airfoil shape
parameters are also covered by the regression function), this would lead to a too complex formulation.
Therefore, in the present work, RSM is used to describe the dependence of the objective function onto
the wind conditions, while another approach is used to seek the optimal airfoil shape, as described
below. Thus, in the present analysis, RSM is used to construct a functional relationship between the
influencing variables (Re, FA) and the objective functions. The objective functions are the average
thrust T (the force acting in the direction of blade motion) and its standard deviation σ within the
considered space spanned by the influencing variables. The former (T) is to be maximized to achieve
the maximum power and the latter (σ) is to be minimized to achieve a stable operation under varying
wind conditions.

Based on the RSM, the dependence of the thrust on the two influencing variables is represented
by a bivariate quadratic regression function. The coefficients of the function are obtained by a
least-square fitting to a number of data points that are arranged in an orthogonal central composite
design (OCCD) [33]. In two dimensions, that is, for two influencing parameters, the number of data
points in OCCD is nine. Thus, for obtaining the functional representation of the thrust, nine CFD
calculations are needed, for each new optimization cycle. Having obtained the functional relationship
for the thrust, its average value and standard deviation are calculated, which are, then, the objective
functions to be processed by the subsequent optimization step.

For the optimization, Biobjective Mesh Adaptive Search Algorithm (BiMADS) [49] is used, which
is a derivative-free algorithm developed for black box optimizations. This is done within the framework
of the optimization toolbox NOMAD [50]. The method iterates on a series of meshes with varying
size in the space of influencing variables (in our case, the parameters that define the airfoil shape).
The objective of each iteration of the algorithm, is to generate a trial point on the mesh that improves
the current best solution. Depending on the success or the failure of the search, the mesh is coarsened
or refined, along with a re-scaling of the search range to minimize the number of evaluations. A feature
of the algorithm is its ability to handle failed evaluations of the objective function, what can happen in
CFD based evaluations (e.g., due to convergence problems), which made the method attractive for the
present application.
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3. Results

3.1. Grid Independence

For ensuring grid independence in the CFD predictions, calculations have been performed for
a typical airfoil shape and flow configuration, using different grid resolutions. The variation of the
predicted lift coefficient (normalized by that of the finest grid with) with the total number of grid nodes
(NGN), for the considered case is displayed in Figure 5. As it can be seen in the figure, a sufficient grid
independence is achieved for grids with larger than 50,000 nodes. Following these findings, the grids
are generated by the developed automatic grid generator, using the same grid topology and strategy,
with an even finer resolution corresponding to number of nodes about 60,000, for assuring sufficient
grid independence.
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3.2. Validation

For the validation of the applied CFD methodology, the flow over the airfoil NREL-S822 of
Selig et al. [51] was calculated for Re = 400,000. The predicted lift and drag coefficients as function of
AoA are compared with the measured values [51] in Figure 6. A quite well overall agreement between
the predictions and measurements can be observed (Figure 6).
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3.3. Influence of the Domain Size, Blade to Blade Interaction

The flow around the NREL-S822 airfoil [51] is calculated for Re = 400,000, for BA = 5◦ and FA = 15◦

(AoA = 10◦) for different circumferential domain sizes (L). The predicted lift coefficient as a function of
dimensionless domain size (L/C) are shown in Figure 7.
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As can be seen in Figure 7, the blade-to-blade interaction is negligible for L/C > 6 but becomes
noticeable for lower values. The observed increasing trend of CL with decreasing L/C is the reverse of
what is implied by the classical, one-dimensional linear cascade theory, which predicts a decreasing
CL with decreasing L/C. This is because that the mentioned theory assumes a perfect flow deflection
(which is reasonable for turbomachinery of gas and steam turbines with rather small L/C values),
whereas in the present case with relatively large L/C values and, thus, non-ideal flow deflection on the
average, a decrease of L/C improves the deflection of the passage flow, leading to an increase in CL.

3.4. Optimization

The parametrization of the airfoil shape was discussed in Section 2.5 and depicted in Figure 4.
In the present application of the optimization algorithm, some constraints are imposed on the shape
parameters, to reduce the degrees of freedom and thus the computational effort and for improving the
computational stability as well as considering issues related to structural aspects and manufacturing:
The two points defining the trailing edge (P1, P5) and the associated vectors of the related Hermite
curves (HC1, HC4) are fixed. The lengths of the vectors that are connected to P2, P4 and head towards
the trailing edge (l21, l44) are additionally assumed to be constant. The point defining the leading edge
(P3) is also fixed in its position (Figure 4). Furthermore, the control points on the suction (P2) and
pressure (P4) sides (Figure 4) are not allowed to move parallel to the chord but only in the perpendicular
direction. An additional constraint was that the distance between P2 and P4 should not undershoot
a certain value, to provide “too thin” blades, for structural reasons. Given these constraints and the
continuity of the curves, the remaining degrees of freedom that define the profile shape are nine in
total, that is, the vertical positions of the points P2 and P4, the directions (α2, α3, α4) and the lengths
of the vector pairs (each pair have a common direction) at the points P2, P3 and P4 (l22, l32, l33, l43).
The schematic of the resulting complete optimization loop is presented in Figure 8.
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For the RSM, the applied factor levels and the natural values of the variables for the OCCD
arrangement of the data points are provided in Table 1. Please note that the ranges covered in Table 1
are not necessarily meant to be realistic for a practical application but merely serve to an exemplarily
demonstration of the procedure.

Table 1. Factor levels and the natural values of the variables (BA = 5◦).

Normalized Scale Parameters

Variable −1.414 −1 0 1 1.414

Re/103 90 92.93 100 107.07 110
FA (◦) 10 11.46 15 18.54 20

The NREL-S822 [51] is profile is taken as the basis (the original, non-optimized profile) and
optimized applying the procedure described above, for the different relative domain sizes, namely
for L/C = 3 and L/C = 6. Doing so, the Reynolds number (Re), which based on the approach velocity
magnitude V and the chord length C, is varied by varying V, keeping C and the air properties constant.
The two objective functions, that is, the high average trust (T) and low standard deviation (σ) under
varying wind conditions cannot be maximized simultaneously, without making a trade-off between
the two goals. The feasible choices resulting from this trade-off can be represented by the so-called
Pareto front [52]. The optimization is carried out for two cases, namely for L/C = 3 and for L/C = 6,
with different levels of blade-to-blade interaction. The predicted Pareto fronts for two cases, that is, for
L/C = 3 and L/D = 6, are presented in Figure 9 in terms of the average thrust coefficient CT and the
coefficient of thrust standard deviation Cσ that are obtained nondimensionalizing the variables by the
dynamic pressure 1/2ρV2 and the chord C.
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The larger circles located at the intersecting broken lines in the figure indicate the performance of
the original profile before optimization. The smaller circles are the results of different optimizations,
which, altogether, build-up the Pareto front. Each circle is associated with a different profile with a
slightly different shape. The numbers 1, 2, 3 indicate the profiles that are exemplarily chosen for a more
detailed presentation, in the following. As can be seen in the figure, the performance of the profile
changes with domain size. For the same operation range (Table 1) the original profile in the small
domain (L/C = 3) delivers a larger thrust on the average (large full circle in Figure 9), whereas for the
large domain (L/C = 6) it performs more stable (large empty circle, Figure 9). The Pareto fronts that
result from the optimization are also different for both domain sizes (Figure 9). The dashed (L/C = 3)
and dotted (L/C = 6) lines that cross the larger circles (marking the original profile) define four regions,
for each domain size, with different qualitative behaviour compared to the original design. All points
within the lower left quadrangle represent an improvement in both objectives, whereas the points
in the upper right quadrangle (if any) would mean a worsening in both. In the upper left region,
the thrust is improved at the expense of a larger standard deviation (less stability of operation under
varying wind conditions), whereas the reverse is true in the lower right quadrangle.

The Pareto fronts of both domain sizes are quite close to each other in the lower right part
of Figure 9, implying that the airfoil shapes that are optimized for stable operation (low standard
deviation, low thrust) perform similarly, irrespective of the domain size. The Pareto fronts diverge
towards the upper left direction (Figure 9), implying that for the blades optimized for high thrust,
the domain size plays a greater role. In this region, for the same thrust coefficient, the optimized
profiles for the smaller domain (L/C = 3) seem to exhibit a better stability (lower standard deviation)
compared to those of the larger domain (L/C = 6).

The optimized profile shapes in comparison with the original profile are presented in Figures 10
and 11, for L/C = 3 and L/C = 6, respectively, for the three points indicated by arrows as 1, 2, 3 in
Figure 9.
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Figure 10. Optimized airfoil shapes for L/C = 3, for the points indicated by full arrows in Figure 9
(a) Point 1; (b) Point 2; (c) Point 3 (Figure 8), red dotted line: original, blue solid line: optimized
(note that vertical scale is larger than horizontal scale).

One can observe (Figures 10 and 11) the differences in the optimization between the three considered
points for each domain size, as well as between the two relative domain sizes. It is interesting to
observe that rather small variations in the shape can have quite substantial impact on the performance.
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The predicted fields of non-dimensional velocity magnitude (velocity nondimensionalized by V)
around the original airfoil and the three optimized airfoils corresponding to the three points (for each
domain size) indicated in Figure 9 are presented in Figures 12 and 13 for L/C = 3 and L/C = 6,
respectively, for Re = 100,000, BA = 5◦, FA = 15◦ (AoA = 10◦).
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Figure 13. Predicted distribution of dimensionless velocity magnitude around the airfoil for
Re = 100,000, BA = 5◦, FA = 15◦ (AoA = 10◦), for L/C = 6, (a) Original profile; (b) Point 1; (c) Point 2;
(d) Point 3 (Figure 9).

Differences in the velocity fields with changing airfoil shape can be observed (Figures 12 and 13).
Note that the performances indicated in Figure 9 for different profiles are the overall (average)
performances for the considered range of operation (Table 1) but are not directly connected to a
given operation point. Still, the predicted velocity fields imply that the relative performance of the
profiles qualitatively correspond to the trend indicated in Figure 9, where moving from Profile 1 to
Profile 2 and to Profile 3 a decreasing acceleration on the suction side can be observed, implying a
decreasing trend for the lift, that is, thrust, agreeing qualitatively with the behaviour shown in Figure 9.

4. Conclusions

An automated two-dimensional airfoil shape optimization procedure for small horizontal axis
wind turbines (HAWT) is presented, with emphasis on high thrust and aerodynamically stable
performance. The procedure combines the Computational Fluid Dynamics (CFD) analysis with
the Response Surface Methodology (RSM), the Biobjective Mesh Adaptive Direct Search (BiMADS)
optimization algorithm and an automatic geometry and mesh generation tool. In the CFD analysis,
a Reynolds Averaged Numerical Simulation (RANS) is applied in combination with a two-equation
turbulence model. In the analysis, an emphasis is placed upon the role of the blade-to-blade interaction.
The results show that improvements in the performance can be achieved by modifications of the blade
shape, resulting in a Pareto front and the present procedure can be used as a tool for blade shape
optimization. Prioritization of the properties while choosing a profile out of the Pareto front would
depend on the purpose of the application. Profiles with high thrust may, for example, be preferred for
a local, direct consumption of the generated electric power, while more stably operating profiles (with
low standard deviation of thrust) may be preferred for feeding the power into the grid.
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Nomenclature

C chord length
CD drag coefficient
CL lift coefficient
CT average thrust coefficient
Cσ coefficient of thrust standard deviation
L circumferential domain size (distance between periodic boundaries)
Re Reynolds number
T thrust
V magnitude of approach velocity at Re = 100,000

y+ distance to wall non-dimensionalized by wall shear stress, viscosity and
density

Greek symbols
$ density
σ standard deviation of thrust
Abbreviations
AoA Angle of Attack
BA Blade Angle
BiMADS Biobjective Mesh Adaptive Direct Search
BEM Blade Element Momentum
CFD Computational Fluid Dynamics
FA Flow Angle
FVM Finite Volume Method
GA Genetic Algorithms
HAWT Horizontal Axis Wind Turbines
LES Large Eddy Simulations
NGN Number of Grid Nodes
OCCD Orthogonal Central Composite Design
RANS Reynolds Averaged Numerical Simulations
RSM Response Surface Methodology
SST Shear Stress Transport
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