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Abstract: The use of wearable and Internet-of-Things (IoT) for smart and affordable healthcare
is trending. In traditional setups, the cloud backend receives the healthcare data and performs
monitoring and prediction for diseases, diagnosis, and wellness prediction. Fog computing (FC) is a
distributed computing paradigm that leverages low-power embedded processors in an intermediary
node between the client layer and cloud layer. The diagnosis for wellness and fitness monitoring
could be transferred to the fog layer from the cloud layer. Such a paradigm leads to a reduction in
latency at an increased throughput. This paper processes a fog-based deep learning model, DeepFog
that collects the data from individuals and predicts the wellness stats using a deep neural network
model that can handle heterogeneous and multidimensional data. The three important abnormalities
in wellness namely, (i) diabetes; (ii) hypertension attacks and (iii) stress type classification were
chosen for experimental studies. We performed a detailed analysis of proposed models’ accuracy
on standard datasets. The results validated the efficacy of the proposed system and architecture for
accurate monitoring of these critical wellness and fitness criteria. We used standard datasets and
open source software tools for our experiments.

Keywords: fog computing; deep learning; deep neural network; stress prediction; diabetes mellitus;
hypertension attack; smart health; connected health

1. Introduction

The world is growing industrially and the mortality rate has increased. However, at the same
time, the number of lifestyle diseases has also increased. These diseases include type-2 diabetes,
cardiac attack, hypertension attack and obesity. The major influencing factors behind these diseases
are the type of diet, level of stress, lack of physical activities, and environmental conditions. In certain
situations, the side effect of these diseases may lead to fatal conditions such as paralysis attack,
cardiac arrest, irregular heartbeat, shortness of breath, chest pain, which require quick attention.
The prevalence of diabetes is predicted to increase twice from 171 million in 2000 to 366 million in
2030 only in India [1–4]. The number of people with diabetes has risen from 108 million in 1980 to
422 million in 2014 [5]. According to a World Health Organization (WHO) report, diabetes mellitus
is the foremost reason behind early blindness, kidney failure, heart attacks, stroke and lower limb
amputation [6]. In 2014, in America, around 410,000 people died due to hypertension [7]. Therefore,
it is a requirement to have a quick monitoring and early diagnosis system, which will have low latency,
minimum response time and high accuracy. The Government is spending a huge amount of funding
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on Information Technology infrastructure-based health solutions and support services. Due to high
computing facilities, health data collection, processing and analysis could be done faster and the
extracted information could be transmitted to individuals as and when required. With these types
of solutions, there exist some underlying issues related to data transmission latency, handling and
processing huge amounts of data, the accuracy of the working solution. Many health care monitoring
systems exist, which use cloud-based systems that store and analyze the bulk amount of data collected
from different sources. It has some substantial benefits like scalability, the ability to store a large
amount of data, low maintenance, deployment and service cost [8]. Bulk amounts of data transmission
over the network may cause a delay in transmission, which in turn affects the overall performance
of the system. Particularly, in applications like health monitoring, where real-time data transfer is
an essential requirement, the system fails to perform correctly by avoiding network latency and a
communication delay occurred through the generation of large amounts of data from IoT devices.
Therefore, there is a requirement to reduce communication and network latency caused due to huge
data transmission over cloud servers. Now, as a solution, researchers and industry personnel are
going for a new computing paradigm known as Fog computing (FC). Fog computing was first named
by Salvatore Stolfo [9] and was defined as an extended computing version of the cloud. It includes
prominent features like facilitating networking, computing, infrastructure and storage support as
the backbone for end-user computing. Along with this, it maintains latency constraints. According
to CISCO, it is mentioned that “Fog computing is a distributed paradigm that provides cloud-like
services to the edge of network” [10].

In all fog-based applications [2,3,11–18] an intermediary fog layer is built between the physical
layer, where edge devices like the sensors deployed in smart health care devices [3,12,19], smart
phones, and wearable devices like smart watches, bands from where the row data are collected and the
top layers where cloud servers are present. The generalized architecture of fog computing is comprised
of three levels [20,21] is depicted in Figure 1.

(1) Physical Level: It may be formed of physical devices like network switches, routers, smart
phones, setup boxes, smart refrigerators, and vehicles. These devices are domain specific,
depending on the application field. These might be wearable sensors, smart watches or a
smart phone in the case of personalized health care monitoring systems. Otherwise, the devices
may be smart refrigerators, an intelligent air conditioner in a smart home application. These may
be resource constrained or resource intensive based on the application types. The interconnected
devices, which are geospatially closer to each other form a virtual cluster (VC). When a new fog
instance is admitted to this level, it may join any existing cluster according to the geographical
proximity. Similarly, a fog instance may be disconnected from any cluster. The duties of these
devices are to sense all of the happening events and transmissions of the same to its immediate
upper layer. Herein, the FC paradigm where not every data packet from the physical device is
submitted to the cloud, rather some amount of the required real time and latency specific analysis
is carried out in this layer, which is sent to the fog layer for further processing.

(2) Fog Level: The middle level consists of the fog computing elements called fog nodes,
the supporting hardware and software elements including all of the core elements of the network
responsible for providing all of the networking support. It is a collection of edge devices such as
routers, gateways, switches and access points. These devices are capable of handling all sorts of
incoming data generated from the lower level and process them as such. Data may accumulate
temporarily and the essential data may be sent out to the above layer for persistence storage.

(3) Cloud Level: The topmost level is the cloud layer, which is constituted of a cloud server and data
centers. These are meant for bulk data processing and storage of computationally intensive data
and applications.

In a traditional cloud computing (CC) architecture, the cloud server is always overloaded with
user queries and applications, whereas in an FC architecture, access to the cloud server becomes more
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controlled and well utilized and has a better performance. The fog layer residing between the physical
and cloud layers has some added advantages as it performs some extra tasks such as local storage,
processing and some sort of mining in the edge devices. Therefore, it acts as a smart and intelligent
gateway [22,23]. In most of the literature, researchers have applied an FC layer between the cloud
and core network layers to overcome bandwidth latency, delays in network traffic thus, reducing the
response time [24,25]. For all of these reasons, a fog layer can be used in health care applications to
handle massive real time data generated from low level devices, which can continuously monitor the
data and process the data to predict the stress types, emotional attacks and diagnose diseases like
diabetes. Therefore, it is possible to design a system by which the affecting parameters are continuously
monitored and guarded. The different stress levels can be predicted and if any risk is there, an early
diagnosis and notification could be provided to the patients, close relatives and doctors as well in
the case of an emergency. This system could be used by doctors and hospitals to facilitate services to
patients who are located remotely. The end users of this service could be elderly persons or individuals
who are physically disabled, live alone, need continuous monitoring or reside far away from healthcare
service providers to manage their health conditions in a better way even in remote places. Some of
the measured parameters, which affect hypertension are systolic blood pressure (SBP), diastolic blood
pressure (DBP), total cholesterol (TC), blood glucose (BG) levels, heart rate (HR), and the level of stress
and anxiety. These parameters are difficult to monitor regularly without the help of a hospital or clinic
visits. The main contributions of this paper are:

• To propose DeepFog i.e., a fog based healthcare tele-monitoring system, which could provide
services such as remote diagnosis of hypertension levels, as well as a prediction of hypertension
attack based on features taken from user’s health related data and the symptoms seen.

• To predict the stress level of a person, that helps the doctor to measure the risk of a hypertension
attack related to the stress density.

• To build a deep neural network-based classifier to handle large amounts of user data collected
from various sources, which can predict the risk of a hypertension attack.

• To build a deep neural network classifier, that can classify normal people and diabetic people
in a fog environment by which doctors can be provided with quick information regarding the
presence of diabetes mellitus in a patient to handle the patient properly.
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For the attainment of the stated objectives, an intelligent deep learning-based fog model is
proposed, which can perform real-time monitoring and synthesis of user’s health parameters to detect
whether a person is diabetic. If the user is passing through any stress, then it can identify the type
of the resulting stress. This result can help the doctors to handle the patient in a proper way. For
this, a deep neural network is used to classify the stress types. The data used to predict the stress
types are (1) electro dermal activity (EDA); (2) heart rate (HR); (3) arterial oxygen saturation (SpO2)
and (4) temperature [26,27]. The health parameters chosen to predict the risk of hypertension are
(1) systolic blood pressure (SBP); (2) diastolic blood pressure (DBP); (3) total cholesterol (TC); (4)
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high-density lipoprotein (HDL); (5) low-density lipoprotein (LDL); (6) plasma glucose concentration
(PGC) and (7) HR [28]. To detect diabetes mellitus, the data considered are (1) PGC; (2) DBP; (3) 2-h
serum insulin (mu U/mL); (4) body mass index (BMI); (5) the diabetes pedigree function; (6) age in
years [29–31]. These data are collected from the users and stored in the fog nodes for synthesis and
analysis. The extracted information from the analyzed result is sent to cloud servers and in emergency
situations, alerts are generated and sent to users, doctors, relatives, and caretakers of the concerned to
make a decision regarding later actions. The details of the information are saved persistently in cloud
storage for record keeping, which can be shared with Government institutes, domain experts, and
doctors to further analyze the data.

This paper is organized as follows. Section 2 contains the related work about the use of fog
computing in the healthcare domain to do an analysis of data, the existing tele-monitoring system used
in healthcare. Section 3 presents a detailed description of the proposed system architecture. Section 4
provides experimental details, the carried out case studies along with the results, experimental setup,
and performance evaluation. Conclusion and future work are depicted in Section 5.

2. Related Works

The related work has been categorized into three sections. Section 1 discusses the work, which
has been done in the domain of FC in healthcare. The second section includes the ongoing research
in deep neural networks meant for the classification of problems. The third section emphasizes the
advancement in FC-based tele healthcare monitoring systems. Cisco defined fog computing as a
distributed paradigm that provides cloud-like services to the edge of the network. They have been
applied in various areas like the analysis of geospatial data [32–34], designing augmented reality-based
gaming applications [35], smart city applications like vehicular network management [36,37] for smart
parking, and sensor data analysis [38–43].

A resurgence of interest has been seen in last few years towards artificial neural networks,
specifically deep learning has been used extensively after its spectacular success in the area of
image classification, regression problems in time series data, and natural language processing [44–46].
This has been used in stock market analysis and prediction [47–49], breast cancer classification [50],
classification of electrocardiogram signals [51], image classification [52], object recognition [53], medical
image analysis [54], and time-series data analysis [55]. Deep learning, otherwise known as feature
learning, has been well suited for deriving basic features from the input data and the obtained extracted
features can be used to train a model in a better way. The objective of choosing a deep neural network
has two intentions. (1) To create a robust model that can extract features from the raw heterogeneous
input data. (2) To create a model that can handle high dimensional data. The achievement of these
goals has been attained by the given case studies.

The works which are only focusing on health care domain are discussed in this paragraph. Gia [23]
has extracted some features from ECG data based on a wireless body area network (WBAN) and tried to
detect the heart rate from the ECG signals. They have used FC as a gateway for mining the data, storing
them in a distributed manner for providing a notification service at the edge of the network. The raw
signals were captured, pre-processed and taken through a wavelet transformation. Their target was
to get a better network bandwidth utilization and provide low-latency real-time notifications. Dubey
proposed a fog-based architecture for designing a tele-healthcare monitoring system to monitor patients
of Parkinson disease. They used time series data containing ECG signals or speech data. The raw data
were collected from sensors deployed in the patient’s body. Some filters were used on the speech data to
extract the loudness and frequency. Additionally, to increase the bandwidth utilization for better network
latency, the processed data were compressed by using the GNU zip program. They have emphasized
optimizing battery power consumption [24]. Monteiro [25] also employed a fog-based solution for
obtaining disorder in clinical speech data of Parkinson disease. The raw data were collected from a
wearable watch. They tried to process the speech data to extract features such as loudness, short time
energy, the zero-crossing rate of speech data. Unlike the previous author, they have not used any specific
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algorithm, rather they used customized python coding for data extraction. Rahmani [22] proposed
a smart e-health monitoring system, which issues an early alert for a patient before any emergency
arises. After capturing the noisy data, some filters were used to remove the noisy patterns; the data were
compressed using both lossy and lossless compression methods to deal with communication latency.
Each of these data analyses were done, which can make decisions about notifications. They have also
used a public key encryption scheme to protect the locally stored data in the edge devices. Ahmad [56]
exploited FC for designing a customer-centric healthcare application, which can act as a personal care
taker giving notifications according to a customer’s request. The health data acquisition was done by a
smart phone with integrated sensors. The data were collected from different sources and they used an
intermediate fog layer between the end user and the cloud to make the data more secure [57].

3. DeepFog Architecture

The proposed framework, i.e., DeepFog is comprised of three layers namely the user layer, the smart
gateway fog layer and a cloud layer. The user layer is an integration of all smart data capturing devices
to collect health-related feature data to diagnose diabetes and hypertension attacks, bio-signals to
predict the stress types. The collected data are then transmitted to the middle fog layer to do real
time processing, diagnosis and prediction. With no delay, the processed information, analyzed health
related results, and diagnosis reports are sent to the cloud layer. Thereafter, these data are shared
with domain experts, doctors, health-care related persons, and relatives who can take precautionary
measures and immediate action in emergency situations.

The main responsibility of this layer is to accumulate all of the heath related parameters required to
classify the stress types, to detect whether a user is diabetic and to predict the risk of hypertension attack.
The health-related attributes are (1) SBP; (2) DBP; (3) HDL; (4) LDL; (5) PGC; (6) HR; (7) 2-h serum insulin;
(8) BMI; (9) the diabetes pedigree function; (10) age in years; (11) EDA; (12) SpO2. Other data, which have
an impact on a related attack include the surrounding, current physical activity, and Global Positioning
System (GPS) data. All of these data are collected by the smart phones, wearable smart devices connected
to the user’s body. The sensors embedded in these devices are able to collect the data.Figure 2 represents
the overall framework of the proposed model, where as Figure 3 presents the sequence diagram which
gives an overview of the work flow of individual functions of the entire framework.
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devices to collect health-related feature data to diagnose diabetes and hypertension attacks, bio-signals
to predict the stress types. Administrative users have access to maintain avariety of datasets stored in
the cloud layer.

To validate the model, three case studies were undertaken. The first case study was carried out to
find out the behavioral details of the patient. This provided information of whether a patient is in a
relaxed state or is stressed. If she is stressed, then the type of stress she is going through. The second
case study focused on detecting whether she is suffering from type-2 diabetes. The reason behind this
is that the treatment of a normal person is different from that of a diabetic person. The third case study
was taken to do a risk analysis of a hypertension attack.
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3.1. Case Study 1—Categorization of Stress Types

While monitoring a patient remotely, especially if it is a case of hypertension, it is very much
essential for anyone concerned to judge the stress type of the person. ‘Stress’ is a major parameter
and plays a crucial role in knowing a patient’s condition, as well as for making a decision about his
medication. However, if the stress type is also known before, then it will be more helpful for the
experts to make a decision. For example, if the stress type is physical, after resting for some time, it
will be normalized. However, for the other two types of stress, there must be some medication plans to
normalize the stress level. Therefore, a classification of the stress type is needed. For categorization of
stress types, the dataset used was taken from data available at www.utdallas.edu. Birjandtalab [58] used
the data for the visualization of neurological status. This data contains the bio-signals of 20 students,
where readings were recorded of EDA, 3-dimensional accelerometer, temperature, HR, SpO2. The data
were recorded while going through four neurological states. The states were(1) physically stressed
(PS); (2) cognitively stressed (CS); (3) emotionally stressed (ES); (4) relaxed state. In this work, we have
considered all four states. Pre-processing was carried out on the data to segregate the equal state data
to merge them together. Then, all data samples of 20 subjects were merged to have a total sample space.
The data were leveled. CS was leveled as ‘0’, ES was leveled as ‘0.5’ and PS was leveled as ‘1’. After
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assigning the levels to the corresponding data instances, the data sample was divided into two sets.
Eighty percent of the total sample was taken as training data and the remaining 20% wastaken as test
data. The data went through a normalization process according to the expression given in Equation
(1), to bring them in the range of 0 to 1.

IP norm =
IP− IP min

IP max− IP min
(1)

where IP norm represents the normalized value of the input parameter IP, IP max and IP min are the
maximum and minimum value present for the original IP. Figures 4–7 represent the distribution of the
parameters taken to detect the stress types. These graphs below show a clear variation of the features
according to the stress types except for SpO2. For the SpO2 case, the area enclosed for three stress
types is overlapping, so this feature can be discarded while doing the prediction. However, apart from
this, all others are capable of obtaining the proper class of stress.
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3.2. Case Study 2—Prediction of Diabetes

The treatment of a diabetic person is different than that of a non-diabetic person. Due to the side
effects generated, any drug must be handled for a diabetic person. There exist some recent traditional
methods that are used to do an early prediction of diabetes. Liu and Gao have employed a method
based on differential entropy on gene expression data for the early detection of diabetes [59]. Wu has
exploited an improvised K-Means algorithm and logistic regression to design a prediction model for
type-2 diabetes mellitus [60].For a health expert, knowledge about being or not being diabetic will be a
great help. Therefore, there is a requirement for detecting it before any decision. For predicting diabetes,
the data used are (1) the plasma glucose concentration;(2) diastolic blood pressure;(3) 2-h serum insulin
(mu U/mL);(4) body mass index;(5) the diabetes pedigree function;(6) age in years [29–31]. These
data can be collected using health sensors embedded in smart phones. For experimental purposes,
a standard dataset from University of California learning repository (C.L. Blake, C.J. Merz) was taken
and used. All of these data samples were normalized by following Equation (1). Figures 8–11 show the
distribution of four major features (2 h serum insulin, DBF, PGC and DBP) to predict diabetes, which
shows a clear isolation of features according to their classes.
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3.3. Case Study 3—Risk Assessment of Hypertension Attack

Hypertension is a type of infirmity, which may lead to some other critical and life-threatening
diseases like cardiac failure, thickening of the heart muscle, and renal failure. It is diagnosed as
a diastolic or systolic blood pressure of more than 90 mm Hg or 120 Hg respectively for at least
two measuring instances. However, a sudden rise or fall of these values could cause the risk of a
hypertension stroke by which one person may move to paralysis or comma like dangerous situations.
Risk assessments of this disease are dependent on a multitude of factors including a few transient
ecological circumstances, which may artificially elevate blood pressure readings [61]. The identifying
factors, which influence these situations are grouped into five types of data, which are depicted in
Table 1. The effect of these identifying factors is also shown in the table and clinical health information
such as SBP, DBP, HDL, LDL have a larger influence on hypertension than location and time [62].

Table 1. Types of data used, their attributes, and their effect.

S.No Type of Data Attribute Description and Effect
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1
Clinical

information of
health data

SBP, DBP, HDL, LDL, triglycerides,
cholesterol, micro-albumin, urine
albumin-creatinine ratio, heart rate

These data can be captured by body
sensors and have a high influence on
hypertension attack.

2 Personal
information

Height, weight, age, gender, the
presence of disease in family history,
smoking habits

Body mass index can be calculated, the
presence of obesity is detected, the attack
is also dependent on positive pedigree
family history

3 Behavioral data Stress level, type of stress, anxiety
level, level of discomfort

Presence of stress may increase the risk of
hypertension attack

4 Surrounding
Data Temperature, humidity, air quality

If temperature and humidity component
have more than normal, the chances of
attack will be more

5 GPS data Location, time The blood pressure reading will be more
in high altitude regions and cold regions.

The blood pressure measurements are classified into five stages according to the reading values
of DBP and SBP parameters such as normal, the pre-hypertension stage, hypertension stage-1,
hypertension stage-2 and the hypertensive crisis stage, which are depicted in Table 2 [63]. Patients
belonging to hypertension stage-1, stage-2 and hypertensive crisis were the major portion of samples,
which have a high probability of being the victim.

In this work, for assessing the risk of hypertension and to reduce the communication delay after
training the deep neural network, during a real time prediction of hypertension attack, user requests
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were divided into two groups: (i) the high probable victim group and (ii) the low probable victim
group. A priority was set for user requests that fall into the high probable group and these users were
served first. This is because the high probable victim group is more susceptible to a hypertension
stroke compared to the low probable victim group. Algorithm 1 was used to isolate the high probable
victim group from the low probable victim group so that a higher priority would be given to serve the
high probable victim group. For classifying the high probable and low probable victims, a rule has
been set according to the data provided in Table 2. The intention behind filtering the high probable
instances was to reduce communication latency.

Table 2. Categorization of stages of hypertension.

Stage of Hypertension SDP Reading DBP Reading

Normal Less than 120 Less than 80
Pre-hypertension 120 ≤ SDP ≤ 139 80 ≤ DBP ≤ 89

Hypertension Stage-1 140 ≤ SDP ≤ 159 90 ≤ DBP ≤ 99
Hypertension Stage-2 SDP ≥ 160 DBP ≥ 100
Hypertensive Crisis SDP ≥ 180 DBP ≥ 110

Algorithm 1: Separation of high probable victim group and low probable victim group

Input: S = {S1, S2, ......, Sn} where S is the set of total testing sample data

1. Obtain the DBP and SDP value of Si; where Si represents the data of ‘ith’ instance out of
Total sample set S

2. If (DBP of Si >= 90 && SDP of Si >= 140)

a. If (Detect_Diabetes() is true for Si)
b. If (Predict_Stress() does not return Relax)

3. Return Si;
4. Assign Si to high probable victim group

(End of if)
5. Else
6. Assign Si to low probable victim group.

Output: High probable victim group

Here, Detect_Diabetes() is the method to check diabetes mellitus stated in case study 2. It returns
true or false. The Predict_Stress() method returns the mental state of a person. The values returned are
the type of stress (cognitive, physical or emotional) or it may be a relaxed state stated in case study-1.

4. Experimental Setup, Results and Evaluation:

This section of the paper gives a representation of the experimental setup, implementation details,
results and performance evaluation. This has been further divided into four subsections named as
(1) setting up the fog-based system architecture;(2) data collection and pre-processing;(3) constructing
a deep neural network model;(4) performance validation of the computing model.

4.1. Setting Up the Fog-Based System Architecture

In line with the suggested model discussed in Figure 3, the top most layer is a cloud layer
configured with a set of open source software. For setting up the cloud storage, ‘Owncloud’ was
used that was connected to the Apache web-server. To configure it, PHP and MySQL were needed
in the background. The cloud server was deployed on Cent OS7. The database used in MySQL was
MariaDB. This led to the persistent storage of the processed results forwarded from the fog network.
MariaDB is a fork of MySQL, which is commonly used by a Linux distribution-like CentOS. The fog
layer was comprised of three virtual machines (VM)that are considered as individual fog nodes. To
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maintain heterogeneity among the fog nodes, three VMs were made to run on different operating
systems—two on Windows and one on Linux. For this, a Mininet emulator has been used. One virtual
machine was responsible for storing data. The code for Algorithm 1 is written here, which is meant for
separating the high and low probable victim groups. One was installed with the Deep learning tool
Dl4j (deep learning for Java), responsible for the data analysis. This is further discussed in detail in
Section 4.4. We have not captured data from sensors or any IoT devices in this work. The user interface
was not designed fully through which the data could be captured from IoT devices or smart phones.
For experimental purposes, we have used relevant and similar data, which are available. The used
architecture is represented in Figure 12.

4.2. Data Collection

The details of the data used for carrying out the case studies are presented in Table 3. The data
were collected from the sources provided in Table 1. For stress classification and diabetes prediction,
the readily available datasets were used. However, for predicting the risk of a hypertension attack,
a data set was prepared by extracted the parameters taken from the three datasets.
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Table 3. Datasets used, their attributes, and the source of data.

Case Study
Description Data Attributes Used Source of Data

Stress
classification

EDA, HR, SpO2,temperature,
3-dimensional accelerometer data www.utdallas.edu/~{}nourani/Bioinformatics/Biosensor_Data

Type-2 diabetes
detection

PGC, DBP, 2-h serum insulin (mu U/mL)
4), body mass index (BMI), diabetes

pedigree function, age in years
https://archive.ics.uci.edu/ml/datasets/Diabetes

Hypertension risk
assessment

SBP, DBP, total cholesterol (TC), HDL,
LDL, PGC and HR

http://archive.ics.uci.edu/ml,
https://archive.ics.uci.edu/ml/datasets/Diabetes,
https://archive.ics.uci.edu/ml/datasets/ChronicKidneyDisease,
www.utdallas.edu/~{}nourani/Bioinformatics/Biosensor_Data

For preparing the training data set for a hypertension attack, the data was created after combining
some selected features taken from the three datasets, which were the diabetes dataset, the stress dataset
and the kidney disease dataset. The kidney disease dataset contained25 attributes. Among them, one
attribute was hypertension, which contained a yes or no value indicating the presence of hypertension.
Among the 24 attributes, some of the selected feature attributes were chosen. For selecting the feature,
a simple technique was used. Here, the data were clustered into two groups according to the presence
of a yes or no value for the hypertension field using a K-means clustering algorithm. Then, the data
clusters were analyzed to find the distribution of the contributing attributes in the formed cluster. If the

www.utdallas.edu/~{}nourani/Bioinformatics/Biosensor_Data
https://archive.ics.uci.edu/ml/datasets/Diabetes
http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Diabetes
https://archive.ics.uci.edu/ml/datasets/Chronic KidneyDisease
www.utdallas.edu/~{}nourani/Bioinformatics/Biosensor_Data
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data of a certain attribute was found to belong to the wrong cluster, then that attribute was not taken
into the training of the hypertension risk assessment. The K-means algorithm was used for leveling
data instances.

4.3. Data Visualization andExploratory Data Analysis

For doing the primary pre-analysis and visualization of the data, ‘Orange 3.4.4’ was employed [64].
‘Orange’ is an open source, ‘Python’ based tool, which is a data visualization, machine learning and
data mining tool kit. It was applied for carrying out explorative data analytics and interactive data
visualization jobs. It is a Python library that is used for performing data analytics tasks. Figures 13
and 14 show the distribution of DBP and SBP data values belonging to two of the clusters. As they do
not have any interfering values, these features have more impact on the formed clusters. Similarly,
the data values plotted for RBC and potassium contents are presented in Figures 15 and 16 respectively.
These sets of values are interfering with each other. Therefore, these are the weak features for
segregating the positive and negative hypertension data.
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Figure 16. Data distribution of the Red Blood Cell RBC count in a box-plot showing the range of
the data, its mean value after clustering the data using the K-means clustering technique. Here, 0.0
reresents the cluster for the non-hypertension class and 1.0 represents the hypertension class. It can be
seen that the two sets of data are overlapping in nature.

4.4. Deep Neural Network Model

To build the prediction model, deep learning has been adapted. In our context, it can automatically
explore the representations from the raw inputs. The proposed model can be described as follows.
Given a training set composed of n features represented by T = {(Ii, Oi)}, i = 1, 2, ..., n, where Ii ∈ RT,
where I is a feature vector of dimension T, Oi ∈ [1,C] is the corresponding class label of Ii. The neural
network specifies a nonlinear relationship between the two components hi and hi + 1 through a network
function, which has a form

hi + 1 = α(Whi + δ) (2)

where α is an activation function and the matrix W and δ are the model components or parameters
that need to be adjusted. hi + 1 and hi can be represented as layers. Here, α is either aReLU or SoftMax
function. In the case of a single layer neural network, there is only one layer. If they are augmented
with multiple layers and adapted advanced learning strategies, they form a deep neural network
(DNN). For a prediction model indulged with a prediction function, O = f (I) can be built by stacking
multiple network functions like h1, h2, . . . ., O given in Equations (3)–(5).
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h1 = αl(W1l + δ1) (3)

h2 = αl(W2h1 + δ2) (4)

O = αl(Wlhl + δl−1). (5)

In the above equation, ‘l’ is the number of layers. In a given training data
set,T = {(In, On), i = 1, 2, . . . , N } contains inputs and targets and an error function E = (Yn, On),
that computes the difference between output Yn and target On. The model parameters P = {W1, W2,
........, Wl, δ1, δ2, ........, δl} have to be adjusted to minimize the net error. This error function is depicted
in Equation (6).

Min (P)

{
n

∑
i=1

E = (Yn, On)

}
. (6)

DL4j is used for building a deep neural network for validating the proposed model. It uses a
simple deep neural network having more than one hidden layer. DL4j is a distributed deep learning
framework used for creating, training and deploying a deep neural network model. It is based on
an object oriented language ‘Java’, thus it is platform independent. It is well suited for a big data
environment as it can handle massive amounts of data in a very reasonable time frame. It could be
integrated with other parallel and distributed programming environments like ‘Hadoop’ or‘Spark’ and
it also supports GPU computing [65,66]. It has several built in classes and methods to create artificial
deep models and to handle different types of data such as CSVRecordReader, ImageRecordReader,
JacksonRecordReader, VideoRecordReader classes for handling input data like csv files, image data,
JSON data and video data respectively. In this work, CSVRecordReader has been used to deal with
csv data. A ‘transform’ class was used to normalize the data. ‘MultiLayerConfiguration’ was the
most important class, which was used to configure the network. The numbers of the inputs were 7,
5 and 8 and the outputs were 2,4 and 2 respectively for diabetes, stress and hypertension prediction.
The configuration details are provided in Table 4. The number of instances was increased by randomly
combining the present instances and made 5000 instances in the case of diabetes and hypertension
samples to effectively train the deep neural network. The stress dataset was large enough, so it is
used as it is. From the 5000 instances, 3500 were used as the training set and rest was used for testing
purposes. The ‘pretrain ()’ value was set to be ‘0’, as this network used a supervised learning scheme.
For unsupervised autoencoders, this ‘pretrain ()’ parameter must be set to 1. The dense layers have
three inputs each. The learning rate parameters were fixed for the stated values depicted Table 4 using
a hit and trial method. These parameters were fixed after executing several iterations and finalized
against minimum error values. The input layer activation function was chosen as Tanh() for diabetes
and hypertension whereas it was ReLU() for the stress data samples. The activation function in the
output layer was SoftMax, through this the number of output nodes was set to the number of classes.
The ‘iteration’ parameter was set as 1000. The ‘iteration’ parameter in DL4j was one update of the
neural network model parameter. It was not the same as the epoch of conventional NN. An epoch
means the number of iterations to complete a pass for all instances of the dataset. The experiment was
conducted to set the ‘iteration’ parameter as 1000, then incremented by 1000 each time. However, there
was no significant difference between the average accuracy value over 10 numbers of runs for 5000
and 6000 iterations.

4.5. Performance Evaluation

Table 5 represents the performance matrix of the proposed model for the diabetes data set, where
as Tables 6 and 7 are presenting the performance matrix of stress classification and hypertension
attack. In DL4j, the performance of a deep neural network was interpreted by a library class named as
‘evaluation’, contained a predefined method called get FeatureMatrix(). This method can be called
after training the neural network on the test dataset. It produces a confusion matrix formed out of four
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evaluating parameters, which were accuracy, precision, recall and F1 score. Accuracy is the simple
ratio of correctly classified instances to the total number of instances. Precision is the ratio of correctly
predicted positive instances to the total predicted positive instances. Recall is the quantity calculated
from the correctly predicted positive samples to total instances in the original class. The F1 score is a
weighted average value of the precision and recall values. The expressions for precision and recall are
given in Equations (2) and (3).

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

where TP is true positive, FP is false positive, and FN is false negative values of the given sample.
It can be observed from the result that, for the 5000 iteration value, the proposed model has achieved
almost 92% accuracy for the stress dataset, 88% accuracy in hypertension cases, whereas for diabetes it
is getting an accuracy of 84%. The resultant precision value, recall, and F1 score are also competent
enough to validate the proposed model.

Table 4. Configuration of the deep neural network.

Dataset No. of
Inputs

No. of
Outputs

No. of Hidden
Layers

Learning Rate
Parameter

Input and Hidden
Layer Activation

Function

Output Layer
Activation
Function

Diabetes 7 2 2 0.1 Tanh SoftMax
Stress 5 4 3 0.11 ReLU SoftMax

Hypertension 8 2 2 0.13 Tanh SoftMax

Table 5. Performance matrix for diabetes mellitus prediction.

Performance Matrix for Diabetes Dataset

Iteration = 1000, Learning Rate Parameter = 0.1 Iteration = 5000, Learning Rate Parameter = 0.1

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

0.7398 0.7428 0.7173 0.6465 0.7812 0.7678 0.8173 0.6321
0.7872 0.7320 0.6989 0.6000 0.7974 0.7458 0.6889 0.6122
0.7770 0.7523 0.7496 0.6703 0.8387 0.8523 0.7496 0.6898
0.7361 0.7189 0.6900 0.5896 0.8411 0.7189 0.6990 0.5987
0.7955 0.7761 0.7774 0.7120 0.8199 0.8773 0.7874 0.7234
0.7658 0.7416 0.7323 0.6480 0.8452 0.8428 0.7323 0.6346
0.8578 0.8861 0.7865 0.6632 0.8623 0.8873 0.8165 0.6789
0.7807 0.7825 0.7413 0.6667 0.8383 0.7897 0.7413 0.6782
0.8387 0.7243 0.6916 0.6900 0.8655 0.7255 0.6916 0.6989
0.7955 0.7761 0.7774 0.7120 0.7989 0.7773 0.7888 0.7121
0.7658 0.7420 0.7156 0.6182 0.8231 0.8432 0.7234 0.6261
0.7918 0.7643 0.7553 0.6710 0.8490 0.7655 0.7678 0.6711
0.8123 0.8302 0.6767 0.6547 0.8767 0.8314 0.6897 0.6245
0.8545 0.8489 0.6547 0.6400 0.8786 0.8501 0.6676 0.6534
0.7998 0.6756 0.6511 0.6100 0.7889 0.6768 0.6456 0.6298
0.7876 0.8156 0.6978 0.6001 0.8456 0.8168 0.7123 0.6122
0.8356 0.7889 0.6900 0.6032 0.8891 0.8100 0.7898 0.6977
0.8321 0.8213 0.6763 0.5432 0.8134 0.8225 0.6932 0.5771
0.8563 0.8600 0.6789 0.6523 0.8651 0.8612 0.6897 0.678
0.8490 0.8345 0.6751 0.6800 0.8989 0.7578 0.6451 0.6898

Average value over 20 iterations

0.802945 0.7807 0.71169 0.64355 0.840845 0.8010 0.726845 0.65593
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Table 6. Performance matrix for the stress classification model.

Performance Matrix for Stress Dataset

Iteration = 1000, Learning Rate Parameter = 0.1 Iteration = 5000, Learning Rate Parameter = 0.1

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

0.871 0.8539 0.8173 0.7677 0.8822 0.8551 0.8182 0.7668
0.9184 0.8421 0.81 0.7112 0.9297 0.8434 0.8108 0.712
0.9082 0.8534 0.8707 0.7715 0.9194 0.8548 0.8714 0.7804
0.8673 0.83 0.78 0.6808 0.8785 0.8312 0.7889 0.6896
0.8267 0.8872 0.8685 0.7932 0.8379 0.8881 0.86938 0.8019
0.897 0.8527 0.8323 0.7492 0.9082 0.8538 0.8332 0.7559
0.989 0.8873 0.8865 0.7844 1.0002 0.8885 0.8866 0.7845

0.9119 0.8805 0.8413 0.7879 0.9233 0.8819 0.8419 0.7886
0.9587 0.8223 0.7916 0.8112 0.9699 0.8313 0.7925 0.8200
0.7967 0.8872 0.8774 0.8332 0.8079 0.8883 0.8782 0.8243
0.877 0.8531 0.8156 0.7394 0.8882 0.8547 0.8244 0.7472
0.923 0.8754 0.8553 0.7922 0.9342 0.8767 0.864 0.7923

0.9135 0.9413 0.7767 0.7759 0.9247 0.9493 0.7776 0.7761
0.8557 0.91 0.7547 0.7612 0.8669 0.9115 0.7625 0.7609
0.931 0.7867 0.7511 0.7312 0.9422 0.7965 0.7600 0.7316

0.9188 0.9267 0.7978 0.7213 0.932 0.9284 0.7983 0.7214
0.9356 0.9 0.79 0.7244 0.9368 0.9011 0.7988 0.7255
0.8933 0.9324 0.7763 0.6644 0.9045 0.9336 0.784 0.66441
0.9683 0.9101 0.7789 0.7735 0.9783 0.9113 0.7798 0.77437
0.9502 0.9456 0.7751 0.8012 0.9617 0.9468 0.7760 0.8013

Average value over 20 iterations

0.905565 0.8918 0.812355 0.75875 0.916335 0.881315 0.815824 0.760954

Table 7. Performance matrix of the hypertension risk assessment model.

Performance Matrix for Hypertension Dataset

Iteration = 1000, Learning Rate Parameter = 0.1 Iteration = 5000, Learning Rate Parameter = 0.1

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

0.8398 0.8339 0.8173 0.7677 0.8510 0.9151 0.8182 0.7668
0.9184 0.8321 0.8100 0.7112 0.9297 0.9134 0.8108 0.7120
0.8782 0.8334 0.8707 0.7715 0.8894 0.9148 0.8714 0.7804
0.8673 0.7800 0.7801 0.6808 0.8785 0.8612 0.7889 0.6896
0.8267 0.7872 0.8685 0.7932 0.8379 0.8681 0.86938 0.8019
0.8970 0.7627 0.8323 0.7492 0.9082 0.8438 0.8332 0.7559
0.9890 0.8873 0.8865 0.7844 1.0002 0.9685 0.8866 0.7845
0.8819 0.8805 0.8413 0.7879 0.8933 0.9619 0.8419 0.7886
0.8507 0.8223 0.7916 0.8112 0.8619 0.9113 0.7925 0.8200
0.8267 0.8872 0.8774 0.8332 0.8379 0.9683 0.8782 0.8243
0.8870 0.8531 0.8156 0.7394 0.8982 0.9347 0.8244 0.7472
0.9030 0.8754 0.8553 0.7922 0.9142 0.9567 0.864 0.7923
0.8243 0.9413 0.7767 0.7759 0.8355 0.9700 0.7776 0.7761
0.8557 0.91 0.7547 0.7612 0.8669 0.9915 0.7625 0.7609
0.8310 0.7867 0.7511 0.7312 0.8422 0.8765 0.7600 0.7316
0.8888 0.8157 0.7978 0.7213 0.902 0.8974 0.7983 0.7214
0.8456 0.7891 0.7900 0.7244 0.8468 0.8702 0.7988 0.7255
0.8933 0.8217 0.7763 0.6644 0.9045 0.9029 0.7840 0.66441
0.8675 0.8651 0.7789 0.7735 0.8775 0.9463 0.7798 0.77437
0.8502 0.8556 0.7751 0.8012 0.8617 0.9287 0.7760 0.8013

Average value over 20 iterations

0.871105 0.841015 0.812355 0.75875 0.881875 0.920056 0.815824 0.760954

The results were compared with some similar works done by various researchers in the last
few years. The current work of stress classification was weighted against some existing models.
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The parameters on which the works were evaluated are the types of tools used for the work,
the objective of the work, the prediction accuracy percentage, the input data and the use of a fog
environment. It has been presented in Table 8. The job of type-2 diabetes mellitus detection was
compared on the basis of the methods used for the work, the accuracy percentage and the exploitation of
cloud or fog in the reported work. This is shown in Table 9. The early detection of a hypertension attack
is evaluated with other state of the art research on the basis of the domain application, the purpose of
the research, the use of cloud storage (CS), fog environment (FE), and the prediction model (PM), as
shown in Table 10.

Table 8. Comparative analysis of stress classification.

Author
Tools Used for

Application
Development

Purpose
Accuracy of
Prediction

Model
Data Used

Whether Used
in Fog

Environment

M.M. Sami et al.
(2014) [67]

Support vector
machine

Stress classification
model 83.33% EEG Signals No

Q. Xu et
al.(2015) [68]

K-Means
clustering
algorithm

To provide
personalized

recommended
products for stress

management

85.2% EEG, ECG, EMG,
GSR signals No

S. H. Song et al.
(2017) [69]

Deep belief
network

To design stress
monitoring system 66% KNHANES VI No

Deep-Fog Deep neural
network

To obtain the stress
level of patients to

assist doctors
91.63% EDA, HR, SpO2,

Temperature Yes

Table 9. Comparative analysis of diabetes prediction.

Method Accuracy
(%)

Use Cloud
for Storage

Used in Fog
Environment Author

Hybrid model 84.5% No No HumarKehramanili (2008) [70]
Multilayer perceptron 81.90% No No Aliza Ahmed et al. (2011) [71,72]

Decision tree 89.30% No No Aliza Ahmed et al. (2011) [71]
Extreme learning machine 75.72% No No R. Priyadarshini et al. (2014) [73]

Decision tree 84% No No K.M.Orabi et al. (20216) [74]
Improved K-means

andlogistic regression 95.42% No No Han Wu et al. (2017) [60]

Proposed approach 84.11% Yes Yes

Table 10. Comparative analysis of Hypertension risk detection.

Author Application Domain Purpose Use of CS Use in FE Use of PM

Fernandez et al.
(2017) [75]

A web-based
hypertension
monitoring system

To identify weakness in the
clinical process of hypertension
detection, to improvise the
existing system

No No No

Zhou et al.
(2018) [76]

Cloud and mobile
internet-based
hypertension
management system

Provide services to the patient
to let them know their cardiac
status

Yes No No

S.Sood and
Isha Mahajan

(2018) [77]
IoT-fog based system Real time monitoring and

decision making Yes Yes
Back propagation

neural network with
precision 92.10%

Proposed
Work-Deep Fog

Deep learning-based
Fog system

Real time Assessment of
hypertension in patients and
sending the data to cloud

Yes Yes Deep neural network
with precision 92.01%

This experiment was carried out on a 64-bit machine, using a windows 7 system, with an Intel
quad core processor. The java version used was 1.8. DL4j had a user interface provision for providing
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the used software information and hardware information, presenting the attributes-like installed
operating system, JVM version, JDK version, heap memory available, required memory for JVM,
the current consumed memory, are provided in Tables 11 and 12 respectively. It can be noted that
the experiment was carried out in a CPU mode, so if the ND4j backend showed a CPU, if it would
execute in a parallel environment, it would have been showing the backend as GPU. The hardware
information the model generated detailed information of the available heap memory and consumed
heap memory. Similarly the allocated memory for JVM and the current consumption of JVM memory.
As the used system was a quad core system, the available number of processors for JVM was four.

Table 11. Software information.

Host Name OS OS
Architecture JVM Name JVM

Version
ND4J

Backend
ND4J
Type

3LAB24-PC Windows 7 Amd64 Java Hotspot (TM)64-bit Server VM 1.8.0_141 CPU Float

Table 12. Hardware information.

JVM Current
Memory

JVM Max
Memory

Off-Heap Current
Memory

Off-Heap Max
Memory

JVM Available
Processors

#Compute
Devices

315.50 MB 871.50 MB 451.22 MB 871.50 MB 4 0

Figure 17 presents the loss function of the deep neural network. This is the function showing the
resulting error value between the actual output and the calculated value. It can be seen that the error
is gradually falling down and approaches towards zero. Figure 18 shows the ratio of the parameter
updates during the execution of the subsequent layers. The network weight changes are shown against
the number of iterations. Figure 19 shows the standard deviation of the activations, gradients and
updates against time. It can be observed that these are approaching zero. Figure 20 gives the memory
utilization report of the Java virtual machine (JVM) and the heap memory consumption was 64% at a
particular instance. It means that out of the allocated 1 GB of off-heap memory, 64% was utilized for
the current work. DL4j provided this interface, which lets the user know that the memory consumption
of JVM and the off-heap memory. The off-heap memory is the portion of the main memory, which
is not managed by JVM, thereby it reduces the complexity of garbage collection of JVM. The default
allocation of the off-heap memory is one fourth of the available free main memory of the system.
The memory limits of the off-heap memory can be controlled but for this experiment, the default values
were taken. As a system with 4 GB RAM was used for the experiment, one fourth of this memory i.e.,
1 GB was allocated to the off-heap memory.
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memory is the portion of the main memory, which is not used by JVM. Therefore, the work of the
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underlying native operating system.

5. Conclusions

The whole world has scientifically and technologically come to a significant level. At the same
pace, the lifestyle of people is changing. The amount of physical work and exercise has gone down
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and, at the same time, the stress level has gone up. This is leading to an alarming situation as it
stimulates the growth rate of lifestyle disease like diabetes and hypertension. It now becomes a
major concern of all including doctors, caregivers and the elderly population. With the significant
developments in computation and advanced communication technology, effective solutions can be
designed to solve this problem. This paper tries to propose a feasible fog computing-based deep
learning model i.e., DeepFog to detect a person’s mental state and does an early detection for type-2
diabetes from some of the captured data. It builds a model to assess the risk of hypertension attacks.
The proposed solution further separates the high probable victim group of a hypertension attack, giving
a priority to critical cases. The deep neural network was implemented using Python for constructing
the hypertension dataset. The Java-based tool DL4j was leveraged to implement the proposed model.
The fog environment was setup using a set of open source infrastructure. The results and discussions
validate the efficacy of the proposed approach in wellness monitoring. We compared our results with
other contemporary state-of-the-art research approaches where we found the proposed approach to be
superior or competitive with current state-of-the-art technologies. In future work, we would like to
further tune the neural models for various user-based studies. This would further create opportunities
for research and development for robust systems development in the wellness monitoring area.
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51. CireşAn, D.; Meier, U.; Masci, J.; Schmidhuber, J. Multi-column deep neural network for traffic sign
classification. Neural Netw. 2012, 32, 333–338. [CrossRef] [PubMed]

52. Almisreb, A.A.; Jamil, N.; Din, N.M. Utilizing AlexNet Deep Transfer Learning for Ear Recognition.
In Proceedings of the 2018 IEEE Fourth International Conference on Information Retrieval and Knowledge
Management (CAMP), Kota Kinabalu, Malaysia, 26–28 March 2018; pp. 1–5. [CrossRef]

53. Qawaqneh, Z.; Mallouh, A.A.; Barkana, B.D. Age and gender classification from speech and face images by
jointly fine-tuned deep neural networks. Expert Syst. Appl. 2017, 85, 76–86. [CrossRef]

54. Gao, X.W.; Hui, R.; Tian, Z. Classification of CT brain images based on deep learning networks. Comput.
Methods Programs Biomed. 2017, 138, 49–56. [CrossRef] [PubMed]

55. Kuremoto, T.; Kimura, S.; Kobayashi, K.; Obayashi, M. Time series forecasting using a deep belief network
with restricted Boltzmann machines. Neurocomputing 2014, 137, 47–56. [CrossRef]

56. Ahmad, M.; Amin, M.B.; Hussain, S.; Kang, B.H.; Cheong, T.; Lee, S. Health Fog: A novel framework for
health and wellness applications. J. Supercomput. 2016, 72, 3677–3695. [CrossRef]

57. Yi, S.; Li, C.; Li, Q. A survey of fog computing: Concepts, applications and issues. In Proceedings of the 2015
Workshop on Mobile Big Data, Hangzhou, China, 21 June 2015; pp. 37–42. [CrossRef]

58. Cogan, D.; Birjandtalab, J.; Nourani, M.; Harvey, J.; Nagaraddi, V. Multi-biosignal analysis for epileptic
seizure monitoring. Int. J. Neural Syst. 2017, 27, 1650031. [CrossRef] [PubMed]

59. Liu, Z.P.; Gao, R. Detecting pathway biomarkers of diabetic progression with differential entropy. J. Biomed.
Inform. 2018, 82, 143–153. [CrossRef]

60. Wu, H.; Yang, S.; Huang, Z.; He, J.; Wang, X. Type 2 diabetes mellitus prediction model based on data mining.
Inform. Med. Unlocked 2018, 10, 100–107. [CrossRef]

61. Kaur, A.; Bhardwaj, A. Artificial Intelligence in hypertension diagnosis: A review. Int. J. Comput. Sci.
Inf. Technol. 2014, 5, 2633–2635.

62. Huang, S.; Xu, Y.; Yue, L.; Wei, S.; Liu, L.; Gan, X.; Zhou, S.; Nie, S. Evaluating the risk of hypertension using
an artificial neural network method in rural residents over the age of 35 years in a Chinese area. Hypertension
Res. 2010, 33, 722–726. [CrossRef] [PubMed]

63. LaFreniere, D.; Zulkernine, F.; Barber, D.; Martin, K. Using machine learning to predict hypertension from a
clinical dataset. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
Athens, Greece, 6–9 December 2016; pp. 1–7. [CrossRef]

64. Demšar, J.; Zupan, B. Orange: Data mining fruitful and fun-a historical perspective. Informatica 2013, 37,
55–60.

65. Fox, J.; Zou, Y.; Qiu, J. Software Frameworks for Deep Learning at Scale. Internal Indiana University Technical
Report. Available online: https://pdfs.semanticscholar.org/5d72/065c17cf5d0a7f916ffdb18cbf695fd846e8.
pdf (accessed on 23 October 2018).

66. Sugomori, Y. Java Deep Learning Essentials; Packt Publishing Ltd.: Birmingham, UK, 2016.
67. Sani, M.M.; Norhazman, H.; Omar, H.A.; Zaini, N.; Ghani, S.A. Support vector machine for classification

of stress subjects using EEG signals. In Proceedings of the 2014 IEEE Conference on Systems, Process and
Control (ICSPC), Kuala Lumpur, Malaysia, 12–14 December 2014; pp. 127–131. [CrossRef]

68. Xu, Q.; Nwe, T.L.; Guan, C. Cluster-based analysis for personalized stress evaluation using physiological
signals. IEEE J. Biomed. Health Inform. 2015, 19, 275–281. [CrossRef] [PubMed]

69. Song, S.H.; Kim, D.K. Development of a Stress Classification Model Using Deep Belief Networks for Stress
Monitoring. Heal. Inform. Res. 2017, 23, 285–292. [CrossRef]

70. Kahramanli, H.; Allahverdi, N. Design of a hybrid system for the diabetes and heart diseases. Expert Syst.
Appl. 2008, 35, 82–89. [CrossRef]

71. Ahmad, A.; Mustapha, A.; Zahadi, E.D.; Masah, N.; Yahaya, N.Y. Comparison between Neural Networks
against Decision Tree in Improving Prediction Accuracy for Diabetes Mellitus. In Digital Information Processing
and Communications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 537–545.

72. Michie, D.J.; Spiegelhalter, C.C. Taylor Machine Learning, Neural and Statistical Classification; Ellis Horward
Series in Artifical Intelligence: New York, NY, USA, 1994.

http://dx.doi.org/10.1016/j.ins.2016.01.082
http://dx.doi.org/10.1016/j.neunet.2012.02.023
http://www.ncbi.nlm.nih.gov/pubmed/22386783
http://dx.doi.org/10.1109/INFRKM.2018.8464769
http://dx.doi.org/10.1016/j.eswa.2017.05.037
http://dx.doi.org/10.1016/j.cmpb.2016.10.007
http://www.ncbi.nlm.nih.gov/pubmed/27886714
http://dx.doi.org/10.1016/j.neucom.2013.03.047
http://dx.doi.org/10.1007/s11227-016-1634-x
http://dx.doi.org/10.1145/2757384.2757397
http://dx.doi.org/10.1142/S0129065716500313
http://www.ncbi.nlm.nih.gov/pubmed/27389004
http://dx.doi.org/10.1016/j.jbi.2018.05.006
http://dx.doi.org/10.1016/j.imu.2017.12.006
http://dx.doi.org/10.1038/hr.2010.73
http://www.ncbi.nlm.nih.gov/pubmed/20505678
http://dx.doi.org/10.1109/SSCI.2016.7849886
https://pdfs.semanticscholar.org/5d72/065c17cf5d0a7f916ffdb18cbf695fd846e8.pdf
https://pdfs.semanticscholar.org/5d72/065c17cf5d0a7f916ffdb18cbf695fd846e8.pdf
http://dx.doi.org/10.1109/SPC.2014.7086243
http://dx.doi.org/10.1109/JBHI.2014.2311044
http://www.ncbi.nlm.nih.gov/pubmed/25561450
http://dx.doi.org/10.4258/hir.2017.23.4.285
http://dx.doi.org/10.1016/j.eswa.2007.06.004


Computation 2018, 6, 62 25 of 25

73. Priyadarshini, R.; Dash, N.; Mishra, R. A Novel approach to predict diabetes mellitus using modified Extreme
learning machine. In Proceedings of the 2014 International Conference on Electronics and Communication
Systems (ICECS), Coimbatore, India, 13–14 February 2014; pp. 1–5. [CrossRef]

74. Orabi, K.M.; Kamal, Y.M.; Rabah, T.M. Early Predictive System for Diabetes Mellitus Disease. In Industrial
Conference on Data Mining; Springer: Cham, Switzerland, July 2016; pp. 420–427. [CrossRef]

75. Ruiz-Fernández, D.; Marcos-Jorquera, D.; Gilart-Iglesias, V.; Vives-Boix, V.; Ramírez-Navarro, J.
Empowerment of patients with hypertension through BPM, iot and remote sensing. Sensors 2017, 17,
2273. [CrossRef] [PubMed]

76. Zhou, R.; Cao, Y.; Zhao, R.; Zhou, Q.; Shen, J.; Zhou, Q.; Zhang, H. A novel cloud based auxiliary medical
system for hypertension management. Appl. Comput. Inform. 2017. [CrossRef]

77. Sood, S.K.; Mahajan, I. IoT-Fog based Healthcare Framework to Identify and Control Hypertension Attack.
IEEE Internet Things J. 2018. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ECS.2014.6892740
http://dx.doi.org/10.1007/978-3-319-41561-1_31
http://dx.doi.org/10.3390/s17102273
http://www.ncbi.nlm.nih.gov/pubmed/28976940
http://dx.doi.org/10.1016/j.aci.2017.10.002
http://dx.doi.org/10.1109/JIOT.2018.2871630
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	DeepFog Architecture 
	Case Study 1—Categorization of Stress Types 
	Case Study 2—Prediction of Diabetes 
	Case Study 3—Risk Assessment of Hypertension Attack 

	Experimental Setup, Results and Evaluation: 
	Setting Up the Fog-Based System Architecture 
	Data Collection 
	Data Visualization andExploratory Data Analysis 
	Deep Neural Network Model 
	Performance Evaluation 

	Conclusions 
	References

