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Abstract: Thermophysical properties of nanofluids play a key role in their heat transfer capability and
can be significantly affected by several factors, such as temperature and concentration of nanoparticles.
Developing practical and simple-to-use predictive models to accurately determine these properties
can be advantageous when numerous dependent variables are involved in controlling the thermal
behavior of nanofluids. Artificial neural networks are reliable approaches which recently have
gained increasing prominence and are widely used in different applications for predicting and
modeling various systems. In the present study, two novel approaches, Genetic Algorithm-Least
Square Support Vector Machine (GA-LSSVM) and Particle Swarm Optimization- artificial neural
networks (PSO-ANN), are applied to model the thermal conductivity and dynamic viscosity of
Fe,O3/EG-water by considering concentration, temperature, and the mass ratio of EG/water as
the input variables. Obtained results from the models indicate that GA-LSSVM approach is more
accurate in predicting the thermophysical properties. The maximum relative deviation by applying
GA-LSSVM was found to be approximately £5% for the thermal conductivity and dynamic viscosity
of the nanofluid. In addition, it was observed that the mass ratio of EG/water has the most significant
impact on these properties.

Keywords: nanofluid; artificial neural network; GA-LSSVM; thermal conductivity; dynamic viscosity

1. Introduction

In recent years, the tendency to replace conventional fluids by nanofluids is increasing in
many applications, such as solar energy, heat exchangers, and electronics cooling [1]. Nanofluid,
characterized by a significant improvement in thermal properties compared to most of the conventional
engineered fluid, is found to serve in a number of engineering applications, for example, fuel-cell
industry [2], petroleum engineering [3-5], materials science [6], etc. These types of fluids contain
flowing nanoparticles which can enhance the properties of the conventional fluid, specifically, their
thermal conductivity [7,8]. This capability has attracted many researchers’ attention to study various
methods which can effectively modify the physical properties of conventional fluids by adding
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nanoparticles with different size, shape, material, and volume concentration [9-12]. Works in this area
have shown that nanofluids can improve the thermal performance both for single phase and two-phase
flows in various applications depending on the operational conditions [13-16]. This enhancement
is due to the liquid interfacial layering between nanoparticles and basic fluid, agglomeration of the
particles, and Brownian motion [17,18].

To study nanofluids, various analytical methods and experimental setups have been utilized to
measure their properties and evaluate their heat transfer performance. Most work has focused on the
changes observed in the viscosity and thermal conductivity of the fluid as the major thermophysical
properties [19-22]. Many correlations are proposed to predict these properties based on experimental
data and physical analysis [15,16,23,24]. However, performing numerous experiments to measure
the properties under different conditions is costly especially when many operational parameters,
such as size, shape, and concentration of the nanoparticles, as well as the working temperature
have a considerable effect on the results [25-28]. On the other hand, the accuracy of the analytical
models and the data-driven correlations may not be sufficient when the operational conditions are
significantly changing compared to the basic assumptions. Therefore, new approaches have been
recently introduced for this purpose. Artificial neural networks (ANN) are developed learning
algorithms which can be used as effective predictive tools to simulate various systems [29,30]. Recently,
research has started to use these algorithms to predict the thermophysical properties of nanofluids.
Nadooshen et al. [31] have used this tool to measure the dynamic viscosity of SiO2-MWCNT /10W40
engine oil by considering shear rate, concentration, and temperature as the input variables of their
model. The value of R? for their proposed model was 0.9948 and their result showed an increase in
dynamic viscosity when the concentration increases. Alirezaie et al. [32] also used neural network
algorithms to measure the dynamic viscosity of MWCNT (COOH-functionalized) /MgO engine oil. It
was reported that the viscosity was lowered by 75% when the nanofluid’s temperature was doubled
from 25 °C to 50 °C Esfe et al. [33] measured the thermal conductivity of ZnO-MWCNT /EG-water
and proposed a predictive artificial neural network model with temperature and concentration as the
input variables. The authors monitored that their model was able to follow the experimental values
very closely and the mean squares error of the presented model was 1.9585 x 10~°. In another study,
Afrand et al. [34] worked on MgO/water nanofluid and obtained a correlation for thermal conductivity
by using an artificial neural network. Moreover, the effect of the size of the nanoparticles has also been
considered as it can have a significant effect on the thermal conductivity [29,30].

Most of the reviewed studies have studied the effects of temperature and concentration on the
thermophysical properties of the used nanofluids and indicated that ANN can be utilized as a tool to
predict their thermal behavior. In the present study, two novel approaches, GA-LSSVM and PSO-ANN,
are used for the first time to model the thermal conductivity and dynamic viscosity of Fe;O3/ethylene
glycol-water nanofluid. These methods are selected based on their potent performance in developing
high-precision models for estimating target objectives. The accuracy of the predictive algorithms has
been evaluated by the correlation factor (R?), Average Absolute Relative Deviation (AARD), Root
Mean Square Error (RMSE), and Margin of Deviation. The differences between the algorithms have
been discussed and their accuracy is compared.

2. Methodology

2.1. Artificial Neural Network

The configuration of artificial neural networks (ANNSs) is inspired by functionality and learning
procedure of the human brain’s neural system. These networks are designed based on a structure of
processing nodes (neurons) and inter-connections which can transmit signals between the nodes. These
inter-connected elements process input information simultaneously by recognizing the links between
independent and dependent parameters and are capable of adapting and learning from past patterns.
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The most common ANN configuration is the multilayer feed-forward neural network in which
information moves through the input, output, and hidden levels. Figure 1 shows a feed-forward
ANN with one hidden layer that is used in this work. These types of neural networks are capable
of analyzing non-linear functions and utilize one or more hidden layers as a learning technique to
effectively transfer information through different stages. Neurons in the hidden and output layer
apply a linear or non-linear transfer function as internal activation phenomenon. To feed information,
a measure of strength is assigned to each interconnection which is referred to as weight. Bias is treated
as an extra input which has a value of 1 at all times. All neurons within the network are responsible to
use appropriate correlations to properly link the input information to the desired outputs [35,36]. The
net inputs (S) for the hidden neurons are computed as [37]:

SH] = th:lej,t-at + bH] (1)

Linear transfer function

Sigmoid transfer function
Weights and Biases

NS R

: Layer Hidden Layer Output Layer

Figure 1. Structure of the proposed three layers feed-forward neural network model.

In the above equation, at, j and ij,t are the input parameters vector, the index of the hidden
neuron, and the interconnection weight between the input neurons with the hidden layer, respectively.
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In addition, ij is the bias of the jth hidden neuron. Afterwards, (Lj) which is the output of the hidden
neurons and calculated by using a transfer function of fiy which is related to the hidden neurons [37].

L= fir(5%) = s (L Eawea +0%). @

Computed outputs of the hidden layer are supplied as inputs for the output layers. The same
approach can be also utilized to compute the final output of Y.

2.2. Least Squares Support Vector Machines

Selection of the desired function based on a set of empirical data is a subject problem which can
be addressed by the statistical theory of learning and applied to a variety of applications. One of the
recent learning methods based on this theory is the support vector machine (SVM) [38]. Because of
its high performance, effective generalization ability, and use of kernel-induced feature spaces, it has
extensively been employed to solve nonlinear functions and density estimation problems [35,36]. To
improve the SVM, Suykens et al. [39] introduced the Least Squares Support Vector Machines (LSSVM)
method. In LSSVM, the inequality constraints are converted to a set of equality constraints which
results in solving a system of linear equations, and therefore, offers a faster and easier alternative to
SVM method [40,41]. An overview of LSSVM method is described below [41,42]:

For a set of set of N training data {(x1,y;), (x2,¥,),---, (XN, ¥n) }» Xk € R" denotes kth input
data and y, € R is the related output; Equation (3) is applied to estimate a model of the formula:

y(x) = w o(x) +b. 3)

In the above equation, @(x): R" — R™ is a nonlinear mapping function. This function is
employed to map the input data to a space with higher dimension features; b and w are the bias term
and the weight vector, respectively. By minimizing the following function, Equation (4), these values
are obtainable:

1 1 Y
T (w,e) = EwTw +5Y Y et (4)
k=1

By considering the following constraints:
Ve =wlo(x)+b+ek=12...,N. (5)

In the above equations, v is a constant to regularize and avoid over fitting and ey is the error of
training data. To solve the constrained optimization problem, the Lagrangian function is used:

N
L(w,b,e,&) =T (w,e) =) oy {wTo(xi) +b+e, —y ) (6)
k=1

In the above equation, «y are Lagrange multipliers. Performing derivative on Equation (4) with
respect to w, b, ey, and oy, to determine the optimal conditions resulting in:

N
0wl =w— ) oe(xg) =0, (7)
k=1
N
E)bﬁ = 2 Xy = 0, (8)
k=1
e L=0q —ve,=0k=1,..., N, 9)

o L= @(x)w +b+e—y, =0k=1,..., N. (10)
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The optimization problem can turn into a linear system if « and e are removed:

0 17 b 0
= , 11
llv Q+vy 1 loc] ly] (1)
wherey = [y, ... yN]T, 1, = [1... 15, « = [ ... an]", I denotes an identity matrix and )
represents an N-dimensional symmetric matrix; Qi = ¢ (xi) - @(x) = K(xi, x))Vk,1=1, ..., N.

K(xk, x) stands for the kernel function and must meet Mercer’s theorem. The final form of the LSSVM
approach for function estimation is formulated as:

N
y(x) = Y oaK(x,x) +b, (12)
k=1

where (b, «) is the solution to the linear system.

3. Developed Models

In the present study, two artificial intelligence methods, ANN and LSSVM, are employed to
predict the dynamic viscosity and thermal conductivity of Fe,Os/ethylene glycol-water nanofluid
based on the previously published database [43-45].

3.1. ANN Model

3.1.1. Data Distribution (Training and Testing Subsets)

To train a multilayer feed-forward neural network usually the data is divided into two subsets,
namely, a training set and a testing set. In the training set, the network weights and biases are updated,
and afterward, the accuracy of the trained neural network is evaluated in the testing set. In the current
work, the main data is assumed to be the test data and 100 data points (80% of the whole data) are
considered as the training data.

3.1.2. Training Method and Transfer Functions

From the several types of the transfer functions, the log-sigmoid (Logsig) transfer function is
utilized for neurons in the hidden layer. The logsig transfer function is suitable for various nonlinear
functions and can be expressed as [37]:

1

fSY= ———— | 1
5) 1+exp(—S) (13)
The logsig function is in the rage of 0 and 1. This transfer function provides favorable gain in the
cases that there is a wide range of input levels [37]. Moreover, the linear transfer function (Purelin) is

employed as a transfer function for the output layer. The function is represented as:
f(S) =S (14)

To ensure the ANN’s satisfactory performance, a training algorithm is applied to adjust the weight
of the interconnections between neurons, as well as the biases. By performing these adjustments, the
network can accurately predict the desired outputs for a specified set of inputs. Genetic Algorithm
(GA), Back Propagation (BP), Particle Swarm Optimization (PSO), Unified Particle Swarm Optimization
(UPSO), Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO), and Imperialist
Competitive Algorithm (ICA) are examples of training algorithms which have been utilized in a variety
of applications.
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PSO algorithm [46] was employed as the ANN'’s training algorithm due to its simplicity,
robustness, adaptability, and excellent convergence features. PSO is developed by Kennedy and
Eberhart [47] and is inspired by the social behavior and movement of the organisms in a bird flock,
fish school, and swarm of insects. First, an initial set of solution is randomly taken as the potential
solution, and then the algorithm attempts to iteratively optimize and improve the candidate solutions
by updating within the search space. The swarm proceeds towards the optimal solution by moving
the particles in the search space based on their local and global optimum position. Each particle’s
best position is denoted as p; Phe , and is the optimum position of particle i that has been achieved
through applying fitness function at each iteration. The global best solution for all particles in the
search space is denoted as p . and is taken into account together with Pip,,. tooptimize the solution
at each iteration. The following mathematical formulation is used to update the particles’ position and
velocity in order to generate a newly optimized swarm of particles [48]:

Vit = wvi" + ¢yry" [pi,pbestn - Pin} + " {Pgbestrl - Pin} , (15)

pin+l — pjn + Vin-‘rl, (16)

where v;" and v;"*! are the ith particle velocities at n and n + 1 iterations, respectively. vp,™ and p,"*!

denote ith particle positions in the mentioned iterations. w is the inertia weight which has a key role in
handling the exploration and exploitation of the search space since it continuously corrects the values
related to the velocity; ¢; and ¢, are acceleration constants representing the change of particle velocity
from p; Poest " towards p, estn' r1™ and ro" are uniformly distributed random numbers in [0, 1]; Pg,...
is the best position in the current swarm over generation n; and Pip " stands for the best position
of particle i over generation n specified using the fitness function. More details of PSO are explained
in [48,49].

Mean square of errors (MSE) is employed as a fitness function of the whole training data set

as follows:
1 X re \2
f= ﬁ (Ye Pi—yP)” (17)

1] Mz

In the above equation, N is the total number of data used for training; yP™, is the experimental
value at point i, yP™, is the ith output data obtained by the network. Each particle specifies a possible
solution to the optimization case. Figure 2 depicts the flowchart of the procedure of training ANN
model using PSO algorithm.

3.1.3. ANN Structure

The choice of optimization network structure is determined primarily by the level of complexity
of the problem. Multilayer feed-forward neural networks with one hidden layer and a sufficient
number of hidden neurons are capable to map any input to each output with an arbitrary level of
accuracy. In the current study, 8 inputs and 1 output are assumed, and a network with one hidden
layer is used accordingly. Various 2 — x — 1 architectures (x changes from 1 to 10) are evaluated based
on their MSE and R? values to obtain the optimum number of neurons. The optimal structure has a
minimum value of MSE and a maximum magnitude of R?. Figure 3 shows the MSE and R? values
for different examined structures. As indicated, a three-layer ANN network with a 2 — 8 — 1 layer
structure in which there are eight hidden neurons in one layer, is the most suitable structure. Figure 1
shows the final trained ANN model with eight hidden neurons. Also, the adjustable parameters used
in the presented hybrid PSO-ANN approach are listed in Table 1.
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Figure 2. Flowchart of the Particle Swarm Optimization (PSO)-based optimization algorithm for

evolving the weights and biases of the constructed artificial neural networks (ANN).

Table 1. Details of trained ANNs with PSO for the prediction of viscosity and thermal conductivity of

Fe,O3/ethylene glycol-water nanofluid.

Type Value/Comment
Input layer 3
Hidden layer 8
Output layer 2
Hidden layer activation function Logsig
Output layer activation function Purelin
Number of datum used for training 100
Number of datum used for testing 26
Number of max iterations 1000
c1 and ¢y in Equation (15) 2

Number of particles 25
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Figure 3. Effect of the number of hidden neurons on the performance of the PSO-ANN model in terms
of R? and MSE values for (a) viscosity (b) thermal conductivity.

3.2. LSSVM Model

3.2.1. Data Distribution (Training and Testing Subsets)

Just as the case for ANNSs, to improve the performance and effectiveness of the LSSVM model,
training and testing subsets are created from the database. From 126 data points, 100 data sets are
selected for the training subset, and the rest are used for testing the model.

3.2.2. Kernel Function

It is necessary to select a proper kernel function. Several kernel functions exist; however, there are

three types which are more common as listed below:

~

K
K

(x,x) = xpx (Linear kernel)
(x,xi) = (T+ xEx)d (Polynomial kernel of degree d)
(x,xx) = exp(—||x — xx 12/02) (Radial basis function RBF kernel)
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Several studies have focused on the comparison between these common kernels [39,46,50]. In the
present study, RBF is applied as the kernel function due to its ability in producing precise results [50,51].

3.2.3. Optimization Approach to Tune the Embedded Parameters (y and ¢?)

To optimize the values of the kernel (62) and regulation (y) parameters in the training stage,
a genetic algorithm (GA) is linked to the LSSVM model in this work. The genetic algorithm is an
optimization method and is extensively utilized to solve constrained and unconstrained problems by
simulating the natural selection process in biological evolution. A population of candidate solutions is
moved towards the optimum solution through an iterative process in which generations are evolved
based on the objective function and selection, crossover, and mutation rules. An optimal solution is
obtained after successive generations. Figure 4 shows the flowchart of the hybrid GA-LSSVM model
used in the current study. The procedure of utilizing this approach to optimize y and o2 is briefly
described below.

a. Encoding and generating Initial population: First, an array of variables called a chromosome
(or a unique solution) is considered to be optimized. Two variables of v, 02 are assigned to
the chromosome and a mapping practice named encoding is applied between the chromosome
and the solution space. An initial population of chromosomes is randomly created after the
representation of the candidate solutions.

b.  Fitness assignment: The mean squared error of all data set used for training is employed as a
fitness function to evaluate each chromosome in the population.

C. Selection: In this step, the most available triumphant individuals in a population are repeated.
The rate of repeat is proportional to their relative quality. In fact, chromosomes which have more
appropriate fitness have a higher chance to be chosen.

d.  Crossover: In this stage, two various solutions are putrefied; afterward, the components are
randomly combined in order to generate new solutions.

e. Mutation: Using a random way to alter a potential solution.

Replace: New generated population is utilized for the following generation.
g.  Stop criterion: This procedure will continue until an acceptable solution is obtained.

Table 2 lists the settings and parameters used in the current hybrid GA-LSSVM model. The final
values of y and o2 are 6765.87641 and 0.210787768 for viscosity, and 8765.56465 and 0.06587768 for
thermal conductivity, respectively. These values of y and 02 suggest that the current model is fairly
reliable to be employed as a predictive model.

Table 2. Basic parameter values of GA-LSSVM model for the prediction of viscosity and thermal
conductivity of Fe;O3/ethylene glycol-water nanofluid.

Type Value/Comment
Input layer 2
Output layer 1
Kernel function RBF kernel function

Number of datum used for training 100
Number of datum used for testing 26

GA Population size 1000

Max. number of generations 1000

Crossover rate 0.82

Mutation rate 0.02
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Figure 4. Flowchart of GA-based optimization algorithm to adjust the embedded parameters of
LSSVM model.

4. Results and Discussion

In this section, the results obtained for the viscosity and thermal conductivity of Fe,O3/ethylene
glycol-water nanofluid using the GA-LSSVM and PSO-ANN models are presented and compared
to the actual experimental values which are extracted from the references [43—45]. Performance of
each model in predicting the thermophysical properties is evaluated using various criteria. First,
to get a better insight into the general effects that concentration has on the viscosity and thermal
conductivity of Fe,O3/ethylene glycol-water nanofluid, their variation versus the concentration are
shown in Figure 5. As can be seen, for the considered range of concentration, viscosity and thermal
conductivity increase by volume fraction at both temperatures of 20 °C and 50 °C, and both EG/Water
ratios of 0.2 and 0.4. Moreover, for the case of EG/Water = 0.2, when the temperature increases from
20 °C to 50 °C, the viscosity of the nanofluid decreases while the thermal conductivity increases. These
effects of the volume fraction on the viscosity and thermal conductivity are well discussed in the
literature using experimental and numerical methods. Here, the performance of the GA-LSSVM and
PSO-ANN models are investigated to evaluate how well these predictive models can follow the same
trend observed in experiments for each parameter.

4.1. Viscosity

4.1.1. GA-LSSVM Model for Viscosity

Figure 6 represents a regression plot between the estimated values for the viscosity using LSSVM
approach and the experimental data. As can be seen, the obtained values by the model and actual
data are very close which indicates the high accuracy of the proposed model. To further evaluate
the accuracy of the LSSVM model, values of mean squared errors (MSE), average absolute relative
deviations (AARD), and determination coefficients (R?) are represented in Table 3. As indicated, R?
> 0.998, AARD < 2.9, and MSE < 0.5 are achieved for all data sets. In Figure 7, actual values and
model output for each data index are compared for the viscosity of the nanofluid. It can be seen
that the outputs of the model are reliable since they are in good agreement with experimental data.
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Furthermore, the absolute relative deviation of the obtained results from LSSVM versus actual data for
viscosity is shown in Figure 8. As shown in Figure 8, the highest relative deviation of the model output
from experimental data is approximately £5%. In addition, the estimated and experimental data of
dynamic viscosity of the nanofluid versus volumetric concentration at various temperatures are shown
in Figure 9. All presented results for various criteria demonstrate that the outputs of the model match
well with the experimental data for this specific system. In order to evaluate the importance of the
used variables on the viscosity of the nanofluid, a rigorous statistical approach is used which is known
as “analysis of variance (ANOVA)”. The results of this method are represented in Figure 10. It can be
concluded that the mass ratio of EG/water has a positive effect on the viscosity while the temperature
has the maximum negative effect. The same effects for temperature and volume fraction can be seen in
Figure 5 which has been discussed before.

3.000
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= : — = _ —A
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é [ — A= = —=A=
2 1.500 = =
g ; -
==
0.500
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Figure 5. Variation of viscosity (a) and thermal conductivity (b) versus volume fraction at different temperatures.
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Figure 6. Regression plot of the proposed vector machine model versus actual viscosity of /ethlyene

glycol-water nanofluid.

Table 3. Statistical parameters of the evolved LSSVM approach for determination of viscosity of
Fe;O3/ethylene glycol-water nanofluid.

Viscosity (mPa.s)

Training Set

R? 0.9995
Average absolute relative deviation 2.8194
mean square error 0.01387
N 100
Test Set
R? 0.9985
Average absolute relative deviation 2.1923
mean square error 0.433
N 26
Total
R? 0.9993
Average absolute relative deviation 2.7828
mean square error 0.0156
N 126
14.000
12.000 ?
10.000 f A
F 1
o \ 4 4
8.000 N A
Ag A A
6.000 ARANAAD
i . A BL
4.000 | ' f A B K
o \ ]
2.000 ?ﬂq ; ? A MA
0.000 MH————— :
0 20 40 60 80 100 120 140
Data Index
A Actual Data - --- LSSVM Output

Figure 7. Comparison between actual viscosity of Fe,Os/ethylene glycol-water nanofluid and
predicted values by Least Square Support Vector Machine (LSSVM) model versus relevant data index.
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Figure 8. Absolute relative error distribution of the obtained outputs from LSSVM model versus

corresponding viscosity of Fe;O3/ethylene glycol-water nanofluid data points.
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4.1.2. PSO-ANN Model for Viscosity

Performance of the PSO-ANN model in predicting viscosity is presented in this section and has
been compared with the GA-LSSVM model. In Figure 11, a regression plot between obtained data
using PSO-ANN model and actual data is represented. As can be seen, there are not sufficient data are
around the diagonal line (Y = X) which demonstrates that the model is not very accurate. Similar to the
previous section, the statistical criteria are used to assess the accuracy of the model. The values of mean
squared errors (MSE), average absolute relative deviations (AARD), and determination coefficients
(R?) are represented in Table 4. The superior performance of the LSSVM model in predicting viscosity
can be specifically seen when comparing the MSE and AARD values. In Figure 12, the obtained data
by applying the PSO-ANN model and the experimental data for each data index is compared. By
comparing Figure 12 to Figure 7, it can be concluded that to predict the viscosity, the accuracy of
PSO-ANN model is lower compared to the LSSVM model. Relative deviations of the PSO-ANN model
outputs versus actual data are shown in Figure 13. The highest relative error is approximately £+50%
which is not acceptable. In Figure 14, the comparison between PSO-ANN outputs and the experimental
data for dynamic viscosity is represented for various concentrations at different temperatures. Based
on the results in Figure 14, it can be seen more clearly that the outputs of the model do not follow the
actual data as accurate as the LSSVM model.

14

12 4 y=0.9072x-0.111
R>=0.9734

—_
(=]
I

O Data
it : R2=0.9734

PSO-ANN Output

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000
Experimental Viscosity (mPa.s)

Figure 11. Regression plot of the proposed PSO-ANN model versus actual viscosity of Fe;O3/ethylene
glycol-water nanofluid.
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Figure 12. Comparison between actual viscosity of Fe,O3/ethylene glycol-water nanofluid and
predicted values by PSO-ANN model versus relevant data index.
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Figure 13. Absolute relative error distribution of the obtained outputs from PSO-ANN model versus
corresponding viscosity of Fe,O3/ethylene glycol-water nanofluid data points.
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Figure 14. Comparison between PSO-ANN outputs and experimental viscosity of Fe;O3/ethylene
glycol-water nanofluid, versus volume fraction (%) at different condition.

Table 4. Calculated statistical indexes of the implemented intelligence-based approaches for the
viscosity of Fe,O3/ethylene glycol-water mixture determination.

Statistical Parameter LSSVM PSO-ANN
(MSE) 0.0156 0.3541
R? 0.9993 0.9734
AARD 2.7828 13.492
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4.2. Thermal Conductivity

4.2.1. GA-LSSVM Model for Thermal Conductivity

Similar to the approach used in the previous sections to evaluate the performance of the models in
predicting viscosity, the results for thermal conductivity are investigated in this section. The regression
plot between the estimated values of the thermal conductivity of Fe,Oz/ethylene glycol-water
nanofluid obtained by the GA-LSSVModel and the actual values are illustrated in Figure 15. Sufficient
accuracy is observed as the majority of the data are in the vicinity of the diagonal line. To further assess
this accuracy, the major statistical criteria are represented in Table 5. Values of R? > 0.94, AARD < 2.5,
and MSE < 0.00025 are achieved for all data sets. In Figure 16, the obtained data by the model and
experimental values are compared for each data index. As shown, the proposed model is accurate and
reliable since the outputs of the model follow the actual data precisely. The absolute relative deviation
of the model is presented in Figure 17 to get better insight into the deviation of output data versus
actual data for the thermal conductivity of the nanofluid. Based on the results, as the case for viscosity,
the highest relative deviation by the proposed model is approximately £5%. Moreover, in Figure 18,
model outputs and experimental data are depicted at various temperatures versus concentration. The
results are matched appropriately with experimental data. In the same approach used for viscosity, to
assess the relative importance of each input variable, the ANOVA technique is applied for the thermal
conductivity of the nanofluid. Obtained results, as shown in Figure 19, show that the mass ratio of
EG/water has the highest effect compared to other input variables.

0.7
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e
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o
o
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O Data
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e
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0_""I""I""I""I""I""I""I""
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Figure 15. Regression plot of the proposed vector machine model versus actual thermal conductivity
of Fe;O3/ethylene glycol-water nanofluid.
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Figure 16. Comparison between actual thermal conductivity of Fe,Os/ethylene glycol-water nanofluid
and predicted values by LSSVM model versus relevant data index.

6
<5 Qe o0m® e o o
° -
= L
240 ® ®oo®e o0
| I
5] L
23 | QMM HEDES 0O N0 00
[
E [
22 | GAAMS 00 00000 @SS ©
= n
S
21 A A\ A DO 00000 ®
0 b @A DO 0B O ———————

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800
Thermal Conductivity (W/mK)

®Training Data A Testing Data

Figure 17. Absolute relative error distribution of the obtained outputs from LSSVM model versus
corresponding thermal conductivity of Fe,O3/ethylene glycol-water nanofluid data points.
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Figure 18. Comparison between predicted and experimental thermal conductivity of Fe;O3/ethylene
glycol-water mixture, versus volume fraction (%) at different condition.
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Figure 19. Relative importance of each input variables on the thermal conductivity of Fe;O3/ethylene
glycol-water nanofluid.

4.2.2. PSO-ANN Model for Thermal Conductivity

Similar to dynamic viscosity, PSO-ANN approach is also applied to model the thermal
conductivity of the nanofluid. The regression plot between the model outputs and experimental
data is depicted in Figure 20. In comparison with the LSSVM approach, the share of data points
which are in the vicinity of the diagonal line is lower which shows that the model is not as precise as
GA-LSSVM. In Figure 21, both values, including experimental data and model outputs, are depicted for
each data index. By comparing this figure to Figure 16, it can be concluded that the differences between
model outputs and actual data are higher when using the PSO-ANN model. Absolute deviation
of the PSO-ANN model outputs versus experimental data is shown in Figure 22. The maximum
relative deviation is in the range of +20% which is much higher compared with the GA-LSSVM
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model. Moreover, outputs of PSO-ANN model and experimental data for various concentrations are
represented in Figure 23. It is clear that the accuracy of the obtained results is not acceptable. Major
statistical criteria to evaluate the accuracy of the PSO-ANN model in predicting thermal conductivity
is presented in Table 6. The considerable difference can be seen in the MSE, R?, and AARD values.
Therefore, it can be concluded that the PSO-ANN model is not as precise as LSSVM in predicting
thermal conductivity of the nanofluid.

Table 5. Statistical parameters of the evolved LSSVM approach for calculating thermal conductivity of
Fe;O3/ethylene glycol-water nanofluid.

Training Set
R? 0.9921
Average absolute relative deviation 2.43
mean square error 0.00021
N 100
Test Set
R? 0.942
Average absolute relative deviation 2192
mean square error 0.0001
N 26
Total
R? 0.9931
Average absolute relative deviation 2.3809
mean square error 0.00019
N 126
0.7
0.6
0.5 -
-
=
&
= i
) 0.4
Z
O Data
<03 - ,
2 —Best Fit: R?=0.9078
=™
0.2
0.1 1
0 T T T
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Figure 20. Regression plot of the proposed PSO-ANN model versus actual thermal conductivity of
Fe,O3/ethylene glycol-water nanofluid.
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Figure 21. Comparison between actual thermal conductivity of Fe,Os/ethylene glycol-water nanofluid

and predicted values by PSO-ANN model versus relevant data index.
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Figure 22. Absolute relative error distribution of the obtained outputs from PSO-ANN model versus

corresponding thermal conductivity of Fe,O3/ethylene glycol-water nanofluid data points.



Computation 2019, 7, 18 21 of 27

0.700
0.600

0.500

Thermal Conductivity (W/mk)
S
~
S
S

S o o o
o = D W
[ R = R ]
o o o O

0 0.2 0.4 0.6 0.8 1 1.2
Volume Fraction (%)

T =20 C and EG/Water = 0.2 (Experimental)
T =25 C and EG/Water = 0.2 (Experimental)
T =30 C and EG/Water = 0.2 (Experimental)
T =40 C and EG/Water = 0.2 (Experimental)
T =45 C and EG/Water = 0.2 (Experimental)
- - --T=20 C and EG/Water = 0.2 (PSO-ANN)
T =25 C and EG/Water = 0.2 (PSO-ANN)
- - - =T =30 C and EG/Water = 0.2 (PSO-ANN)
— — =T =40 C and EG/Water = 0.2 (PSO-ANN)

¢EEO>

Figure 23. Comparison between PSO-ANN outputs and experimental thermal conductivity of
FeyO3/ethylene glycol-water nanofluid, versus volume fraction (%) at different condition.

Table 6. Calculated statistical indexes of the implemented intelligence-based approaches for thermal
conductivity of Fe;O3/ethylene glycol-water nanofluid determination.

Statistical Parameter LSSVM PSO-ANN
(MSE) 0.00019 0.00338
R? 0.9931 0.9078
AARD 2.3809 10.761

4.3. Leverage Approach

It is crucial to determine the outlier of the proposed models for viscosity and thermal conductivity
of Fe,O3/ethylene glycol-water nanofluid to see the effects of uncertainties on the capability of these
methods. In order to achieve this goal, the approach of Leverage Value Statistics is used. The Graphical
Williams plot is used to determine the outliers using the determined H values from the outputs of the
GA-LSSVM approach. More details about the procedure of this method can be found in the literature.
The Williams plot is shown in Figure 24 for the obtained results by applying GA-LSSVM and PSO-ANN
approaches. As can be seen, GA-LSSVM model shows higher performance based on accuracy and
applicability range since the majority of the data are in the range of H [0, 0.12] and R [—3, 3]. Moreover,
it shows that all the applied data in the modelling are in the acceptable ranges.
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Figure 24. Detection of the probable doubtful measured viscosity and thermal conductivity data and
the applicability domain of the suggested approaches for the viscosity of Fe,O3/ethylene glycol-water
nanofluid. (a) GA-LSSVM model for viscosity prediction (b) PSO-ANN model for viscosity prediction
(c) GA-LSSVM model for thermal conductivity prediction (d) PSO-ANN model for thermal conductivity
prediction (the H* value is 0.12).

5. Conclusions

In the present study, two novel approaches, namely, GA-LSSVM and PSO-ANN are utilized to
predict the thermal conductivity and dynamic viscosity of Fe,O3/ethylene glycol-water nanofluids.
Various statistical tools are used to thoroughly evaluate the performance of each model in predicting
each thermophysical property. Regression plots, R?>, MSE, AARD, absolute relative deviation, and
one by one comparison of the outputs and actual data are presented in each section. Based on
all evaluations:

e  Resultsindicate that the accuracy of the GA-LSSVM model in predicting both thermal conductivity
and dynamic viscosity is much higher compared to the PSO-ANN model.

e  The highest relative deviations of the proposed GA-LSSVM model Fe,O3 viscosity and thermal
conductivity are approximately +5%.

e  The R?, MSE, and AARD values for the GA-LSSVM model are in satisfactory range in predicting
the viscosity and conductivity.

e  ANOVA technique implementation demonstrates that among various input variables, including
temperature, concentration, and the mass ratio of EG/water, the mass ratio has the most significant
effect on both thermal conductivity and dynamic viscosity.

Overall, based on the obtained results, it can be concluded that GA-LSSVM approach has a better
performance compared to the PSO-ANN models, and is a reliable tool for predicting the thermal
conductivity and dynamic viscosity of nanofluids.
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Abbreviations

AARD average absolute relative deviations
ANN Artificial neural network

ANOVA Analysis of Variance

BP Back Propagation

EOS Equation of state

GA Genetic Algorithm

HGAPSO Hybrid Genetic Algorithm and Particle Swarm Optimization
ICA Imperialist Competitive Algorithm
LSSVM Least Square Support Vector Machine
MAE Mean absolute error (MAE)

MSE Mean squared error (MSE)

PSO Particle swarm optimization

R? Coefficient of determination

RBF Radial Basis Function

UPSO Unified Particle Swarm Optimization
Variables

yP the average of the predicted data
yT the average of the actual data

b; bias

C unit conversion factor

C1 cognition component

¢ social components

e error = Actual — Model output

N the total number of data points

0j output

ri™ and rp" two random numbers

t ime, hr

Vi velocity of particle i

Wi Interconnection Weights in network model
Xi position of particle i

yif the output of the model

it the actual at the sampling point i
Greek Letters

v8 viscosity, cp

Y Regularization parameter

5 absolute relative error

o2 RBF parameter

® activation function

w the inertia weights

References

1.  Ahmadi, M.H.; Ghazvini, M.; Alhuyi Nazari, M.; Ahmadi, M.A.; Pourfayaz, F.; Lorenzini, G.; Ming, T.
Renewable energy harvesting with the application of nanotechnology: A review. Int. J. Energy Res. 2018.
[CrossRef]

2. Liang, M,; Liu, Y.; Xiao, B.; Yang, S.; Wang, Z.; Han, H. An analytical model for the transverse permeability
of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J.
Hydrogen Energy 2018, 43, 17880-17888. [CrossRef]

3.  Xiao, B.; Zhang, X.; Wang, W.E.I; Long, G.; Chen, H.; Kang, H.A.O.; Ren, W.E.N. A fractal model for water
flow through unsaturated porous rocks. Fractals 2018, 26, 1840015. [CrossRef]

4. Long, G.; Xu, G. The Effects of Perforation Erosion on Practical Hydraulic-Fracturing Applications. SPE J.
2017, 22, 645-659. [CrossRef]


http://dx.doi.org/10.1002/er.4282
http://dx.doi.org/10.1016/j.ijhydene.2018.07.186
http://dx.doi.org/10.1142/S0218348X18400157
http://dx.doi.org/10.2118/185173-PA

Computation 2019, 7, 18 25 of 27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Long, G, Liu, S; Xu, G.; Wong, S-W., Chen, H; Xiao, B. A Perforation-Erosion Model for
Hydraulic-Fracturing Applications. SPE Prod. Oper. 2018, 33, 770-783. [CrossRef]

Xiao, B.; Wang, W.E.L; Fan, J.; Chen, H.; Hu, X.; Zhao, D.; Zhang, X.; Ren, W.E.N. Optimization of
the fractal-like architecture of porous fibrous materials related to permeability, diffusivity and thermal
conductivity. Fractals 2017, 25, 1750030. [CrossRef]

Maddah, H.; Aghayari, R.; Mirzaee, M.; Ahmadi, M.H.; Sadeghzadeh, M.; Chamkha, A.J. Factorial
experimental design for the thermal performance of a double pipe heat exchanger using Al,O3-TiO;hybrid
nanofluid. Int. Commun. Heat Mass Transf. 2018, 97, 92-102. [CrossRef]

Kahani, M.; Ahmadi, M.H.; Tatar, A.; Sadeghzadeh, M. Development of multilayer perceptron artificial
neural network (MLP-ANN) and least square support vector machine (LSSVM) models to predict Nusselt
number and pressure drop of TiO, /water nanofluid flows through non-straight pathways. Numer. Heat
Transf. Part A Appl. 2018, 74, 1190-1206. [CrossRef]

Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in
solar energy. Int. |. Heat Mass Transf. 2013, 57, 582-594. [CrossRef]

Hemmat Esfe, M.; Saedodin, S.; Mahmoodi, M. Experimental studies on the convective heat transfer
performance and thermophysical properties of MgO-water nanofluid under turbulent flow. Exp. Therm.
Fluid Sci. 2014, 52, 68-78. [CrossRef]

Hemmat Esfe, M.; Saedodin, S.; Mahian, O.; Wongwises, S. Heat transfer characteristics and pressure drop of
COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int. ]. Heat Mass
Transf. 2014, 73, 186-194. [CrossRef]

Hemmat Esfe, M.; Akbari, M.; Karimipour, A.; Afrand, M.; Mahian, O.; Wongwises, S. Mixed-convection
flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering
temperature-dependent properties. Int. |. Heat Mass Transf. 2015, 85, 656—-666. [CrossRef]

Tabari, Z.T.; Heris, S.Z. Heat Transfer Performance of Milk Pasteurization Plate Heat Exchangers Using
MWCNT/Water Nanofluid. J. Dispers. Sci. Technol. 2015, 36, 196-204. [CrossRef]

Salimpour, M.R.; Abdollahi, A.; Afrand, M. An experimental study on deposited surfaces due to nanofluid
pool boiling: Comparison between rough and smooth surfaces. Exp. Therm. Fluid Sci. 2017, 88, 288-300.
[CrossRef]

Fang, X.; Chen, Y.; Zhang, H.; Chen, W.; Dong, A.; Wang, R. Heat transfer and critical heat flux of nanofluid
boiling: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 924-940. [CrossRef]

Minakov, A.V,; Pryazhnikov, M.L; Guzei, D.V.; Zeer, G.M.; Rudyak, V.Y. The experimental study of nanofluids
boiling crisis on cylindrical heaters. Int. ]. Therm. Sci. 2017, 116, 214-223. [CrossRef]

Keblinski, P.; Phillpot, S.; Choi, S.U.; Eastman, ]J. Mechanisms of heat flow in suspensions of nano-sized
particles (nanofluids). Int. ]. Heat Mass Transf. 2002, 45, 855-863. [CrossRef]

Machrafi, H.; Lebon, G. The role of several heat transfer mechanisms on the enhancement of thermal
conductivity in nanofluids. Contin. Mech. Thermodyn. 2016, 28, 1461-1475. [CrossRef]

Sheikholeslami, M.; Ganji, D.D. Numerical modeling of magnetohydrodynamic CuO—Water transportation
inside a porous cavity considering shape factor effect. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529,
705-714. [CrossRef]

Hemmat Esfe, M.; Hajmohammad, M.H. Thermal conductivity and viscosity optimization of
nanodiamond-CO304/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM. J. Mol. Lig. 2017,
238, 545-552. [CrossRef]

Abdullah, A.A.; Althobaiti, S.A.; Lindsay, K.A. Marangoni convection in water-alumina nanofluids:
Dependence on the nanoparticle size. Eur. |. Mech. B/Fluids 2018, 67, 259-268. [CrossRef]

Toghraie, D.; Chaharsoghi, V.A.; Afrand, M. Measurement of thermal conductivity of ZnO-TiO2/EG hybrid
nanofluid. J. Therm. Anal. Calorim. 2016, 125, 527-535. [CrossRef]

Dadjoo, M.; Etesami, N.; Esfahany, M.N. Influence of orientation and roughness of heater surface on critical
heat flux and pool boiling heat transfer coefficient of nanofluid. Appl. Therm. Eng. 2017, 124, 353-361.
[CrossRef]

Hemmat Esfe, M.; Hassani Ahangar, M.R,; Rejvani, M.; Toghraie, D.; Hajmohammad, M.H. Designing an
artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO, using experimental data.
Int. Commun. Heat Mass Transf. 2016, 75, 192-196. [CrossRef]


http://dx.doi.org/10.2118/174959-PA
http://dx.doi.org/10.1142/S0218348X1750030X
http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.07.002
http://dx.doi.org/10.1080/10407782.2018.1523597
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
http://dx.doi.org/10.1016/j.expthermflusci.2013.08.023
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.01.069
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.02.009
http://dx.doi.org/10.1080/01932691.2014.894917
http://dx.doi.org/10.1016/j.expthermflusci.2017.06.007
http://dx.doi.org/10.1016/j.rser.2016.05.047
http://dx.doi.org/10.1016/j.ijthermalsci.2017.02.019
http://dx.doi.org/10.1016/S0017-9310(01)00175-2
http://dx.doi.org/10.1007/s00161-015-0488-4
http://dx.doi.org/10.1016/j.colsurfa.2017.06.046
http://dx.doi.org/10.1016/j.molliq.2017.04.056
http://dx.doi.org/10.1016/j.euromechflu.2017.09.015
http://dx.doi.org/10.1007/s10973-016-5436-4
http://dx.doi.org/10.1016/j.applthermaleng.2017.06.025
http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.04.002

Computation 2019, 7, 18 26 of 27

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Sadatsakkak, S.A.; Ahmadi, M.H.; Ahmadi, M.A. Implementation of artificial neural-networks to model the
performance parameters of Stirling engine. Mech. Ind. 2016, 17, 307. [CrossRef]

Gholipour Khajeh, M.; Maleki, A.; Rosen, M.A.; Ahmadi, M.H. Electricity price forecasting using neural
networks with an improved iterative training algorithm. Int. |. Ambient Energy 2018, 39, 147-158. [CrossRef]
Ahmadi, M.H.; Ahmadi, M.A.; Ashouri, M.; Razie Astaraei, F.; Ghasempour, R.; Aloui, F. Prediction of
performance of Stirling engine using least squares support machine technique. Mech. Ind. 2016, 17, 506.
[CrossRef]

Pourkiaei, S.M.; Ahmadi, M.H.; Hasheminejad, S.M. Modeling and experimental verification of a 25W
fabricated PEM fuel cell by parametric and GMDH-type neural network. Mech. Ind. 2016, 17, 105. [CrossRef]
Ahmadi, M.H.; Ahmadi, M.A.; Nazari, M.A.; Mahian, O.; Ghasempour, R. A proposed model to predict
thermal conductivity ratio of AI203/EG nanofluid by applying least squares support vector machine
(LSSVM) and genetic algorithm as a connectionist approach. J. Therm. Anal. Calorim. 2018, 1-11. [CrossRef]
Ahmadi, M.H.; Nazari, M.A.; Ghasempour, R.; Madah, H.; Shafii, M.B.; Ahmadi, M.A. Thermal Conductivity
Ratio Prediction of Al,O3/water Nanofluid by Applying Connectionist Methods. Colloids Surf. A Physicochem.
Eng. Asp. 2018, 541, 154-164. [CrossRef]

Ahmadi Nadooshan, A.; Hemmat Esfe, M.; Afrand, M. Prediction of rheological behavior of
S5i02-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J. Therm. Anal. Calorim.
2018, 131, 2741-2748. [CrossRef]

Alirezaie, A.; Saedodin, S.; Esfe, M.H.; Rostamian, S.H. Investigation of rheological behavior of MWCNT
(COOH-functionalized)/MgO - Engine oil hybrid nanofluids and modelling the results with artificial neural
networks. J. Mol. Lig. 2017, 241, 173-181. [CrossRef]

Hemmat Esfe, M.; Esfandeh, S.; Saedodin, S.; Rostamian, H. Experimental evaluation, sensitivity analyzation
and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering
applications. Appl. Therm. Eng. 2017, 125, 673-685. [CrossRef]

Afrand, M.; Hemmat Esfe, M.; Abedini, E.; Teimouri, H. Predicting the effects of magnesium oxide
nanoparticles and temperature on the thermal conductivity of water using artificial neural network and
experimental data. Phys. E 2017, 87, 242-247. [CrossRef]

Ahmadi, M.H.; Banihashem, S.A.; Ghazvini, M.; Sadeghzadeh, M. Thermo-economic and exergy assessment
and optimization of performance of a hydrogen production system by using geothermal energy. Energy
Environ. 2018, 29, 1373-1392. [CrossRef]

Mohammadi, A.; Ashouri, M.; Ahmadi, M.H.; Bidi, M.; Sadeghzadeh, M.; Ming, T. Thermoeconomic analysis
and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle. Energy Sci.
Eng. 2018, 6, 506-522. [CrossRef]

Ahmadi, M.A.; Ebadi, M.; Shokrollahi, A.; Majidi, S.M.]. Evolving artificial neural network and imperialist
competitive algorithm for prediction oil flow rate of the reservoir. Appl. Soft Comput. 2013, 13, 1085-1098.
[CrossRef]

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]

Suykens, J.A.K.; Van Gestel, T.; De Brabanter, J. Least Squares Support Vector Machines; World Scientific:
Singapore, 2002; ISBN 9812381511.

Ramezanizadeh, M.; Ahmadi, M.A.; Ahmadi, M.H.; Alhuyi Nazari, M. Rigorous smart model for predicting
dynamic viscosity of A1203/water nanofluid. J. Therm. Anal. Calorim. 2018, 1. [CrossRef]

Baghban, A.; Kahani, M.; Nazari, M.A.; Ahmadi, M.H.; Yan, W.-M. Sensitivity analysis and application of
machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through
coils. Int. J. Heat Mass Transf. 2019, 128, 825-835. [CrossRef]

Baghban, A.; Pourfayaz, F; Ahmadi, M.H.; Kasaeian, A.; Pourkiaei, S.M.; Lorenzini, G. Connectionist
intelligent model estimates of convective heat transfer coefficient of nanofluids in circular cross-sectional
channels. . Therm. Anal. Calorim. 2018, 132, 1213-1239. [CrossRef]

Syam Sundar, L.; Venkata Ramana, E.; Singh, M.K_; De Sousa, A.C.M. Viscosity of low volume concentrations
of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem. Phys. Lett. 2012, 554,
236-242. [CrossRef]

Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity of ethylene glycol and water mixture based
Fe304 nanofluid. Int. Commun. Heat Mass Transf. 2013, 49, 17-24. [CrossRef]


http://dx.doi.org/10.1051/meca/2015062
http://dx.doi.org/10.1080/01430750.2016.1269674
http://dx.doi.org/10.1051/meca/2015098
http://dx.doi.org/10.1051/meca/2015050
http://dx.doi.org/10.1007/s10973-018-7035-z
http://dx.doi.org/10.1016/j.colsurfa.2018.01.030
http://dx.doi.org/10.1007/s10973-017-6688-3
http://dx.doi.org/10.1016/j.molliq.2017.05.121
http://dx.doi.org/10.1016/j.applthermaleng.2017.06.077
http://dx.doi.org/10.1016/j.physe.2016.10.020
http://dx.doi.org/10.1177/0958305X18779573
http://dx.doi.org/10.1002/ese3.227
http://dx.doi.org/10.1016/j.asoc.2012.10.009
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/s10973-018-7916-1
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.041
http://dx.doi.org/10.1007/s10973-017-6886-z
http://dx.doi.org/10.1016/j.cplett.2012.10.042
http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.08.026

Computation 2019, 7, 18 27 of 27

45.

46.

47.

48.

49.

50.

51.

Sonawane, S.S.; Juwar, V. Optimization of conditions for an enhancement of thermal conductivity and
minimization of viscosity of ethylene glycol based Fe304 nanofluid. Appl. Therm. Eng. 2016, 109, 121-129.
[CrossRef]

Ahmadi, M.A.; Ebadi, M.; Hosseini, S.M. Prediction breakthrough time of water coning in the fractured
reservoirs by implementing low parameter support vector machine approach. Fuel 2014, 117, 579-589.
[CrossRef]

Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International
Conference on Neural Networks, Perth, Australia, 27 November—-1 December 1995; Volume 4, pp. 1942-1948.
Zeugmann, T.; Poupart, P.; Kennedy, J.; Jin, X.; Han, J.; Saitta, L.; Sebag, M.; Peters, ]J.; Bagnell, J.A,;
Daelemans, W.; et al. Particle Swarm Optimization. In Encyclopedia of Machine Learning; Springer US: Boston,
MA, USA, 2011; pp. 760-766.

Kennedy, ]. Swarm Intelligence. In Handbook of Nature-Inspired and Innovative Computing; Kluwer Academic
Publishers: Boston, MA, USA, 2006; pp. 187-219.

Ahmadi, M.A; Ebadi, M. Evolving smart approach for determination dew point pressure through condensate
gas reservoirs. Fuel 2014, 117, 1074-1084. [CrossRef]

Fazeli, H.; Soleimani, R.; Ahmadi, M.-A.; Badrnezhad, R.; Mohammadi, A.H. Experimental Study and
Modeling of Ultrafiltration of Refinery Effluents Using a Hybrid Intelligent Approach. Energy Fuels 2013, 27,
3523-3537. [CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.applthermaleng.2016.08.066
http://dx.doi.org/10.1016/j.fuel.2013.09.071
http://dx.doi.org/10.1016/j.fuel.2013.10.010
http://dx.doi.org/10.1021/ef400179b
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Artificial Neural Network 
	Least Squares Support Vector Machines 

	Developed Models 
	ANN Model 
	Data Distribution (Training and Testing Subsets) 
	Training Method and Transfer Functions 
	ANN Structure 

	LSSVM Model 
	Data Distribution (Training and Testing Subsets) 
	Kernel Function 
	Optimization Approach to Tune the Embedded Parameters (  and 2 ) 


	Results and Discussion 
	Viscosity 
	GA-LSSVM Model for Viscosity 
	PSO-ANN Model for Viscosity 

	Thermal Conductivity 
	GA-LSSVM Model for Thermal Conductivity 
	PSO-ANN Model for Thermal Conductivity 

	Leverage Approach 

	Conclusions 
	References

