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Abstract: In recent times, the subject of effective cooling have become an interesting research topic
for electronic and mechanical engineers due to the increased miniaturization trend in modern
electronic systems. However, fins are useful for cooling various low and high power electronic
systems. For improved thermal management of electronic systems, porous fins of functionally graded
materials (FGM) have been identified as a viable candidate to enhance cooling. The present study
presents an analysis of a convective-radiative porous fin of FGM. For theoretical investigations,
the thermal property of the functionally graded material is assumed to follow linear and power-law
functions. In this study, we investigated the effects of inhomogeneity index of FGM, convective and
radiative variables on the thermal performance of the porous heatsink. The results of the present
study show that an increase in the inhomogeneity index of FGM, convective and radiative parameter
improves fin efficiency. Moreover, the rate of heat transfer in longitudinal FGM fin increases as 8
increases. The temperature prediction using the Adomian decomposition method is in excellent
agreement with other analytical and method.

Keywords: functionally graded materials; heatsink; porous media; thermal management

1. Introduction

Increased miniaturization in modern consumer electronics has motivated research on thermal
management of high-performance microprocessor-based systems by mechanical and electronic
designers. High computational performance of electronic systems usually demands increased
power and on-chip power density requirements, both of which involve increased heat dissipation.
However, to achieve effective cooling of electronic systems, fins are used as passive approach to
reduce thermally-induced failures in electronic components. Moreover, porous fins are established
to exhibit improved performance over solid fins following the research discovery by Kiwan et al. [1].
Consequently, there are diverse works on the subject of fin using different materials, profiles,
orientation and operating conditions in the literature [2-9].

Different works, in recent times, have conducted research using the analytical, numerical
and experimental methodology to investigate the effects of various thermal parameters on fin
performance [10-16]. Seyf et al. carried out computational analysis of nanofluid effects on convective
heat transfer of micro-pin-fin heatsinks [17]. Fazeli et al. experimentally and numerically examined
the effect of using silica nanofluid on heat transfer in a miniature heat sink [18]. Other have studied
these methodologies to investigate the effects of conventional airflow properties and features of
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channel cross-section as an approach to enhance heat transfer via heat sinks. Such studies include Kim
and Mudawar which develop analytical heat diffusion models for different microchannel heatsink
cross-sectional geometries as a means to investigate heat transfer enhancement [19]. Naphon et al.
present a numerical investigation of the convective heat flow and pressure drop in mini-fin and
microchannel heat sink for central processing unit cooling [20,21]. Kim and Kim investigate the fluid
flow and the characteristics of heat transfer in cross-cut heatsinks [22]. Oguntala et al. present various
numerical investigations on the effects of particle deposition, surface roughness, porosity and magnetic
field on the thermal performance of porous micro-fin and longitudinal heatsinks [23-25]. Wan et al. [26]
present an experimental analysis of flow and heat transfer in a miniature porous heat sink for high
heat flux applications. These studies explore the convective, radiative and various thermal parameters
of the heatsink using the properties of conventional airflow, features of channel cross-section, variable
geometries and air flow paths.

Nevertheless, the use of materials of changing composition, microstructure, or porosity across the
material volume has been identified as a reliable candidate for improving the thermal performance of
heat sinks. Such inhomogeneous materials of varying physical properties including electrical, chemical,
mechanical, magnetic and thermal properties over the volume of the bulk material are referred to as
functionally graded material (FGM). The continuous variations in properties in FGM along a specific
axis are based on the porosity and pore size, chemical, and microstructural gradient-structures resulting
in its increased popularity for various applications including nuclear, automobile structure, aerospace
and optoelectronics.

With the thermal capabilities of FGM, its application as heatsink fin would serve as a viable cooling
material. However, an in-depth review of existing work shows that research on the application of FGM
for heatsink design is not exhaustive in the literature. Therefore, the present work is motivated by the
capabilities of FGM and several established thermal characteristics of porous fins. The present work
focuses on the analysis of a porous FGM heatsink operating under a convective-radiative environment
for improved cooling low and high power electronic systems. The thermal property of FGM is assumed
to follow linear and power-law functions. The developed thermal models are solved using Adomian
decomposition method (ADM). The approximate analytical solutions are used to study the effects of
inhomogeneity index of FGM, convective and radiative parameters on the thermal performance of the
porous heat sink.

The paper is organized as follows: the fin problem is formulated in Section 2. A detailed
description of ADM used for the nonlinear heat transfer analysis is presented in Section 3. The fin
efficiency is presented in Section 4. The developed results of the present study are presented and
discussed in Section 5. The conclusions of the study are summarized in Section 6.

2. Formulation of the Model

We consider a porous fin made of FGM as shown in Figure 1. The geometrical dimensions
of the fin are given as: length L, width W and thickness ¢, with both faces of the fin exposed to a
convective-radiative environment at temperature Teo.

Assume the porous medium is homogeneous, isotropic, and saturated with single-phase fluid
and the physical properties of solid as well as fluid are considered as constant. The fluid and porous
medium are locally in the thermodynamic domain. The surface radiative transfers and non-Darcian
effects are negligible. The temperature variation inside the fin is one-dimensional, that is, temperature
varies along the length only and remains constant with time. There is no thermal contact resistance at
the fin base and the fin tip is of adiabatic type.
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Figure 1. Schematic representation of the fin problem under investigation.

Using the above assumptions, the energy balance of the fin [23] is expressed as:
) .
Jx — (qx + (S}chx) = 1icy(T — T,) + hP(1 — &) (T — T,)dx + 0eP(T* — T, )dx 1)

The mass flow rate of the fluid passing through the porous material is expressed as:

m = pu(x)Wdx @)
and from the Darcy model
K
u(x) = %(T —T,) ®3)

Equation (1) becomes

K
Gx — (qx + jzdx) - pc”f B (T = T, dx + hP(1 —&)(T - To)dx + 0eP(TS — THax (@)

However, as dx—0, Equation (4) reduces to

_dq _ pcpgKp
dx v

(T —T,)* + hP(1 —&)(T — T,) + ceP(T* — T%) (5)

From Fourier’s law of heat conduction, the heat flow in the fin with FGM is expressed as:

daT
q= _keff(x)AcrE (6)
where
kepr(x) = Pk + (1 — ¢)ks )
d aTr cpgK
(b ) = ISR T T (T - T (=T @
simplifying Equation (8) gives the governing differential equation of the fin as:
d dT\  pcpgKp 2 h(1-7%) O 4 4
dx<keff(x)dx> ?(T T,) n (T-Ta) T(T 1) )
The boundary conditions are
— 00 4T _
x =0, =

(10)
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When the Temperature Difference in the Fin is Small during Heat Flow

The scenario considered in this section is one where a small temperature difference exists within
the material during the heat flow. Such condition necessitates the use of temperature-invariant physical
and thermal properties of the fin. Moreover, under such condition, it is established that the term T*
can be expressed as a linear function of temperature [27]. Therefore, we have;

T4 = T2 + 4T3 (T — Too) + 6T2 (T — Too)* + ... X 4TS T — 3T2 (11)
On substituting Equation (11) into Equation (9), we arrived at

d < dT>_pcpgKﬁ(T_T)2_h(1—E)
“ t

_ 40¢ePT]
t

(T_Ta) (T_Tu> =0 (12)

ax \Kerr () 70 o

For the FGM fin, the spatial-dependent thermal conductivities is established [28] as follows:
Exponential-law function

keff(x) = ko exp1=(1)) (13)
Power-law function ;
X\ —
kefp = ko(7) (14)

where « <0and B> 0.
On substituting the following dimensionless parameters in Equation (15) into Equations (12)—(14)

_ _T-T, _ gkB(Ty—Two)b __ pbh _ 40T3 _ 40bT3
X = %’6 - Tb—Tu’Ra =4 £ fo/ky ) ’NC - A’;keff’R - 3ﬂikgff’N - (;('Eff 4
H— (TmBguz N2 _ q:)/,bz _ Teo (15)
T k&' T Ry (T-Ta) T T =T
The dimensionless forms of the governing equation in Equation (12) is expressed as:
Exponential law function
d | a1-x)db 2 _
X [e TX Raf” — Nc(1—-2)0 — Nrf =0 (16)
Power-law function
d dae
Bl —B) | — Rab? — —80 — =
= {(X )dx} Ra6* — Ne(1—2)0 — Nrf = 0 (17)
on expanding Equations (16) and (17), we obtain
Exponential law function
d’6 df
—aX —aX - 2
_— - — = R 1-— = 1
e e gy e ( a6”+ Nc(1—¢)0 + NrQ) 0 (18)
Power-law function
d%6 df
_ﬁi — _‘6_17 — 2 — —_ —_ —
X e BX 7% Ra” — Nc(1—€)0 —Nr6 =0 (19)
and the dimensionless boundary conditions are
a6
X =0, =0 (20a)
X=10=1 (20b)

For a solid fin, i.e., the non-porous fin of FGM, the governing differential equations are
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Exponential law function

e—ch d29 o (Xe—zxX do

ﬁ ﬁ—e_“(NC(l—a-i—NT)Q:O (21)
Power-law function
ﬁjxgz ﬁX‘ﬁ‘lj—; —(Nc(1—28)+Nr)d =0 (22)

An approximate analytical solution can easily be developed using Bessel function and mean-value
theorem such that Equations (21) and (22) becomes:
Exponential-law function

1) (3\/ (Nc2 + Nr + Ma?2) ) (%\/ Nc2+Nr+Ma2)e2>

I \/ s+ Nc2 + Nr + Ma? )) 1( c2+Nr+Ma2)eT>
(% (N c2+Nr+Ma2> (% (N62+Nr+Ma2))e%
+1o(3+/ (N + Nr+ Ma?) ) Ki (3 /(N + Nr + Ma?) ) e

(23)

;
B

Power-law function

f)
1y | P17 g NN () 0P IBR) P e N (2 s(1) 1/ T 2 J
7{( p() T i ) {( Dy ‘277' B : ) ( \\jﬁ(zﬁ@)ilmm (3 )(14@}}
0(X) = PR 5 -1, [ 1 p (24)
3"y [8) T e enn (3) -8+ [ v n () }
B

zm or PO

(1) ") P ro@n) P\ f (a1 P e (3) ?
- EON o e

It should be noted that the first and second kinds of Bessel and modified Bessel functions are
expressed as:

o (1 2rtv o (y_p1)(2)¥ s 1 2r+n
Yi(z) = %(EO%)M(%) - %EO# - %IZO%W(HH D+y(r+1)],
00 2r+v
I'/(Z) = rEO r!I'(zv)+r+1) (25)
v 0 z)2rtv v_r—1 2r—v @ 71r£27+n
Ku(2) = (7 E bl ) m3) + 4 £ S g £ SR v )+ 1)

3. Analysis of Nonlinear Heat Transfer Equation Using the Adomian Decomposition Method

The nonlinearity in the governing Equations (18) and (19) poses a computational challenge in
developing a closed-form solution of the nonlinear heat transfer equations. However, the application
of approximate analytical methods such as Adomian decomposition method (ADM) is efficient to
overcome such computational challenge. The section discusses the ADM, which is used to solve the
developed thermal model.

Principle of ADM

The analytical solutions obtained in Equations (23) and (24) are closed-form solutions of the
linearized form of the nonlinear model of the present study. However, when the nonlinear term is
incorporated, the developed analytical scheme (special functions) fails. This necessitates the need
for an alternative analytical scheme as the numerical approach is employed for verification. ADM
is employed in the present study because it transforms only the nonlinear terms into an Adomian
function with all the linear terms preserved which increases the accuracy of the method. However,
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a strong limitation of ADM is the ability to obtain the right Adomian level, which when obtained,
speeds up the convergence of the required solution.
To discuss the principle of ADM, we express its general nonlinear equation in the form:

Lu+Ru+Nu=g (26)

In Equation (26), the linear terms are decomposed into L + R, with L taken as the highest-order
derivative that is easily invertible and R as remainder of the linear operator of less derivative order
than L. In addition, g represents the source term, u is the system output and Nu represents the nonlinear
terms, which is assumed to be analytic. L~! is the inverse operator of L and is defined by a definite
integration from O to x, i.e.,

- /0 F(x)dx (27)

If L is a second-order operator, then L~ 1 is a two-fold indefinite integral i.e., L~1 could be

expressed as:
X X
- / / F(x)dxdx (28)
0 JO

By applying the inverse operator L~ to both sides of Equation (26), and using the given conditions,
the resulting equation is expressed as:

u=pu(x)— L 'Ru— L 'Nu (29)

where y(x) = Ay + L™1g and A are terms arising from integrating the source term g(x).
The Adomian method decomposes the solution u(x) of Equation (29) into a series form as:

U=y up (30)
m=0
and the nonlinear term as -
Nu= Y Ay (31)
m=0

where A;,’s are Adomian’s polynomials of ug, uy, ..., uy and are obtained for the nonlinearity
Nu = f(u) from the recursive formula

1 [dm 1 i _
An = @], = l%m(zxm>tﬂm_QLZ&"' >

where ( is a grouping parameter of convenience.
The ADM defines the solution of the function f(x) to be approximated as:

= Y ful®) 33)
m=0

by applying ADM to Equations (18) and (19), we obtain
Exponential law function

d29 _ X 2 de
e e (Ra@ +Nc(1—§)9+NrG) tass (34)
Power-law function
d?6 1 d6
- B 2 _
T = BX T X (Rae + Ne(1 “)9+Nre) (35)
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However, the differential forms of Equations (34) and (35) is expressed as:
Exponential law function

do
Lyf = %X (Ra92 +Nc(1—8)0+ Nre) +a (36)
dx
Power-law function
Lx0 = 5x—15—)9( + XPRa6* + XPNc(1 —8)6 + XPNro (37)

dd% is the linear second-order differential operator that is invertible.

On applying the inverse operator, L3! on both sides of Equations (36) and (37), we obtain:
pplymg P X q

Exponential law function

where Ly =

0(X) = 0(0) + e “RaLy" (eax92> +e*Ne(1-2)Ly! (e”‘X6> +e *NrLy! (e"‘XG) +aLy! <§f{) (38)

Power-law function
0(X) = 0(0) + BLy" (lef() + RaLy (XP6?) + Ne(1 - &)Ly (XPo) + NrLx! (xPo)  (39)

where L;l = fOX fOX (e)dXdX and 0(0) is the dimensionless tip temperature of the fin, which is denoted
as 6.
The unknown 6,,, m > 1 is decomposed into a sum of components defined by the decomposition
seriesas 6 = Y Oy.
m=1
Therefore Equations (38) and (39) becomes:
Exponential law function

Y O = 0p + e “RaLy’ (e"‘x r Am> +e™*Ne(1—%)Ly' <e"‘x r em) +e *NrLy' <e"‘x r 9m> +v¢L;(1< r ‘%) (40)
m=1 m=1 m=1 m=1 m=1

Power-law function

8(X) = 6o + BLx" <X*1 Y %) + RaLy! <X5 ¥ A,,,) + Nc(1-#)Ly! (xﬂ Y 9m> + NrLy! (xﬁ » 9m> (41)
m=1 m=1 m=1 m=1
To determine the higher order terms, Equations (40) and (41) can be written as with a recursive
relationship as:
Exponential law function

O = 00+ e “RaLyx ("X Ay, 1) + e “Ne(1 —8) Lt (e*X0,-1) + e “NrL (e %0,-1) + aLy’ (d(;’g(’l) (42)

where m > 1.
Power-law function

8(X) = 0o + Ly (x—ld%—gl) + RaLy (XPAy_1) + Ne(1 — &)Ly (XPOy_1) + NrLy' (XPO,_1) (43)
Here, the Adomian polynomials for the nonlinear terms are given as follows

Ag = F(6o)
Ay = 6,F'(6)
Ay = 921:/(90) + %Q%F” (90)
Az = 93F/(90) + 9192F”(90) + %G%F’” (90)

(44)
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Ay = 62
Ay = 2606,
Ay = 2000, + 62

A3z = 26065 + 20,0, 45

using the Adomian decomposition scheme in Equation (45) and considering 15 Adomian terms for the
nonlinear part of the model, the approximate analytical solution for the exponential law is expressed as:

G(X) = 6+ w@kﬂ(x —a2X?2 _ 40X — 4)
+90[90Ra+(1\]c( ~)+N’2H290R“+<Nc(17§)+1\]")] (ezaX — 4aXe*X 4 468X _opX — 5)
09l6oRa+(Ne(1-8)+Nr)] | [260Ra + (Nc(1—%) + Nr)]2
36 +46,RalBRa + (Nc(1 — &) + Nr)]
 GyldoRar (Ne(1-)1Nr)] | [BoRa+ (Nc(1—2) + Nr)J?
4ab +20,Ra(6pRa + (Nc(1 —€) + Nr)]
¢ BolfoRa+(Ne(1-2)+Nr)] [260Ra + (Nc(1 — ) + Nr)J?
8a —460,RalfpRa + (Nc(1 —€) + Nr)]
 GlfoRa+(Ne(1-8)4Nr)] | [BoRa + (Ne(1 — &) + Nr))?
206 —48,Ra[BpRa + (Nc(1 —€) + Nr)]
00[0pRa+(Nc(1—8)+Nr)] 460Ru[90Ru + (NC(] — E’) + NV)] aX _ % 1
- 4 [26Ra+ (Ne(1—) +Nn2 (€ 2K
+90Ra[9oRﬂ+(1:g(1*§)+Nr)]2 (uZXzeaX —4Xe*X 4 6etX _ 2y X — 6) +

+ (34X —3aX — 1)

(aXe?X — 22X + aX +1)
(2% — 20X — 1) (46)

(aXe?X — 262X + aX 4 2)

Moreover, we show that the solution for the power-law for § = —1/2is:
0(X) = )+ 460[60Ra + (Ne(1—8) + Nr)| 5

+6490[90Rﬂ -+ (NC(l — N) + N?’)] [ZGORH + (Nc(l — a + Nr)]%?

7[260Ra + (Nc(1 — &) + Nr)]? }

X9/2
+56,Ra[6gRa + (Nc(1 —8) + Nr)] [ 47)

+2560[6gRa + (Nc(1 —€) + Nr)]

6o[0oRa + (Nc(1 —¥€) + Nr)][260Ra + (Nc(1 —€) + Nr)] o
208 {35[260Ra + (Ne(1 — #) + Nr)? + 1096, RaffoRa + (Ne(1 —) + Nn)]} [ 127+

It is worth noting that for homogenous porous fin, 8 = 0.

8(X) = 6o+ 6o[foRa+ (Nc(1—7) + Nr)| 3¢
+60[80Ra + (Ne(1 — &) + Nr))[260Ra + (Ne(1 — ) + Nr)| X¢
[260Ra + (Ne(1 —2) + Nr))? }Xe (48)
+68,Ra[fgRa+ (Nc(1—2) +Nr)] [
6p[6pRa + (Nc(1 —%) + Nr)][260Ra + (Nc(1 —€) + Nr)]
{ -{[200Ra + (Nc(1 =) + Nr)J2 + 66,Ra[fRa + (Nc(1 — 8) + Nr)]} }

+[6pRa + (Nc(1—%¢) + Nr)]

X8
4.

6 is the unknown dimensionless tip temperature of the fin, which can be determined by applying
Equation (20b).

1=0p+ 409[6oRa+ (Nc(1—%)+ Nr)l%
+6469[0gRa + (Nc(1 — &) + Nr)][260Ra + (Ne(1 — &) + Nr)] &
7[260Ra + (Nc(1 — &) + Nr)]?
+25689[6pRa + (Nc(1 — %) + N’)]{ +56’2Ra[60Ra + (Ne(1—7%) + Nr)] }
6o[0oRa + (Nc(1 —€) + Nr)|[200Ra + (Nc(1 —€) + Nr)]
{35[260Ra + (Ne(1 ) + N»)J? + 1098,RaléoRa + (Ne(1 ) + Nr)J} (12

(49)

p=(l

+2048 {
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The exponential law in Equation (46) becomes

M(%a — % —4u—4)

242

- GoltbRoct (Ne(1—8)Nn)|200Ra+ (Ne(L—9 N (20 _ g ;r 4e* — 20 — 5)

, foleoRa+(Ne(1-8)+Nr)] | [200Ra + (Ne(1 =€) + N7)] (e
36n° +46,Ra[fgRa + (Nc(1 — &) + Nr)]

_ 6glooRa+(Ne(1-8)+Nr)] | [6oRa+ (Ne(1—2) + Nr)?
4 +26,Ra[BRa 4 (Nc(1 — &) + Nr)]

l=90+

—3a—1)

(ac™ — ™ +a+1)

| SoldoRat(Ne(1-g) enn)] | [260Ra + (Ne(1 =) + Nr)P® (2 —20—1) (50)

8a® —46,Ra[ByRa + (Nc(1 — &) + Nr)]
2

_ BolfoRa+(Ne(1-8)+Nn)] | [foRa + (Ne(1 —€) + Nr)] 20 _pp2n 2

225 —4,RalfRa + (Nc(1 — &) + N7)] (ae® 26 +a+2)
4 folfoRa-+(Ne(1-8)+Nr)] 46,Ra[fpRa + (Nc(1 —€) + Nr)] (@ —a—1)

Iy —[269Ra + (Nc(1 — &) + Nr))?

+9°Ra[9°R“+(ZI§(17a+Nr)]Z (a%e* — 4™ + 6e" — 20— 6) + ...

while the homogenous porous fin where = 0.

6(X) = 6o+ 6p[8oRa+ (Nc(1—2) + Nr)) X7
+60[8Ra + (Nc(1 — &) + Nr)][20pRa + (Nc(1 —2) + Nr)| X¢

a C — & r 2 6
+[60Ra + (Nc(1 —€) + Nr)] [jz%fzzgegug(wzﬁla)h ) }}é (51)

00[00Ra + (Nc(1 — &) + N7)][26pRa + (Nc(1 — &) + Nr)] ;
{[200Ra+ (Ne(1 - 7) + Nr)]? + 66, RafdoRa + (Ne(1—) + N} 5~

The values of the thermogeometric parameter, 6 are determined from Equations (50) and (51)
using the Newton-Raphson iterative method.

4. Fin Efficiency

As established from previous works, the instantaneous total surface heat loss is the sum of the
convective and radiative losses together with heat loss due to porosity and is expressed in Equation
(41) as:

L
KBP
Qactua / |:hP 1 - T TOO) pcpgv ﬁ (T - Ta)z + 0'8P(T4 - T;L) (52)
0

The ideal fin heat transfer is the heat transfer from the fin when the entire fin surface operates at
the fin base temperature. Thus, the idea heat transfer from the fin is given as:

Ty — T,)? + 0ePL(T} — T) (53)

cp3KBP
Quea = WPL(L ~8)(Ty — Tue) + E2E5PE

Therefore, fin efficiency # could be expressed as the ratio of the actual rate of heat transfer of the
fin to the rate that would be if the entire fin is at base temperature expressed as:

L
f[hP (1-8)(T - T)+%(T—Ta)2+asp(T4—T§)]dx
0

Q
= Q ! = pcpgKBP 2 4 (54)
max hPL(1 —€)(Ty — Teo) + =25~ (T, — Tp)” + 0ePL(T, — T¢)
The dimensionless form of Equation (30) is given in Equation (31):
Jo {M20+ 5,62 + Nre[ (0 + Cr)* — C4] bax o)
]7 =

M2 +S;, + Nr, [(1 rCr)t - cﬂ
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5. Results

The results of ADM for the comparison of the porous fin of homogeneous material (HM) and
porous fin of FGM are presented in Figures 2—6. The figures highlight the effects of various thermal
parameters of the fin.
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Figure 2. Fin dimensionless temperature profile for varying thermo-geometric parameter under
linear-law function when: (a) Nr = 0.0, Ra = 0.01, Nc = 1.0; (b) Nr = 0.2, Ra = 0.01, Nc = 1.0; (c) Nr = 0.1,
Rd =0.01, Nc =1.0; (d) Nr=0.1, Ra =0.01, Nc = 1.2; (¢) Nr =0.1, Ra = 0.01, Nc = 1.5; and (f) Nr =0.2,
Ra=0.01, Nc=12.
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Figure 3. Fin dimensionless temperature profile for varying thermo-geometric parameter under
linear-law function when: (a) Nc = 0.5, Ra = 0.01, Nr =0.0; (b) Nc = 0.1, Ra =0.01, Nr=0.2; (¢c) Nc =0.1,
Ra =0.01, Nr=0.4; (d) Nc =0.2, Ra =0.01, Nr = 0.3; (e) Nc = 0.5, Ra = 0.01, Nr = 0.2; and (f) Nr = 0.2,
Ra =0.01, Nr=1.0.
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Figure 4. Fin dimensionless temperature profile for varying thermo-geometric parameter under
power-law function when: (a) Nr = 0.0, Ra = 0.01, Nc = 1.0; (b) Nr = 0.1, Ra = 0.01, Nc = 0.5; (c) Nr =0.1,
Ra =0.01, Nc=0.6; and (d) Nr =0.2, Ra = 0.01, Nc = 0.5.

Figures 2—4 shows the effect of the inhomogeneity index on the dimensionless temperature profile
and heat transfer rate of the fin. Figure 2 highlights the results of the linear-law function, whilst
Figures 3 and 4 highlight the results of the power law function. From the parametric result presented
in Figures 24, it is seen that an increase in the inhomogeneity index improves the rate of heat transfer
through the fin. The figures also show that for all values of the convective and radiative parameters,
the temperature gradient along the fin with FGM was smaller than with fin of homogeneous material
for both linear and power-law function. The inhomogeneity index f increases as the fin temperature
gradient decreases, whilst the rate of heat transfer of longitudinal FGM fin increases as f3 increases. The
results show that the temperature profiles of the FGM fin are highly sensitive in the power-law function
compared to the linear-law function. Furthermore, it can be seen that the application of FGM is reliable
atlow thermogeometric, convective and radiative parameters since the difference in temperature profile
between FGM fin and HM fin slightly decreases as the dimensionless thermogeometric parameter
increases. Therefore, the application of fin of FGM decreases the thermal resistance along the fin such
that FGM fin has a higher temperature at the fin tip than HM fin.

Figure 5 shows the effects of porosity on the fin’s temperature profile, whereas Figure 6 highlights
the effects of porosity on the thermal efficiency of the fin. From Figures 5 and 6, it is can be seen
that increase in the porosity parameter causes the fin temperature to decrease rapidly, whilst the heat
transfer rate through the fin increases as the fin temperature decreases faster. The rapid decrease in fin
temperature is a result of an increase in the porosity parameter. This is due to the fact that as the fin
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porosity increases, the permeability of the fin increases, which affects the ability of the working fluid
to penetrate through fin pores to increase. The increased penetration of the working fluid increases
the effect of the buoyancy force, which causes heat flow by convection to increase. Consequently,
the increased rate of heat transfer by convection invariably improves the thermal performance of the
fin as shown in Figure 7. Practically, the findings of the present study are useful among others for
effective determination of coolant flow rate, which is essential in the designing miniaturized heatsinks

with smaller volume fan for low energy consumption.
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Figure 5. Fin dimensionless temperature profile for varying thermo-geometric parameter under
power-law function when: (a) Nc = 0.0, Ra = 0.01, Nr = 0.5; (b) Nc = 0.1, Ra = 0.01, Nr = 0.6; (c) Nc = 1.0,
Ra=0.01, Nr=0.1; and (d) Nc =2.0, Ra = 0.01, Nr =0.2.
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Figure 6. Fin dimensionless temperature profile for the varying thermogeometric parameter: (a)
linear-law function and (b) power-law function.
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Figure 7. Fin efficiency for the varying thermo-geometric parameter: (a) linear-law function when
Nc =1.0, Ra = 0.01, Nr = 0.1; (b) power-law function Nc = 1.0, Ra = 0.01, N7 = 0.2; (c) linear-law function
Nc=2.0,Ra=0.01, Nr =0.1; and (d) power-law function Nc = 2.0, Ra = 0.01, Nr = 0.1.

Results from the present study were compared to other work as presented in Table 1. From Table 1
it is shown that the temperature result of ADM is reliable for temperature prediction of heatsinks as it

agrees with numerical and ADM results.

Table 1. Comparison of temperature result.

Galerkin’s

. Homotopy Adomian Absolute Absolute Absolute
Numerical - Method of o . . .

X Method Perturbation Weighted Decomposition Error in Error in Error in
(NM) Method Residual Method (ADM) HPM GMWR ADM

(HPM) [29] (GMWR) [29] (Present Study) (NM-HPM) (NM-HPM) (NM-HPM)

0.0 0.9581 0.9581 0.9581 0.9581 0.0000 0.0000 0.0000
0.1 0.9585 0.9585 0.9585 0.9585 0.0000 0.0000 0.0000
0.2 0.9597 0.9597 0.9597 0.9597 0.0000 0.0000 0.0000
0.3 0.9618 0.9618 0.9618 0.9618 0.0000 0.0000 0.0000
0.4 0.9647 0.9647 0.9647 0.9647 0.0000 0.0000 0.0000
0.5 0.9685 0.9685 0.9685 0.9685 0.0000 0.0000 0.0000
0.6 0.9730 0.9730 0.9730 0.9730 0.0000 0.0000 0.0000
0.7 0.9785 0.9785 0.9785 0.9785 0.0000 0.0000 0.0000
0.8 0.9846 0.9846 0.9846 0.9846 0.0000 0.0000 0.0000
0.9 0.9919 0.9919 0.9919 0.9919 0.0000 0.0000 0.0000
1.0 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
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6. Conclusions

We have carried out a thermal investigation on the performance of a porous fin heatsink of FGM for
reliable thermal prediction. We solve the developed thermal models via the Adomian decomposition
method and investigate the effects of inhomogeneity index of FGM and thermo-geometric parameter
on the thermal performance of the porous fin heatsink. The parametric study shows that increase in the
inhomogeneity index of FGM, convective and radiative parameter improves the thermal efficiency of
the porous fin heatsink. It is also shown that the temperature profile of the FGM fin is highly sensitive
in power-law function compared to the linear-law function. Furthermore, the application of fin of
FGM decreases the thermal resistance along the fin such that FGM fin has a higher temperature at the
fin tip compared with HM fin. The viability of FGM in heatsink design to achieve improved cooling
in comparison with conventional HM heatsink is highlighted. The findings of the present study are
of practical implications to achieve thermally-enhanced heatsinks of FGM for improved cooling of
electronic systems.
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Nomenclature

A Fin cross-sectional area, m2

P Fin perimeter, m

hy Heat transfer coefficient at the base of the fin, Wm~2k~1

cp Specific heat of the fluid passing through porous fin, J/kg-K
h Heat transfer coefficient over the fin surface, W/m?K

H Dimensionless heat transfer coefficient at fin base, Wm—2k~1
k Thermal conductivity of fin material, Wm k-1

ky Thermal conductivity of fin material at fin base, Wn~1k~1
kg Effective thermal conductivity ratio

K Permeability

T Fin temperature, K

Ty Base temperature, K

T, Ambient temperature, K

X Dimensionless fin length

g Gravity constant m/s

Da Darcy number

Ra Rayleigh number

Sy Porosity parameter

Nc Convective heat parameter

Nr Radiative heat parameter

M Dimensionless thermo-geometric parameter

Greek Symbols

) Fin thickness, m

Op Fin base thickness

B inhomogeneity index

Op Dimensionless temperature at fin base

Pores parameter

Porosity or void ratio

Fin efficiency

kinematic viscosity, m? /s
Density of the fluid, kg/ m3
Stefan-Boltzmann constant

T == S ™
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