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Abstract: The ability for DFT: B3LYP calculations using the 6-31g and lanl2dz basis sets to predict the
electrochemical properties of twenty (20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives
with varying degrees of cytotoxic activity in dimethylformamide (DMF) was investigated. There was
a strong correlation for the first reduction and moderate-to-low correlation of the second reduction
of the diazine ring between the computational and the experimental data, with the exception of the
derivative containing the nitro functionality. The four (4) nitro group derivatives are clear outliers
in the overall data sets and the derivative E4 is ill-behaved. The remaining three (3) derivatives
containing the nitro groups had a strong correlation between the computational and experimental
data; however, the computational data falls substantially outside of the expected range.

Keywords: quinoxaline-di-N-oxide derivatives; voltammetry; anti-tumor; reduction potential;
experimental; computational; ab initio; density functional theory

1. Introduction

The study of quinoxaline 1,4-di-N-oxide derivatives has been the source of worldwide interest
within the last few decades, increasing over time due to their potential pharmaceutical properties that
range from anti-tumor [1–3] to anti-trypanosomal [4–6]. Commonly, the quinoxaline 1,4-di-N-oxide
derivatives lead to the destruction of pathogens, including fungal [7,8], parasitic [4–6], and even
mycobacterial [9]. The exact mechanism of the bioactivity against many pathogens is still not
understood; therefore, research into the origins and mechanisms underlying the bioactivity will benefit
the pharmaceutical community. Research has commonly demonstrated that for homologous series
the ease of reduction for quinoxaline 1,4-di-N-oxide derivatives is often correlated with increased
bioactivity [6,10–13]. Previous studies have demonstrated that some quinoxaline 1,4-di-N-oxide
derivatives can form radicals capable of cleaving DNA under hypoxic conditions [14,15]. This free
radical mechanism is believed to cause oxidative stress at the target cells and is presumed a common
underlying mechanism for the bioactivity of many quinoxaline 1,4-di-N-oxide derivatives [16–19].
Scheme 1 shows the first (Wave 1) and second (Wave 2) reduction of the diazine ring in the parent
quinoxaline 1,4-di-N-oxide molecule.
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Scheme 1. The first (Wave 1) and second reduction (Wave 2) of the diazine ring in quinoxaline 1,4-di-
N-oxide. Chemical structures drawn in MarvinSketch [20]. 

Because of the common correlation between the reduction potentials and bioactivity, 
voltammetric analyses of quinoxaline 1,4-di-N-oxide derivatives of interest has become a standard 
method of analysis. However, we propose that computational methods provide a powerful tool that 
can predict the electrochemical properties of quinoxaline 1,4-di-N-oxide derivatives. Several 
computational methods have been previously used to investigate the reduction potentials or the 
HOMO/LUMO energy gap for quinones and other small organic molecules [21–23]. Several 
computational studies on quinoxaline derivatives have investigated the thermodynamic properties, 
the effects of substitution, and predictions of the polymerization of quinoxalines in engineering [23–
25]. In 2012, Sheng and coworkers reported the anti-tumor properties for several series of 3-aryl-
quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives including the twenty (20) 3-aryl-quinoxaline-2-
carbonitrile 1,4-di-N-oxide derivatives investigated computationally in this study [26]. The twenty 
(20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives of interest are shown in Table 1. The 
twenty (20) derivatives were demonstrated to have varying anti-tumor activities under hypoxic 
conditions [26]. Recently, we reported the measurement of the reduction potentials for this unique 
series of twenty (20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives [27] and the 
comparison of the reduction potentials to the previously published anti-tumor properties [26]. For this 
series of quinoxaline 1,4-di-N-oxide derivatives no correlation between their reduction potentials and 
their bioactivities was found [27]. The lack of correlation didn’t completely rule out a bioreduction 
mechanism. It did suggest that other factors such as membrane permeability, stereochemistry, 
diffusion, or target binding may play an important role in the in vivo mechanism [27–29]. Additionally, 
preliminary computational data was reported for five (5) of the 3-aryl-quinoxaline-2-carbonitrile 1,4-
di-N-oxide derivatives. A strong correlation was shown for the four (4) derivatives without a nitro 
group between the predicted and experimentally measured reduction potentials [27]. Here, we 
present a computational study that analyzed the ability for two simple and common basis sets (6-31G 
and lanl2dz) that require limited computational resources to predict the reduction potentials for the 
twenty (20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives. 

Table 1. Structures of the 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives [26,27]. 

 

Compound R1 R2 
A1 H H 
A2 CH3 H 
A3 OCH3 H 
A4 Cl H 
B1 H 3-CH3 
B2 CH3 3-CH3 
B3 OCH3 3-CH3 

Scheme 1. The first (Wave 1) and second reduction (Wave 2) of the diazine ring in quinoxaline
1,4-di-N-oxide. Chemical structures drawn in MarvinSketch [20].

Because of the common correlation between the reduction potentials and bioactivity, voltammetric
analyses of quinoxaline 1,4-di-N-oxide derivatives of interest has become a standard method of analysis.
However, we propose that computational methods provide a powerful tool that can predict the
electrochemical properties of quinoxaline 1,4-di-N-oxide derivatives. Several computational methods
have been previously used to investigate the reduction potentials or the HOMO/LUMO energy gap
for quinones and other small organic molecules [21–23]. Several computational studies on quinoxaline
derivatives have investigated the thermodynamic properties, the effects of substitution, and predictions
of the polymerization of quinoxalines in engineering [23–25]. In 2012, Sheng and coworkers
reported the anti-tumor properties for several series of 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide
derivatives including the twenty (20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives
investigated computationally in this study [26]. The twenty (20) 3-aryl-quinoxaline-2-carbonitrile
1,4-di-N-oxide derivatives of interest are shown in Table 1. The twenty (20) derivatives were
demonstrated to have varying anti-tumor activities under hypoxic conditions [26]. Recently,
we reported the measurement of the reduction potentials for this unique series of twenty (20)
3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives [27] and the comparison of the reduction
potentials to the previously published anti-tumor properties [26]. For this series of quinoxaline
1,4-di-N-oxide derivatives no correlation between their reduction potentials and their bioactivities
was found [27]. The lack of correlation didn’t completely rule out a bioreduction mechanism. It
did suggest that other factors such as membrane permeability, stereochemistry, diffusion, or target
binding may play an important role in the in vivo mechanism [27–29]. Additionally, preliminary
computational data was reported for five (5) of the 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide
derivatives. A strong correlation was shown for the four (4) derivatives without a nitro group
between the predicted and experimentally measured reduction potentials [27]. Here, we present a
computational study that analyzed the ability for two simple and common basis sets (6-31G and
lanl2dz) that require limited computational resources to predict the reduction potentials for the twenty
(20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives.
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Table 1. Structures of the 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives [26,27].
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A1 H H 
A2 CH3 H 
A3 OCH3 H 
A4 Cl H 
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Compound R1 R2

A1 H H
A2 CH3 H
A3 OCH3 H
A4 Cl H
B1 H 3-CH3
B2 CH3 3-CH3
B3 OCH3 3-CH3
B4 Cl 3-CH3
C1 H 3-Cl
C2 CH3 3-Cl
C3 OCH3 3-Cl
C4 Cl 3-Cl
D1 H 4-Br
D2 CH3 4-Br
D3 OCH3 4-Br
D4 Cl 4-Br
E1 H 4-NO2
E2 CH3 4-NO2
E3 OCH3 4-NO2
E4 Cl 4-NO2

2. Materials and Methods

2.1. Building the Derivatives

All structures for the twenty (20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives
were drawn in GaussView 5 [30]. For the derivatives without the nitro functional group (A1–D4), four
(4) individual structures were drawn: the original neutral molecule, two (2) possible anion products
from the first N-oxide reduction wave (Wave 1) and the dianion product from the second N-oxide
reduction wave (Wave 2). Figure 1 shows 2D structures created with MarvinSketch for each of the four
(4) individual structures for molecule A1 [20]. The original neutral molecule is shown in Figure 1a.
The two (2) possible structures for the product of Wave 1 had the radical attached to either C2, the
carbon adjacent to the cyano or nitrile group, (Figure 1b) or to C3, the carbon adjacent to the phenyl or
aryl group, (Figure 1c). Lastly, the dianion product following Wave 2 is shown in Figure 1d. Figure A1
in Appendix A shows the 3D structures optimized in Gaussian 09 for the same four (4) individual
structures for A1.
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Figure 1. The individual structures for molecule A1: (a) the neutral molecule; (b) the possible anion
product from Wave 1 with the radical on C2 (c) the possible anion product of Wave 1 with the radical
on C3; and (d) the dianion product of Wave 2. Chemical structures drawn in MarvinSketch [20].

For the derivatives containing the nitro group (E1–E4), six (6) structures were created: the original
neutral molecules, two (2) possible anion products from Wave 1, two (2) possible dianion products from
the nitro group reduction (Nitro Wave), and the trianion product at the end of Wave 2. Figure 2 shows
2D structures created with MarvinSketch for each of the six (6) individual structures for molecule
E1 [20]. The original neutral molecule is shown in Figure 2a. The two (2) possible structures for the
product of Wave 1 have the radical assigned either to the C2, the carbon adjacent to either the nitrile
group, (Figure 2b) or to C3, the carbon adjacent to the aryl group, (Figure 2c). The two (2) possible
products following the Nitro Wave results in a one radical electron on the nitro group and one radical
electron on either the C2 (Figure 2d) or C3 (Figure 2e). The trianion structure following Wave 2 is
shown in Figure 2f. Figure A2 in Appendix A shows the 3D structures optimized in Gaussian 09 for
the same six (6) individual structures of E1.
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Figure 2. The individual structures for molecule E1: (a) the neutral molecule; (b) the possible anion
product of Wave 1 with the radical on C2; (c) the possible anion product of Wave 1 with the radical on
C3; (d) the possible dianion product of the Nitro Wave with radicals on C2 and on the nitro group; (e)
the possible dianion product of the Nitro Wave with radicals on C3 and on the nitro group; and (f) the
trianion product of Wave 2. Chemical structures drawn in MarvinSketch [20].

2.2. DFT Calculations

All DFT: B3LYP calculations were carried out in Gaussian 09 [31]. To find the lowest energy
configuration, each individual structure was optimized in gas phase using two common basis sets:
6-31g and lanl2dz. Next, a frequency calculation was performed to correct for thermal artifacts. The
energy (Eg) for each structure in the gas phase was found by summing the optimization energy (Eopt)
and the thermal correction factor (FThermal).

Eg = Eopt + FThermal (1)

Next, an energy calculation was performed by solvating the gas phase optimized structure in
dimethylformamide (DMF) to find the energy of the solvated molecule (Esolv). The integral equation
formalism variant of the Polarizable Continuum Model (IEFPCM), which is the default solvent model
in Gaussian 09 was used [32–34]. The change in Gibbs free energy of solvation (∆Gsolv) was then
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found by subtracting energy of the gas phase molecule (Eg) from the energy of the solvated molecule
(Esolv) [35,36].

∆Gsolv = Esolv − Eg (2)

The change in Gibbs free energy between the individual derivative and the reduction product
is found by comparing the Eg for the structures varying by one electron. For example, the change in
Gibbs Free Energy of Wave 1 (∆Gred,wave1 (g)) is found by subtracting the energy in the gas phase of the
neutral structure (Eg,n) from the energy anion product (Eg,a) [35,36].

∆Gred,wave1(g) = Eg,a − Eg,n (3)

Figure 3a shows a visual representation of the thermodynamic cycles used to calculate the change
in Gibbs Free Energy associated with the reduction of Wave 1 and Wave 2, ∆Gred,wave 1(solv) and
∆Gred,wave 2(solv) respectively. Figure 3b shows the modified thermodynamic cycles used for the E1–E4
derivatives to solve for the change in the Gibbs Free Energy associated with the reduction of Wave 1,
Wave 2 and the Nitro Wave.

For Wave 1,
∆Gred,wave1(solv) = −∆Gsolv, n + ∆Gred,wave1(g) + ∆Gsolv, a (4)

where ∆Gsolv,n is the change in Gibbs Free Energy of solvation of the neutral molecule, ∆Gred,wave1(g)
is the change in Gibbs Free Energy of the reduction in the gas phase and ∆Gsolv,a is the change in Gibbs
free energy of solvation for the radical anion.Computation 2017, 5, x FOR PEER REVIEW  6 of 17 
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3.1. Computationally Predicted Raw Chemical Potentials 

Figure 3. A visual representation of the thermodynamic cycles used to calculate Gred: (a) Wave 1
(1st N-oxide reduction) and Wave 2 (2nd N-oxide reduction) for derivatives A1–D4 and (b) Wave 1
(1st N-oxide reduction), Nitro Wave (nitro group reduction) and Wave 2 (2nd N-oxide reduction) for
derivatives E1–E4.

The ∆Gred values were used to calculate the reduction potentials for comparison to the
experimental data. For example, Equation (5) shows the calculation of the reduction potential for
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Wave 1 (εred,wave 1) from the ∆Gred,wave 1 where F is Farade’s constant (96,485 C/mole) and n is the
number of electrons per reduction.

εred,wave 1 =
−∆Gred,wave1 (soln)

nF
(5)

2.3. Ferrocene/Ferrocenium Reference

Ferrocene (Fc) and the ferrocenium ion (Fc+) were constructed in Gaussian View 5. The DFT
calculations were carried out as described for the quinoxaline 1,4-di-N-oxide derivatives. A Fc/Fc+

electrode was used in the previous experiment [27], so the calculated reduction potential for the Fc/Fc+

reaction (εFc/Fc+) was used as the reference for the calculated reduction potentials.

εcell = εred,wave 1 − εFc/Fc+ (6)

The zero for the reduction potential was adjusted by subtracting 0.7 V, which is the difference between
the potentials of the standard hydrogen electrode (SHE) in DMF and the Fc/Fc+ electrode, from the
cell potential [37].

ε′cell = εcell − 0.7 (7)

3. Results and Discussion

3.1. Computationally Predicted Raw Chemical Potentials

The calculated reduction potentials for the twenty (20) quinoxaline 1,4-Di-N-oxide derivatives are
tabulated in Table 2. For 16 of the derivatives (A1–D4), they were very well behaved. For A1–D4, the
appearance of the optimized structures looked as expected. Additionally, their calculated reduction
potentials were all similar and within the expected range. The derivatives that contained the nitro
group (E1–E4) were not well behaved. The E4 trianion structure could not be optimized with the 6-31G
basis set. During the optimization process the chlorine R1 group would “dissociate” from the structure
as shown in Figure 4. Neither the lanl2dz or 6-31G basis sets were able to successfully calculate the
chemical potentials for the nitro group containing derivatives E1–E4 in the expected range.

Table 2. The half-cell reaction potentials in volts for Wave 1, Nitro Wave, and Wave 2 calculated using
the BYL3P DFT lanl2dz and 6-31g basis sets in Gaussian 09.

Wave 1 Nitro Wave (E1–E4 Only) Wave 2

Compounds Lanl2dz 6-31g Lanl2dz 6-31g Lanl2dz 6-31g

A1 3.6006 3.2891 - - - - - - - - - - 2.1763 1.7774
A2 3.5453 3.2395 - - - - - - - - - - 2.1618 1.7652
A3 3.5818 3.2723 - - - - - - - - - - 2.2294 1.8321
A4 3.7477 3.4570 - - - - - - - - - - 2.3981 2.0192
B1 3.5920 3.2807 - - - - - - - - - - 2.1636 1.7586
B2 3.5370 3.2319 - - - - - - - - - - 2.0861 1.7480
B3 3.5729 3.2639 - - - - - - - - - - 2.2190 1.8172
B4 3.7390 3.4489 - - - - - - - - - - 2.3920 1.7917
C1 3.6516 3.3487 - - - - - - - - - - 2.1944 1.8146
C2 3.6111 3.3141 - - - - - - - - - - 2.1161 1.8077
C3 3.6295 3.3292 - - - - - - - - - - 2.2472 1.8647
C4 3.7986 3.5162 - - - - - - - - - - 2.4078 2.0440
D1 3.6364 3.3307 - - - - - - - - - - 2.1920 1.8055
D2 3.5797 3.2800 - - - - - - - - - - 2.1228 1.7977
D3 3.6150 3.3119 - - - - - - - - - - 2.2407 1.8561
D4 3.7825 3.4970 - - - - - - - - - - 2.4046 2.0388
E1 8.0502 7.7682 −4.2182 −4.7249 5.6176 5.4141
E2 8.0043 7.7169 −4.1840 −4.6334 5.5784 5.2614
E3 7.9644 7.6723 −4.0895 −4.5349 5.5797 5.2245
E4 7.9769 7.6480 −3.8809 - - - - - 5.7205 - - - - -
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Figure 4. The presence of the chlorine atom in the R1 group, when an NO2 is present on the R2 group 
results in a dissociation of the chlorine from the rest of the molecule, moving directly away from the 
nearby oxygen. Chemical structure created in GaussView 5 [30] and optimized in Gaussian 09 [31]. 

The optimization energy, solvation energy, and frequency corrections were found to be the same 
for all derivatives after the Wave 1 reduction whether the radical electron was place on the C2 or C3. 
This supports the hypothesis asserted by Crawford et al. 1986 [38] and Miller et al., 2017 [27] that the 

Figure 4. The presence of the chlorine atom in the R1 group, when an NO2 is present on the R2 group
results in a dissociation of the chlorine from the rest of the molecule, moving directly away from the
nearby oxygen. Chemical structure created in GaussView 5 [30] and optimized in Gaussian 09 [31].

The optimization energy, solvation energy, and frequency corrections were found to be the same
for all derivatives after the Wave 1 reduction whether the radical electron was place on the C2 or C3.
This supports the hypothesis asserted by Crawford et al. 1986 [38] and Miller et al., 2017 [27] that the
electron isn’t localized on a single carbon but is instead in resonance between adjacent carbons (C2 and
C3). Figure 5 shows the anion products in resonance resulting in delocalization of the radical electron
between C2 and C3.
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Figure 5. The anion structures of derivative A1 in resonance after accepting an extra electron during
Wave 1. Chemical structures drawn in MarvinSketch [20].

3.2. Computationally Predicted Electrochemical Cell Reaction Potentials

The experimental potentials are calculated versus the ferrocene/ferrocenium electrode redox
couple. The ferrocene/ferrocenium reduction potential was calculated to be 5.180 V and 5.514 V
with the 6-31G and lanl2dz basis sets. Table 3 shows the calculated reduction potentials versus the
ferrocene/ferrocenium redox couple with the standard hydrogen potential set to zero. As the reference
experimental data set the ferrocene/ferrocenium redox couple to zero, Table 4 shows the data after a
correction to set the ferrocene/ferrocenium redox couple to zero.
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Table 3. The electrochemical cell reaction potentials (εcell) in volts with the standard hydrogen electrode
(SHE) reduction potential set to zero for Wave 1, Nitro Wave, and Wave 2 calculated using DFT: BYL3P
with lanl2dz and 6-31g basis sets in Gaussian 09.

Wave 1 Nitro Wave (E1–E4 Only) Wave 2

Compounds Lanl2dz 6-31g Lanl2dz 6-31g Lanl2dz 6-31g

A1 −1.9136 −1.8908 - - - - - - - - - - −3.3379 −3.4025
A2 −1.9690 −1.9404 - - - - - - - - - - −3.3524 −3.4147
A3 −1.9325 −1.9076 - - - - - - - - - - −3.2848 −3.3479
A4 −1.7666 −1.7230 - - - - - - - - - - −3.1161 −3.1607
B1 −1.9223 −1.8993 - - - - - - - - - - −3.3507 −3.4213
B2 −1.9773 −1.9480 - - - - - - - - - - −3.4282 −3.4319
B3 −1.9413 −1.9160 - - - - - - - - - - −3.2952 −3.3627
B4 −1.7752 −1.7310 - - - - - - - - - - −3.1222 −3.3882
C1 −1.8626 −1.8312 - - - - - - - - - - −3.3199 −3.3654
C2 −1.9032 −1.8658 - - - - - - - - - - −3.3982 −3.3722
C3 −1.8847 −1.8507 - - - - - - - - - - −3.2671 −3.3152
C4 −1.7156 −1.6637 - - - - - - - - - - −3.1064 −3.1359
D1 −1.8778 −1.8492 - - - - - - - - - - −3.3233 −3.3744
D2 −1.9346 −1.8999 - - - - - - - - - - −3.3915 −3.3822
D3 −1.8993 −1.8680 - - - - - - - - - - −3.2735 −3.3238
D4 −1.7318 −1.6829 - - - - - - - - - - −3.1097 −3.1411
E1 2.5360 2.5883 −9.7324 −9.9049 0.10341 0.23426
E2 2.4901 2.5369 −9.6982 −9.8133 0.06423 0.08157
E3 2.4502 2.4924 −9.6038 −9.7148 0.06548 0.04466
E4 2.4627 2.4681 −9.3952 - - - - - 0.20624 - - - - -

Table 4. The electrochemical cell reaction potentials (ε’cell) in volts with the ferrocene/ferrocenium
reduction potential set to zero for Wave 1, Nitro Wave, and Wave 2 calculated using DFT: BYL3P with
lanl2dz and 6-31g basis sets in Gaussian 09.

Wave 1 Nitro Wave (E1–E4 Only) Wave 2

Compounds Lanl2dz 6-31g Lanl2dz 6-31g Lanl2dz 6-31g

A1 −1.1936 −1.1708 - - - - - - - - - - −2.6179 −2.6825
A2 −1.2490 −1.2204 - - - - - - - - - - −2.6324 −2.6947
A3 −1.2125 −1.1876 - - - - - - - - - - −2.5648 −2.6279
A4 −1.0466 −1.0030 - - - - - - - - - - −2.3961 −2.4407
B1 −1.2023 −1.1793 - - - - - - - - - - −2.6307 −2.7013
B2 −1.2573 −1.2280 - - - - - - - - - - −2.7082 −2.7119
B3 −1.2213 −1.1960 - - - - - - - - - - −2.5752 −2.6427
B4 −1.0552 −1.0110 - - - - - - - - - - −2.4022 −2.6682
C1 −1.1426 −1.1112 - - - - - - - - - - −2.5999 −2.6454
C2 −1.1832 −1.1458 - - - - - - - - - - −2.6782 −2.6522
C3 −1.1647 −1.1307 - - - - - - - - - - −2.5471 −2.5952
C4 −0.9956 −0.9437 - - - - - - - - - - −2.3864 −2.4159
D1 −1.1578 −1.1292 - - - - - - - - - - −2.6033 −2.6544
D2 −1.2146 −1.1799 - - - - - - - - - - −2.6715 −2.6622
D3 −1.1793 −1.1480 - - - - - - - - - - −2.5535 −2.6038
D4 −1.0118 −0.9629 - - - - - - - - - - −2.3897 −2.4211
E1 3.2560 3.3083 −9.0124 −9.1849 0.82341 0.95426
E2 3.2101 3.2569 −8.9782 −9.0933 0.78423 0.80157
E3 3.1702 3.2124 −8.8838 −8.9948 0.78548 0.76466
E4 3.1827 3.1881 −8.6752 - - - - - 0.92624 - - - - -

3.3. Comparison to Experimental Electrochemical Data

3.3.1. Initial Comparison

Table 5 lists the reference experimental data. In the experimental data, Wave 1 is reversible for all
compounds except C3. This irreversibility clearly makes C3 an outlier in the experimental data since
its experimental value was determined differently than the other 19 compounds. Additionally, C3 has
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no reported Wave 2 value. For this reason, C3 is not considered in the analysis of either computational
data set.

Table 5. Cyclic voltammetric data of the 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives [27].
Substrate, 1.0 mM; TBAP, 0.1 M; DMF; Pt working electrode; Ag/AgNO3 reference electrode; Pt wire
electrode; 100 mV/s; room temperature; E vs. (Fc/Fc+)/V; currents reported in µA; voltammograms
recorded with a CH Instruments Model 620 Electrochemistry Analyzer.

Wave 1 Nitro Wave (E1–E4 Only) Wave 2

Compounds E1/2 (V) E1/2 (V) Epc (V)

A1 −1.296 - - - - - −2.163
A2 −1.327 - - - - - −2.310
A3 −1.331 - - - - - −2.166
A4 −1.188 - - - - - −1.973
B1 −1.309 - - - - - −2.56 b

B2 −1.318 - - - - - −2.377
B3 −1.333 - - - - - −2.216
B4 −1.196 - - - - - −2.115
C1 −1.269 - - - - - −2.097
C2 −1.303 - - - - - −2.125
C3 −1.401 a - - - - - No Value
C4 −1.154 - - - - - −2.080
D1 −1.278 - - - - - −2.06 b

D2 −1.305 - - - - - −2.326
D3 −1.300 - - - - - −1.995
D4 −1.181 - - - - - −2.132
E1 −1.234 −1.518 −2.306
E2 −1.265 −1.539 −2.352
E3 −1.277 −1.566 −2.372
E4 −1.134 −1.514 −2.141

a Irreversible; b Shoulder.

Figure 6 shows the comparison of (a) Wave 1 and (b) Wave 2 of the computational and
experimental data set, excluding C3. The lanl2dz data is shown in black and the 6-31G data is
shown in red. The figures clearly demonstrate that neither basis set is able to predict the reduction
potentials for all nineteen (19) derivatives with experimental values. Evaluation of the outliers quickly
revealed that the outliers in each data set were the four derivatives containing the nitro group (E1–E4).
For the remainder of our analysis, we will discuss the non-nitro containing derivatives (A1–D4)
separately from the nitro-containing derivatives (E1–E4).

3.3.2. Non-Nitro Containing Derivatives

Figure 7 shows the correlation between predicted and experimental values of Wave 1 (a) and
Wave 2 (b) for the basis sets 6-31G (black) and lanl2dz (red) basis sets for derivatives A1-D4, excluding
C3. For Wave 1, both basis sets give a strong correlation (r2 > 0.96). The range of the Wave 1 values
for A1-D4 was −0.9437 V to −1.2280 V for 6-31G and −0.9956 V to −1.2573 V for lanl2dz. The
computational range therefore was similar to the experimental range of −1.154 V to −1.333 V. The
slope of the correlation was 1.38 and 1.52 for the lanl2dz and 6-31G data set respective comparisons.
The slope sign indicates that the basis set is accurately predicting the direction of change in the
reduction potential caused by changing the functional groups. The magnitude of the slope indicates
that the computationally predicted values were differing with respect to the different functional groups
more than was observed in the experiment.
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Figure 6. The computationally derived reduction potentials for (a) Wave 1 (1st N-oxide reduction) and
(b) Wave 2 (2nd N-oxide reduction) compared to the previously reported experimentally measured
data [27]. The basis set for lanl2dz is shown in red and 6-31g basis set is shown in black. Derivative C3
is excluded.
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Figure 7. The computationally derived reduction potentials for (a) Wave 1 (1st N-oxide reduction) and
(b) Wave 2 (2nd N-oxide reduction) compared to the previously reported experimentally measured
data [27]. The basis set for lanl2dz is shown in red and 6-31g basis set is shown in black. Derivatives
C3 and E1–E4 are excluded.

Wave 2 had only a moderate agreement with experimental results for derivatives A1−D4,
excluding C3. The r2 values were determined to be 0.674 and 0.568 for lanl2dz and 6-31G basis
sets, respectively. The values for Wave 2 ranged from −2.3864 V to −2.7082 V for lanl2dz and
−2.415 V to −2.7013 V for 6-31G. The predicted values were slightly shifted from the experimentally
observed values of −1.995 V to −2.377 V. The Wave 2 experimental values were not reversible and
so the experimental Wave 2 peaks are reported as the value of the cathodic peak. The slope for the
correlations was found to be 0.0181 and 0.0157 for the comparisons for the predicted to experimental
data sets for lanl2dz and 6-31G respectively. The slopes are positive indicating the accurate prediction
of the direction of change from changing the functional groups. However, the magnitude of the slope
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value indicates that the predicted values do not change as much as the experimental values with
respect to the identity of the chemical functional groups.

3.3.3. Nitro Containing Derivatives

Figure 8 shows the correlation between predicted and experimental values of Wave 1 (a) and
Wave 2 (b) for the basis sets 6-31G (black) and lanl2dz (red) basis sets for derivatives E1–E3. With
the 6-31G basis set, the final structure required to calculate the Wave 2 for E4 would not optimize.
The Nitro Wave and Wave 2 could not be calculated for E4 with the 6-31G basis set. Additionally, E4
appeared to be an outlier for the lanl2dz waves and Wave 1 with 6-31G. We opted to exclude E4 from
the analysis for both data sets. The Wave 1 values were determined to be 3.1827 V to 3.2560 V and
3.1881 to 3.3083 V for lanl2dz and 6-31G basis sets, respectively. Both ranges are completely outside of
the expected values. The experimental data range was found to be −1.134 to −1.277 V. Despite the
values being out of the expected range, there was a high correlation between the computational data
and experimental data (r2 > 0.95) for both basis sets. The Wave 2 had similar results. The range of the
Wave 2 values ranged from −8.6752 V to −9.0124 V for lanl2dz and −0.76466 V to 0.95426 V for 6-31G.
The experimental results were found to be −2.141 V to −2.372. Again, despite the values being out
of the expected range, there was a strong correlation to the experimental values (r2 > 0.89) for both
basis sets.
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Figure 8. The computationally derived reduction potentials for (a) Wave 1 (1st N-oxide reduction) and
(b) Wave 2 (2nd N-oxide reduction) compared to the previously reported experimentally measured
data [27]. The basis set for lanl2dz is shown in red and 6-31G basis set is shown in black. Derivatives
E1–E3 included.

Figure 9 shows the correlation of the Nitro Wave for the basis sets 6-31G (black) and lanl2dz
(red) for E1–E3. For the Nitro Wave, the experimental data range was −1.518 V to −1.566 V. The
computational data was completely outside of the expected range. The predicted values ranged from
−8.8838 V to −9.0124 V for lanl2dz and −8.9948 V to −9.1849 V for 6-31G. Despite the predicted
values falling outside of the expected range, there was a strong correlation for the Nitro Wave for
E1–E3 for both basis sets (r2 > 0.96).
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3.4. Comparison to Cytotoxicity

While previous studies have often demonstrated a link between the experimental reduction
potentials and the anti-tumor properties for quinoxaline 1,4-di-N-oxide derivatives, no correlation
was found for this unique set of twenty derivatives [27]. Due to the correlation of the experimental
and computational reduction potentials (Wave 1) for A1-D1 shown in Figure 7a, no correlation was
expected between the anti-tumor properties and the predicted Wave 1 reduction potentials. Figures 10
and 11 clearly demonstrate that there is no correlation between the computationally predicted Wave
1 potentials for A1-D4 and the anti-tumor activity under hypoxic and normoxic conditions. The
anti-tumor activity was defined based on the previously reported IC50 values for five cancer cell lines:
SmmC-7721, K562, KB, A549 and PC3 [26]. In the study, hypoxia was defined as 3% oxygen and
normoxia was defined as 20% oxygen [26].
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Figure 11. The computationally derived reduction potentials from 6-31g for Wave 1 (1st N-oxide
reduction) and compared to the previously reported IC50 (µM) for five cancer cell lines [26] under (a)
hypoxic and (b) normoxic conditions for A1–D4. Hypoxia = 3% oxygen, Normoxia = 20% oxygen.

4. Conclusions

The analysis of the ability of DFT: B3LYP calculations with the simple basis sets 6-31g and lanl2dz
that require limited computational resources to predict the experimental electrochemical potentials of
these quinoxaline 1,4-Di-N-oxide derivatives has demonstrated limited usefulness. The presence of
the nitro group dramatically changed the magnitude of the predicted values; therefore, the derivatives
with the nitro group (E1–E4) were considered separately than the derivatives without the nitro group
(A1–D4). Both basis sets predicted values of Wave 1 in the correct range and had a strong correlation for
derivatives without the nitro group (A1–D4). For these compounds (A1–D4), the Wave 2 values were
slightly outside of the expected range and had moderate-to-low correlation between the computational
and experimental results. For the nitro group compounds (E1–E4), derivative E4 proved ill-behaved.
One of the individual structures couldn’t be optimized for the 6-31G basis set. If this derivative (E4)
was ignored, there was a strong correlation between experimental and computational data sets for
Wave 1, Wave 2, and the Nitro wave, despite the E1–E3 computational values being substantially
outside of the predicted values. Given the limited usefulness of the 6-31g and lanl2dz to predict the
experimental electrochemical potentials for this set of quinoxaline 1,4-Di-N-oxide derivatives and
the clear impact of the nitro group on the results, we plan to investigate more complex basis sets in
the future.
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