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Abstract: Data security plays a crucial role in healthcare monitoring systems, since critical patient
information is transacted over the Internet, especially through wireless devices, wireless routes such
as optical wireless channels, or optical transport networks related to optical fibers. Many hospitals
are acquiring their own metro dark fiber networks for collaborating with other institutes as a way
to maximize their capacity to meet patient needs, as sharing scarce and expensive assets, such as
scanners, allows them to optimize their efficiency. The primary goal of this article is to develop of an
attack detection model suitable for healthcare monitoring systems that uses internet protocol (IP)
virtual private networks (VPNs) over optical transport networks. To this end, this article presents the
vulnerabilities in healthcare monitoring system networks, which employ VPNs over optical transport
layer architecture. Furthermore, a multilayer network architecture for closer integration of the IP and
optical layers is proposed, and an application for detecting DoS attacks is introduced. The proposed
application is a lightweight implementation that could be applied and installed into various remote
healthcare control devices with limited processing and memory resources. Finally, an analytical
and focused approach correlated to attack detection is proposed, which can also serve as a tutorial
oriented towards even nonprofessionals for practical and learning purposes.

Keywords: Denial-of-Service attacks; optical networks; healthcare monitoring; mechanical
learning; VPN

1. Introduction

The exponential growth of the Internet and the drastic enhancement of telecommunications [1,2]
has rendered the Internet an essential part of everyday life, especially in healthcare activities. Currently,
healthcare devices can be easily connected with each other over the Internet in order to process and
share useful data through a central processing and controlling server. Remote patient monitoring is
becoming more common in the healthcare landscape, with various medical conditions tracked remotely
even when patients are not present in the hospital. Wireless medical sensor networks (MSNs) [3–5] are
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cyber-physical systems (CPSs) [6–9] that have emerged as key building blocks, which provide real-time
and ubiquitous remote patient monitoring. Communications are conducted over the Internet, and
they are established between medical staff terminals and the devices that monitor the patients [10–12].
Consequently, this type of communication is vulnerable to a variety of cyber-attacks [13–16]. In the
past, such attacks have caused enormous problems in healthcare institutes and hospitals. For example,
they could destroy patient data, shut down the network, and could even harm the lives of patients
under surveillance [17–19]. A technical solution to protect patient data through the Internet is the
use of a virtual private network (VPN). A VPN is a concept that virtualizes the private network
and utilizes strong security solutions for providing private communications over the public physical
network. A VPN is an alternative to a private network or private leased line connection. This
idea is very important and should be further enhanced with attack detectors employing mechanical
learning. On the other hand, optical VPNs (OVPNs) are regarded as a promising means in modem
telecommunications for providing intelligent, flexible, and highly secure infrastructure capable of
meeting the most stringent requirements of high-end customers. As such, many hospitals are acquiring
their own metro dark fiber connections. This allows them to collaborate with other institutes in a way
that maximizes their capacity to meet patient needs, since sharing scarce and expensive assets, such as
scanners, allows them to optimize their efficiency.

The integration of optical and wireless access networks, which increases the capacity and
mobility of future network architecture, has recently gained much interest. OVPNs provide a
secure, high-bandwidth private network that connects end-user sites with a flexible, managed virtual
infrastructure over fractional, single, or multiple transparent optical wavelength connections with a
wide variety of client interfaces (including Ethernet, optical transport network (OTN), synchronous
optical network (SONET), synchronous digital hierarchy (SDH), storage area network (SAN), and
video) [20]. Moreover, a VPN is considered a more secure solution than local area network (LAN)
networks. Nevertheless, VPNs are not invulnerable, and they can be a target of advanced attacks;
therefore, the detection of these kinds of attacks are also studied in this paper.

In this article, we propose our designed VPN over optical transport layer architecture for a
remote healthcare monitoring system, while we introduce an attack detection system that uses
machine learning. Specifically, a machine learning mechanism (mechanical learning) was employed to
recognize and classify network attacks, which was introduced by Wattanapongsakorn et al. in [21].
Our implementation utilizes a packet pre-processing mechanism that performs the aforementioned
classification and blocks the Internet Protocol (IP) or the attacked port.

2. System Overview

The proposed scheme aimed at protecting against denial-of-service (DoS) attacks to the remote
patient control systems and used an internet protocol security (IPSec)-based VPN service over an optical
network. The system under consideration was a multilayer network solution for closer integration of
the IP and optical layers. In order to locate the vulnerabilities of a remote patient control system, we
developed a model of attack detection by conducting mechanical learning with the use of decision
trees. The proposed model could help a user to locate various types of attacks, focusing mainly on
flood attacks, and it could be applicable to devices with limited memory and processing resources
such as healthcare sensors and devices. It should be emphasized that the proposed scheme was
designed as a standalone solution, and it was not a part of an advanced intrusion detection system.
Our conducted experiments revealed that such types of attacks were the most frequent in VPNs; they
did not require advanced hardware, despite only having good knowledge of the various vulnerabilities
of the implemented protocols.

The main components of the proposed model are depicted in Figure 1. This model consisted of
a VPN over an optical network. The model was intended for a hospital and provided a dedicated
optical channel capacity between two or more locations throughout the optical network. Our VPN
over an optical network multilayer model combined IP and optical layers for intelligent design of
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the optical layer, which resulted in a cross-connected-based architecture. In this way, the hospital
would be capable of efficiently switching its traffic by using optical cross-connect (OXC) switches to
switch from one wavelength to another as well as from one fiber to another. By using this architecture,
hospitals that are connected via optical lines can handle large streams of traffic in core networks
compared to IP routers, which operate at the electronic layer and are better suited for more granular
switching operations.
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The optical network backbone can carry voice, video, and traffic data, and healthcare personnel
can acquire optical network capacity between locations in small increments (up to the maximum
capacity) supported by the hospital’s port. In this way, the hospital has great flexibility in upgrading
capacity quickly when needed without upgrading the port and local access facility. The bandwidth
available in OVPN can be OC-3/STM-1 (155.5 megabits per second), OC-12/STM-4 (622 megabits
per second), OC-48/STM-16 (2.5 gigabits per second), OC-192/STM-64 (10 gigabits per second), and
gigabit Ethernet.

In this article we present a DoS detector that can prevent intrusions (that may be from outside or
inside a VPN), which, if they succeed, could prevent access to all authorized users. These attacks may
originate from any point in the network, and they are intended for any point of the network such as the
clinic or external unit VPN provider. Moreover, DoS flooding attacks can be applied to our VPN in an
IP domain (in a VPN over an optical network multilayer model, which is presented in Figure 1), and it
can be rather based on packet header flooding. DoS attacks in an IP domain also expose the optical
domain to risk, especially provider edge (PE) optical networking edge (ONE) routers. DoS flooding
attacks can disable the IP segment of the PE ONE node. Our detector used an analysis technique for IP
networks for the PE ONE node, which was able to catch DoS flooding attacks.

Moreover, we introduced experimental results in order to evaluate the detection times of the
mechanical detection algorithm [21] for different rates of flooding packets, which were sent to the
attacked entity. The literature has focused only on the acceptance rate of the intrusion detection method.
Despite the aforementioned fact, here we try to show that by adapting mechanical learning to intrusion
detection methods, we can achieve similar detection performances for both small and large numbers of
malicious packets.

All detection methods use a specific threshold of the malicious packets’ number that is sent to the
attacked entity (see [22,23]). Here, we evaluated the behavior of a mechanical detection algorithm that
captured flooding attacks before the network threshold alarm blocked communication. Most detection
algorithms do not specify the exact number of malicious packets, but they provide a range. Thus, we
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hope that our study can help developers understand that the rate of malicious packets is based on the
detection algorithm.

In our VPN over an optical network multilayer model, both provider (P) and PE (Figure 1)
were network elements such as optimal cross-connect (OXC), pure optical or electronic optical, or
SONET/SDH cross-connects. The P ONEs were connected only to optical elements of the hospital
provider’s network. The IP domain VPN was the same as shown in Figure 2. The IP domain VPN
was connected to a PE ONE via several links, whereas each link itself consisted of several channels or
subchannels (e.g., wavelength or time slot).Computation 2019, 7, x FOR PEER REVIEW 4 of 16 
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The hospital’s back bone optical network must be equipped with the following:

• An IP router network with its point-to-point links served by intelligent optical transport networks.
• Dynamically switched light paths, which can be reconfigured with network changing conditions

while they help the optical backbone network establish this virtual point-to-point transport link.
• Signaling protocols (e.g., generalized multi-protocol label switching (GMPLS)) for dynamic

provisioning of light paths and automatic restoration.

The user network interface defines an interface between the hospital’s VPN routers and the optical
network, and it supports the exchange of routing and signaling protocol information between the
two layers. The main components of an optical network are the optical or time-division multiplexing
connection between two different hospital VPN networks (depicted in Figure 3) in different regions. In
Figure 3, a provider is an edge device within a service provider network. A general remote healthcare
monitoring system that uses a VPN is shown in Figure 2. Specifically, the healthcare monitoring
system is an edge device within a hospital network that provides the interface to the doctor’s and
indoor/outdoor hospital’s personnel domain.
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Healthcare providers afford the VPN services to hospital personnel. Initially, sensor devices from
indoor or outdoor patients send their requests to nearby gateways that forward them to the central
processing and controlling server. The latter verifies the requests, and in turn it communicates with
gateways and local healthcare personal computers (PCs). The central processing and controlling
server also generates and manages VPN client certificates. Patients and doctors communicate with the
aforementioned server, which accepts the service requests (Figure 2). The overall security of a generic
healthcare monitoring system is further reinforced by establishing a VPN network for communicating
between the gateways, doctor computers, and the central processing and controlling server. VPN
connections use secure sockets layer (SSL) sessions with bidirectional authentication (i.e., each side
must present its own certificate).

The VPN provides remote access service for patients or the doctors when it is impossible to
use a leased line or private network. If the logical link fails, then an alternate logical path can be
chosen to provide a reliable VPN service. VPN is a combination of tunneling, authentication, integrity,
encryption, and access control [24]. However, security is still a major concern [17–19].

3. Threats in Remote Healthcare Control Systems

3.1. Threats

In order to check the vulnerabilities of a remote healthcare control system, the generic architecture
shown in Figure 1 was used. Specifically, Figure 1 depicts the generic architecture of a healthcare
control system where the network was properly adjusted for facing several implemented attacks
against the server that provided VPN services. In this work, we focused on three types of attacks:
User datagram protocol (UDP) flood, internet control message protocol (ICMP) flood and transmission
control protocol (TCP) synchronous idle mode (SYN) flood.

DoS attacks are one of the most common types of attack on servers. DoS attacks usually reduce
the available resources of the victim. In this study, we focused on flood attacks. This kind of attack
imposes large computation tasks on the victim machine by flooding it with a huge rate of duplicate
packets. In turn, this results in forcing out the victim from the network service for several days.

The Multi-State Information Sharing and Analysis Center (MS-ISAC) in their December 2017
report [25] presented various DoS attacks. In our article we focused on three basic flooding DOS
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attacks: UDP flood, ICMP flood, and TCP SYN flood as aforementioned. In order to deal with the
attacks, we present their main characteristics as they were presented in Reference [25]:

• UDP flood—UDP flood is a type of attack that sends a large number of UDP packets to various
random destination ports on a host. This forces the server to process each one, and in most
cases respond to each one. This type of attack can quickly lead to the consumption of all
available bandwidth.

• ICMP flood—An ICMP flood overthrows the target host with a large number of ICMP packets in
an attempt to consume all available bandwidth and deny legitimate access. This attack works well
when a large number of sources can send enough ICMP traffic to consume all available bandwidth
in the target network.

• SYN flood—A SYN flood attack is one of the most common forms of denial-of-service (DoS)
attacks observed by the MS-ISAC report. It is based on a TCP connection sequence where a SYN
request opens network communication between a prospective client and the target server. When
the server receives a SYN request, it responds by acknowledging the request and holding the
communication open, while it waits for the client to acknowledge the open connection. SYN flood
attacks occur when an attacker sends a succession of TCP synchronize (SYN) requests to the target
host in an attempt to consume enough resources and make the server unavailable for legitimate
users. It could exhaust all available server resources and result in denial of service.

3.2. Implementing Attacks

Although our proposed system employed a VPN network, it was still vulnerable to intrusion
and DoS attacks. DoS attacks may originate from outside or inside a VPN, preventing access to all
authorized users. These attacks may occur at any time-point in the network. During development of
our model, it was assumed that the most important part of a VPN was its server, which provides the
services, along with its reliability and ability to detect attacks. These attacks could render the server
unable to respond to the demands of the connected users. Still, the server is the primary target where
an attack could occur, and if the server’s connection is cut off from the exterior Internet then all its
users’ services could become unsustainable. For this reason, we focused on volumetric attacks (also
known as flood attacks) aimed at the server and originated from exterior Internet sources. Such kinds
of attacks can render the server incompetent in responding to any demand of providing service to
VPN users. Analysis of these attacks is of great importance because VPNs are vulnerable to them [26].
Below, the types of applied attacks are reported in detail.

• Regarding ICMP packages, our application checked if the packages were not reply packages.
Specifically, the application inspected those packages that were not a response to some information
requested by the host server, and then the application’s counter was increased.

• The counter of UDP packets increased after every sent packet, while UDP packets did not need an
answer or a certain process of initialization and identification.

• In the case of TCP packages, only the reception of multiple TCP SYN packages was investigated.
TCP SYN flood is one of the most popular types of attack that uses TCP packets.

It should also be noted that during program execution, the type of attack could be selected, and
the information regarding the available IPs for attacking could be acquired based on which available
IP was selected; the application selected the source IP that was provided by the network.

4. Attack Detector

The proposed application was a lightweight application (that was developed in Java), which
provided a graphical user interface and could run on any hardware device intended for health
monitoring with limited resources. Initially, the user had to configure the application to the operated
hardware device by selecting the packet number level, was the threshold of the considered attack.
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Moreover, in the configuration phase the user had to define which network device would capture the
packets. Figure 4 shows the configuration phase where the user selected 500 packets as a threshold and
also depicts how the user can select the wireless network card through the provided graphical interface.

Computation 2019, 7, x FOR PEER REVIEW 7 of 16 

The detection method was based on a machine learning detection scheme that was introduced 
by Wattanapongsakorn et al. in [21], and it combined mechanical learning mechanisms for classifying
network attacks. Our implementation consisted of three phases: i) the packet preprocessing
mechanism, ii) the identification and categorization of the attack, and iii) the blocking mechanism of 
the attacked IP/port. Specifically, in the identification phase, our scheme used the already processed
data derived from the packet pre-processing mechanism, and it used various machine learning 
algorithms [27] to mine the processed data and identify the type of attack. The machine learning 
methods included ripple rule, random forest, decision tree, and Bayesian network (available in [27]). 
Our experiments revealed that the decision tree machine learning technique worked well, mainly for 
untrained or unknown network environments. The attack categorization phase could be based on 
more than one machine learning algorithm for mining processer packet file data, while the result was 
saved and sent to the blocking mechanism [27–29]. 

After the user selected the proper network device, packet logging started. In this graphical 
environment, there was also a bar that shows the percentage of captured packets. Figure 4 shows that 
100,000 packets were captured while indicating the number of packets that corresponded to each 
protocol (up to the previous second). Finally, there was an indicator that showed whether an attack 
was detected for each protocol or not. These attacks were detected by a decision tree that employed 
mechanical learning. The program learned its behavior for each type of protocol and detected the 
attacks accordingly. For the aforementioned implementation, the traffic for each of these packet types 
was observed. Then, if the observed packet traffic exceeded 500% of the mean observed traffic for 
more than three seconds, or the momentum of the protocol was greater than the level of the packet 
numbers set for each protocol type from the user, then an attack was detected and immediately 
presented to the server user. Additionally, file recording was conducted that included the time and 
type of attack. In addition to packet type detection, a corresponding mechanism was implemented to 
identify and record the IP addresses of the traffic’s origin. So, if increased traffic was being observed
from a particular address, the traffic was recorded in the same log file as the detected attack. 

(a) Graphical user interface (GUI) of attack detector.
Computation 2019, 7, x FOR PEER REVIEW 8 of 16 

(b) UDP packet with counter over threshold that we consider as attack 

Figure 4. GUI of attack detector and UDP packet with the counter over the threshold that we consider 
as an attack. 

5. Implementation Details 

In our experiments, we utilized three main procedures. The first procedure identified the type 
of attack, the second captured and analyzed the network traffic, and the final procedure applied the 
attack and visualized the detection result. 

5.1. Implementation Tools

The application was developed using Eclipse platform, as it constituted a platform for 
developing web and other applications. As a tool for developing applications, it did not offer 
sufficient functionalism. However, the fact that distinguished it among other tools was the capability 
of using various plugins. It offered a simple graphic environment, and it could be executed in a 
variety of functional systems along with plugins. Specifically, we used the EclipseOxygen2 platform
and EclipseIDE plugin for JavaDevelopers as the attack detector. Also, in order to monitor traffic in 
the network, usage of Winpcap software was essential for capturing and filtering transmitted packets. 
Moreover, for developing the application, the open-source library Jnetpcap was used, which 
provided the interface for capturing and monitoring the packets that passed through a network 
device. Furthermore, the implemented scenario assumed that a computer/user performed the attack 
by sending packets using Linux. From the attacker’s side, we executed a program called Pentmenu 
that created the attacks. 

5.2. Attack Detection

We implemented a user interface that initialized and adjusted all necessary operational variables
of the graphical environment, and we conducted needed changes to the latter environment. We 
initially stored IP addresses from which we received packages. Consequently, as many packages
were received from a specific IP address, we were able to detect an attack. We used a hash function 
to store the IPs. Our application counted the size and the number of the received packages. 
Furthermore, our main detection procedure checked whether the packets, that were priorly
measured, were either larger than the user’s predefined threshold or they exceeded the predefined
threshold. In the latter, the user was notified, and a flagged value changed in order to not estimate 
the attack for one second. In TCP packets, when an acknowledgement (ACK) packet came in response 
to a SYN/ACK, then the number of packages was reduced. Additionally, a file was initialized and 
written in every detected attack, which was conducted according to the protocol while the time of
the incident was also being recorded. Figure 4 depicts a UDP packet detection that exceeded the initial 

Figure 4. GUI of attack detector and UDP packet with the counter over the threshold that we consider
as an attack.

The detection method was based on a machine learning detection scheme that was introduced by
Wattanapongsakorn et al. in [21], and it combined mechanical learning mechanisms for classifying
network attacks. Our implementation consisted of three phases: (i) the packet preprocessing mechanism,
(ii) the identification and categorization of the attack, and (iii) the blocking mechanism of the attacked
IP/port. Specifically, in the identification phase, our scheme used the already processed data derived
from the packet pre-processing mechanism, and it used various machine learning algorithms [27] to
mine the processed data and identify the type of attack. The machine learning methods included ripple
rule, random forest, decision tree, and Bayesian network (available in [27]). Our experiments revealed
that the decision tree machine learning technique worked well, mainly for untrained or unknown
network environments. The attack categorization phase could be based on more than one machine
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learning algorithm for mining processer packet file data, while the result was saved and sent to the
blocking mechanism [27–29].

After the user selected the proper network device, packet logging started. In this graphical
environment, there was also a bar that shows the percentage of captured packets. Figure 4 shows
that 100,000 packets were captured while indicating the number of packets that corresponded to each
protocol (up to the previous second). Finally, there was an indicator that showed whether an attack
was detected for each protocol or not. These attacks were detected by a decision tree that employed
mechanical learning. The program learned its behavior for each type of protocol and detected the
attacks accordingly. For the aforementioned implementation, the traffic for each of these packet types
was observed. Then, if the observed packet traffic exceeded 500% of the mean observed traffic for more
than three seconds, or the momentum of the protocol was greater than the level of the packet numbers
set for each protocol type from the user, then an attack was detected and immediately presented to the
server user. Additionally, file recording was conducted that included the time and type of attack. In
addition to packet type detection, a corresponding mechanism was implemented to identify and record
the IP addresses of the traffic’s origin. So, if increased traffic was being observed from a particular
address, the traffic was recorded in the same log file as the detected attack.

5. Implementation Details

In our experiments, we utilized three main procedures. The first procedure identified the type
of attack, the second captured and analyzed the network traffic, and the final procedure applied the
attack and visualized the detection result.

5.1. Implementation Tools

The application was developed using Eclipse platform, as it constituted a platform for developing
web and other applications. As a tool for developing applications, it did not offer sufficient functionalism.
However, the fact that distinguished it among other tools was the capability of using various plugins.
It offered a simple graphic environment, and it could be executed in a variety of functional systems
along with plugins. Specifically, we used the EclipseOxygen2 platform and EclipseIDE plugin for
JavaDevelopers as the attack detector. Also, in order to monitor traffic in the network, usage of Winpcap
software was essential for capturing and filtering transmitted packets. Moreover, for developing the
application, the open-source library Jnetpcap was used, which provided the interface for capturing
and monitoring the packets that passed through a network device. Furthermore, the implemented
scenario assumed that a computer/user performed the attack by sending packets using Linux. From
the attacker’s side, we executed a program called Pentmenu that created the attacks.

5.2. Attack Detection

We implemented a user interface that initialized and adjusted all necessary operational variables
of the graphical environment, and we conducted needed changes to the latter environment. We initially
stored IP addresses from which we received packages. Consequently, as many packages were received
from a specific IP address, we were able to detect an attack. We used a hash function to store the
IPs. Our application counted the size and the number of the received packages. Furthermore, our
main detection procedure checked whether the packets, that were priorly measured, were either larger
than the user’s predefined threshold or they exceeded the predefined threshold. In the latter, the user
was notified, and a flagged value changed in order to not estimate the attack for one second. In TCP
packets, when an acknowledgement (ACK) packet came in response to a SYN/ACK, then the number
of packages was reduced. Additionally, a file was initialized and written in every detected attack,
which was conducted according to the protocol while the time of the incident was also being recorded.
Figure 4 depicts a UDP packet detection that exceeded the initial threshold value. A flow chart of the
proposed scheme is depicted in Figure 5. The theory of operation from “program initialization” to
“end of program” is presented in the following paragraphs.



Computation 2019, 7, 24 9 of 16

Computation 2019, 7, x FOR PEER REVIEW 9 of 16 

threshold value. A flow chart of the proposed scheme is depicted in Figure 5. The theory of operation
from “program initialization” to “end of program” is presented in the following paragraphs.

Figure 5. Flow chart of the proposed scheme. 

5.3. Analyzing the Network Traffic 

Hereafter, the object-oriented design of the proposed application is described. The 
PacketFiltering class was the main class of the utilized code. It contained the capture methods of the
packages and their analyses. It also contained the instantiation variables of the AttackDetection class 
as well as the device’s information from which the packets were captured. Finally, it contained the 
JpacketHandler function, which was called each time a packet was captured. This function inspected
packet header types and called the corresponding capture function to processes the specific malicious 

Figure 5. Flow chart of the proposed scheme.

5.3. Analyzing the Network Traffic

Hereafter, the object-oriented design of the proposed application is described. The PacketFiltering
class was the main class of the utilized code. It contained the capture methods of the packages and
their analyses. It also contained the instantiation variables of the AttackDetection class as well as the
device’s information from which the packets were captured. Finally, it contained the JpacketHandler
function, which was called each time a packet was captured. This function inspected packet header
types and called the corresponding capture function to processes the specific malicious data. Another
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call was the increasePacketsReceived function, which increased the number of packets received by one.
Additionally, the JpacketHandler function called the increasePacketsReceived each time to increase the
number of received packets by one. The class constructor initiated only the object of the attackDetection
class. The getAttackthreshold function received the potential number of packages from the user, where
an attack was considered above this limit.

Use of the functions that returned the ad objects and the device must also not be omitted.
Specifically, the SelectItfcToCapture function called the findAllDevs function of the Jnetpcap library,
which returned an array list of all possible network devices from which we could receive packets.
Then, the return value of the function was checked, and all devices were recorded as well as their
IPv4 and IPv6 addresses. Afterwards, the user used this information in order to choose which device
wanted to capture and insert the corresponding device variable on this device.

The addressMatch function was used by the functions, which checked whether IPv4 and IPv6
packets were inbound or outbound. This function had Boolean argument that corresponded to the
address we wanted to control (e.g., IPv4 or IPv6). The openDeviceForCapture function essentially
opened (initiated) the device so that we could read from it. It set the necessary snaplen (snap length)
flags timeout variables to pass to the openLive jnetpcap library, which initiated the device so that we
could get packets from it. Then, with the setDirection function we adjusted the conditions that would
only receive the incoming packets and return a Pcap type variable necessary to obtain the packets.
Also, the CloseItfc function closed (terminated) the device we opened so that there were no memory
leaks. Additional functions for each header type are presented below:

• handleICMPPacket: if packages were not a response to some information requested by the host
server, then the function increased the counter (see Section 3.1—ICMP flood).

• handleUDPPacket: The counter was incremented by one each time (UDP flood).
• handleTCPPacket: The counter was incremented by one for each SYN/ACK packet that we received.

On the contrary, the counter decreased by one for every acknowledged received ACK packet (see
Section 3.1—TCP SYN flood).

• handleIPv4Packet/handleIPv6Packet: This checked whether the source address of the packet was
the same as the device’s address that we had, and if it was not, then this function increased the
counter by one.

Finally, the getPacket function called the loop library function to receive and processes one packet
according to the jnetpcaphandler function. Here, the jnetpcaphandler function could process more
than one package, but in the current implementation it could lead to thread blocking.

5.4. Main Detection Result

The DDoSDetection class was the main class that ran the entire program. It implemented two
objects, one being the packetFiltering class while the other was the graphical user interface (GUI).
Figure 6 shows the graphical interface and the network device selection. This class also implemented
a counter that worked for one second each time. It defined the function–variable timertask, which
determined the counter’s action after every count. After the second pass of the counter, the colors
were updated in the graphical environment to show a discovered attack. The graphical interface
used the counters’ values and refreshed the counters’ graphical representation. In the beginning, the
Main funtion initialized the two objects by calling New and then waited until the user entered the
bound value in the graphical environment. The application filled the device board and waited for
the user to select the source device of the received packets. Afterwards, the application opened the
device and entered an endless loop as it started the counter, which ran until it counted 100,000 packets.
The application could be also terminated by the user through the graphical environment. When the
loop ended, it closed the record, stopped the counting, and closed (terminated) the device.
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As several DDoS attack tools and traffic generators have been proposed, they are very difficult to
categorize. Nevertheless, the authors in [26] provided a good survey and taxonomy. The majority of
DDoS attack tools are part of intrusion detection systems and firewalls that are designed for specific
operating systems; they cannot be applied to hardware with limited resources. Here we designed an
application for detecting only some popular flooding DoS attacks. It was, at the same time, a standalone
solution and could be applicable in any device with limited computational and memory resources.

6. Experimental Results

In the beginning, we delimited the number of packets that were considered attacks from a number
and above. Then, our real time detector (every second detection) checked the traffic in order to trace
packets that exceeded the predetermined limit. As soon as these attacks were detected, our system
notified us suitably with essential information including date, hour, type of attack, and the location of
the attack such as the closure or the end of traffic control (100,000 packets). Moreover, the proposed
system was adjusted to create a log file for further study and confrontation of an intruder.

Finally, we used the application in real-time conditions in order to test its behavior relevant to
capturing various attacks. Different packet rates were used. Specifically, the application started with
200 malicious packets, and then this size was increased by 200 packets until 1400 packets were reached
(see Table 1). The second experiment used 500 malicious packets, and they were increased by 500 in
order to reach 1500. We took a sample of the log file that our detector maintained. We started from a
small size of packets (200 or 500) and increased to a limit of 1400–1500 packets. While performing the
attacks, we observed that for a small number of packets, the detector almost immediately (close to
one second) detected the attacks, and when we increased the packets to the predetermined limit, the
detection lasted longer (close to two to three seconds). It was apparent that our detector had a quicker
response when the size of the malicious packets was smaller. Figure 7 shows that the response times
were better when we increased the number of packets by 200 compared to an increase of 500.
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Table 1. Response times of the increasing rates of 200 and 500 packets and the average response times
for 200 and 500 packet rates.

Type of
Attack-Threshold

Response Time (s)
Response 1 Response 2 Response 3 Response 4

Response Times with 500 Packets of Increasing Rate
UDP-500 1.291 1.806 1.182 1.755
TCP-500 1.215 1.302 1.941 1.682

ICMP-500 1.480 1.401 1.269 1.702
UDP-1000 2.817 2.283 2.782 2.936
TCP-1000 2.367 2.371 2.836 2.511

ICMP-1000 2.241 2.360 2.577 2.829
UDP-1500 3.969 3.020 3.914 3.062
TCP-1500 4.000 3.560 3.039 3.020

ICMP-1500 3.088 3.955 3.980 3.961
Response Times with 200 Packets of Increasing Rate

UDP-200 1.028 1.035 0.975 0.923
TCP-200 1.574 1.072 0.932 0.988

ICMP-200 1.596 0.997 1.150 0.979
UDP-400 0.987 1.040 0.992 1.010
TCP-400 1.130 1.100 1.150 1.120

ICMP-400 0.838 1.362 1.068 0.992
UDP-600 1.350 1.457 1.327 1.661
TCP-600 1.130 1.330 1.954 1.616

ICMP-600 1.314 1.060 1.743 1.266
UDP-800 1.579 1.648 1.764 1.889
TCP-800 1.938 1.799 1.874 1.652

ICMP-800 1.853 1.500 1.491 1.741
UDP-1000 2.000 2.076 2.270 2.589
TCP-1000 2.855 2.138 2.143 2.147

ICMP-1000 2.000 2.001 2.017 2.036
UDP-1200 3.004 3.000 2.989 3.001
TCP-1200 3.000 2.998 3.020 2.985

ICMP-1200 3.004 2.986 3.010 3.000
UDP-1400 3.000 2.967 3.112 3.039
TCP-1400 4.000 3.010 3.064 2.985

ICMP-1400 3.020 4.000 2.985 3.060
Type of attack and

threshold Average Response Time for 500 packet rate (s)

UDP-500 1.0000
TCP-500 1.2280

ICMP-500 1.1704
UDP-1000 2.1636
TCP-1000 2.0170

ICMP-1000 2.0014
UDP-1500 2.7930
TCP-1500 2.7238

ICMP-1500 2.9968
Type of attack and

threshold Average Response Time for 200 packet rate (s)

UDP-200 0.990
TCP-200 1.142

ICMP-200 1.181
UDP-400 1.007
TCP-400 1.125

ICMP-400 1.065
UDP-600 1.449
TCP-600 1.508

ICMP-600 1.346
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As it can be observed, a larger number of malicious packets could provide better detection
performance since it could rarely influence non-suspicious packets. The results in Table 1 showed
that mechanical learning data mining methodology had similar detection times to smaller and larger
numbers of malicious packets.

Moreover, Table 1 presents the response time for 100 attacks and the average response times for
three different scenarios (for different thresholds).
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7. Conclusions

In this article a proposed application is presented that is a lightweight implementation of an
attack detector. This detector can be installed in various healthcare devices, which use IP VPN over an
OTN, and they have a lack of processing and memory capabilities. It is based on machine learning
mechanisms in order to recognize and classify network attacks. Another goal of this paper was to
present a well-studied approach correlated to attack detection with the additional benefit of serving as
a tutorial for practical and learning purposes.

Moreover, significant results that we deduced from development of the proposed application
were that with the exacerbation of global network attacks, the demand for their identification increased.
In order for the attacks to be recognized and addressed effectively, there should also be proper choice of
security mechanisms and their protocols, which need to be regularly updated and monitored (for any
changes in the flow of packets between users). For example, attacks on home users can cause non-fatal
damage (e.g., deletion of a file or computer slow down), but in the case of a company, it could cost a few
thousand to millions of euros depending on the size and the extent of the damage. This is the reason
that an ideal solution to a securely built network, such as a VPN and OVPN, should include in-depth
knowledge of its architecture. It should also, like our proposed software, be able to easily detect
threats without an enormous network load (in terms of slowing packet transmission and requiring
enormous signal processing). Consequently, the software could be applied to a healthcare system that,
nevertheless, should include proper policies such as access rights, network sharing, and security rules.
We also concluded that security protocols played a very important role in communication, as their lack
of information or proper implementation increased the risk of attack to a network where our proposed
software detector was implemented. With regards to the application, as it is quoted, it identifies three
types of attacks. As our application used a significant number of various machine learning algorithms
(ripple rule, random forest, decision tree, and Bayesian network) for accomplishing detection results in
a very short time, this would probably lead to a new and a more enhanced algorithm after extensive
testing (under real conditions) and a consequently updated application in the near future. In the
future, it could also identify other types of attacks, and we could even develop a mechanism to block
enormous numbers and types of attacks. The software could also include teal-time processing with
a vastly applied receiver operating characteristic analysis [30,31]. The latter is vastly implemented
in radar technology and in interdisciplinary applications. It could definitely use the probabilistic
criterions and tools of the related theory in order to “amplify” the detection mechanisms, and in this
way, to evolve our detection software. Furthermore, this kind of developed software could also be
implemented in leadership in energy and environmental design (LEED) buildings [32] and could be
definitely utilized in conjunction with advanced wireless network technologies.

Please be informed that the source codes are available upon request (schrono@cc.uoi.gr).
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