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Abstract: In the field of engineering when a situation is not resolved analytically, efforts are made to
develop methods that approximate a possible solution. These efforts have originated the numerical
methods known at present, which allow formulating mathematical problems that can be solved
using logical and arithmetic operations. This paper presents a comparison between the numerical
optimization algorithms golden section search and simulated annealing, which are tested in four
different scenarios. These scenarios are functions implemented with a feedforward neural network,
which emulate a partial shading behavior in photovoltaic modules with local and global maxima.
The presence of the local maxima makes it difficult to track the maximum power point, necessary
to obtain the highest possible performance of the photovoltaic module. The programming of the
algorithms was performed in C language. The results demonstrate the effectiveness of the algorithms
to find global maxima. However, the golden section search method showed a better performance
in terms of percentage of error, computation time and number of iterations, except in test scenario
number three, where a better percentage of error was obtained with the simulated annealing algorithm
for a computational temperature of 1000.

Keywords: numerical optimization algorithms; golden section search; simulated annealing; maximum
power point; partial shading of photovoltaic system

1. Introduction

Finding the extremes of multimodal functions has been a major research problem addressed by
many researchers because the performance of most engineering optimization problems is like to that
of systems with multimodal functions [1-5].

One of these situations is partial shading that occurs in photovoltaic (PV) modules [6].
Objects interfering with the solar irradiance on the surface of the PV module cause that in the
characteristic curve that usually has a single global maximum [6-8], there are multiple local
maxima [9-11]. This situation makes it difficult to implement maximum power point tracking
(MPPT) controllers [12-14]. All these circumstances cause power losses and therefore inefficient
system performance.

In order to solve this problem, the evaluation of numerical optimization methods is proposed to
find the global maximum of functions with multiple maximums [15-19]. In this investigation, four
multimodal evaluation functions were used, which represent extreme situations of partial shading in
photovoltaic (PV) modules.
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The numerical optimization algorithms are of great interest because they provide a good
relationship between complexity and performance. These methods are simpler than more robust
techniques such as fuzzy logic [20], neural networks [21-23], among other technologies belonging to
soft computing.

In the literature, there are different studies in the field of renewable energies in which the golden
section search (GSS) method has been used. The authors in [24] used this method to simulate the
power output of a wind generator and a PV module, in the framework of research of a multiobjective
optimization model based on the Pareto principle. In [25] a solar energy boat was designed, for which
the authors used the golden section method to optimize the power consumption of the propeller.
The researchers in [26] proposed a methodology based on a wavelet neural network, to select the
location and the calculation of the size of distributed renewable generation. The results obtained were
compared with the golden section, in terms of power and energy losses.

Similarly, there are studies that use the simulated annealing (SA) algorithm in the field of
renewable energies. It highlights the work done in [27], in the framework of an investigation to select a
suitable location for a wind power plant. The simulated annealing was used to minimize the distance
between the method proposed in the research and the existing methods. The authors in [28] used this
algorithm in a hybrid configuration in order to carry out the optimal sizing of a standalone hybrid
(solar-wind) system.

In [15,16,29] the authors used the golden section for tracking the MPP of a PV array, for
different environmental test conditions. In addition, in [30,31] the simulated annealing algorithm
was used in MPPT controllers for PV modules considering mismatch conditions and non-uniform
environmental conditions.

Therefore, in this work the algorithms of the golden section [15,16] and the simulated
annealing [17,18] were implemented. These algorithms were tested in four different cases, in order to
evaluate their performance under the same conditions. Based on this premise, the number of iterations
and the computation time of each algorithm were evaluated. The four functions used as a case study
emulate the performance of PV modules in partial shading conditions. In this way, with the work
done, the following contributions can be highlighted:

e Standardization of case studies with neural networks (multilayer perceptron). This provides
uniformity when evaluating the performance of each algorithm.

e Comparison between two numerical optimization algorithms applied to different evaluation
functions that emulate the performance of PV modules for sudden changes in operating conditions.

e Implementation of algorithms in C language in order to facilitate future implementation
in microcontrollers.

This paper is organized as follows: Functions with multiple maximums are developed in Section 2.
Section 3 presents the numerical optimization algorithms. Section 4 corresponds to the results and
finally the conclusions are presented in Section 5.

2. Functions with Multiple Maximums

In this section, the test functions that will be used to evaluate the performance of the numerical
methods studied in this research are defined. Next, we describe the effect of partial shading that
represents our case study.

2.1. Partial Shading of a Photovoltaic Module

The possible variations in the irradiance that affects a PV module or an array of modules, causes
the characteristic curve of the module to change and local maxima to appear. In this study, functions
with a global maximum and many local maximums were designed.
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2.1.1. Mathematical Model of the PV Module

To obtain the expected performance for the test functions, the partial shading condition of a PV
module is emulated using the mathematical model described by Equations (1)—(3) [12-14].

(V) = I—"_l[1—e<%‘%>] (1)
1—e(T)
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Vy = SETCV(T—TN) + $Viax = S(Vinax — Vigin )& BN = Vimax=Vinin )
1
E
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Ein
where:

E;: Solar irradiance,

E;n: Irradiance constant of 1000 W/m?2,
Isc: Short circuit current,

p: Number of PV modules in parallel,
s: Number of PV modules in series,
T: Operating temperature,

Tn: Temperature constant of 25 °C,
Vet Open circuit voltage,

Vinax: 1t is the 103% of V.,

Vinin: It is the 85% of Vi,

b: Curve fitting parameter.

2.1.2. Design of Partial Shading Functions

The behavior that emulates a PV module or an array of PV modules under conditions of partial
shading is achieved by simulating several modules, in our case 5, and applying variable values of
irradiance and temperature in Equation (1). In this way, five partial functions were developed, which
were subsequently added in order to obtain a test function necessary to evaluate the performance of
numerical methods (See Figure 1).
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Figure 1. Sum of powers.
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Taking into account the number of curves in Figure 1, it is necessary to implement a method to
unify the contributions of all functions in a single expression, maintaining the same structure for the
four case studies in order to facilitate comparison between the optimization algorithms.

For this reason, an approach with artificial neural networks (ANN) was implemented because
with the same architecture the approximation of the four case studies was carried out; which would
not be achieved using polynomial approximation methods.

Figure 1 shows that the contribution of all PV modules generates several local maximums in the
resulting function.

2.1.3. Architecture of the ANN Used for the Approximation

A feedforward neural network with a hidden layer, 25 neurons and an output layer with a neuron
was implemented, as can be seen in Figure 2. All neurons have hyperbolic tangent sigmoid transfer
function which is described in Equation (4). Initially, tests were carried out with 5 neurons but the
results were not satisfactory, since the functions obtained presented problems at the inflection points.
For this reason, it was decided to increase the number of neurons gradually until the best results were
obtained with 25 neurons. Smoothed functions at the inflection points were obtained.

2
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25x1 7C 1x25 7C
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Figure 2. Artificial neural networks (ANN) feedforward.

This transfer function generates values in the interval [-1,1].

To approximate each evaluation function, the architecture of the ANN is the same, only the
synaptic weights and the bias change. To facilitate the training of the ANN, the data were normalized
in a range of [-1,1] (See Equation (5)). To revert this normalization, Equation (6) was used.

Xmax — Xmin

y = 2( X — Xmin )_1 (5)

Yy = (x + 1)(xmzzx - xmin) + Xmin (6)

NI~

where:

y is the output data,

x is the input data,

Xmax: 1S the maximum value of the data to be evaluated,
Xpin: is the minimum value of the data to be evaluated.

Finally, when x,y is equal to x,,;,, then y = x.
The networks were trained using the Matlab Neural Network Toolbox [32].
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3. Numerical Optimization Algorithms

3.1. Golden Section Search Method

In this method, an interval is defined, and its regions are eliminated. For this, test points
were added which allow new intervals to be formed. To choose the new extremes of the function,
Equations (7) and (8) were used.

wy = a—gq(b-a) )
wy = b-gp(b-a) )
where: ¢ =0.6180 and is described by the flowchart of Figure 3.

The flowchart begins with the initialization of the search range x; and x,,, and the first solutions x;
and x; are evaluated, where R is the golden number and C is its complement.

xl, xu
R=0.618, C=1-R

v

x1=xI+R*(xu-xl)
x2=xI+C*(xu-xl)

i Yes

f1=ANN(x1)
f2=ANN(x2)

No
xop/xu<0.99

xl=x|
xu=x1 No | @
xop=x2

fop=f2

xl=x2
XUu=xu
xop=x1
fop=f1

Figure 3. Flowchart of the golden section method.
3.2. Simulated Annealing Algorithm

This algorithm is composed of two stochastic processes: One for the generation of solutions and
another for the acceptance of that solutions, if they meet the criteria described in Equation (9), which is
controlled by Equation (10). See Figure 4.

P, = ¢ T ©)

where:

P, is the probability of acceptance,
Py is the current maximum point,
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P; is the previous maximum point,
T is the computational temperature.

T(n+l) = Tn - (XTn (10)

where:
a is the cooling rate.

Logistics Map

The chaotic logistic map described in Equation (11) is implemented as a random function to
generate possible solutions, in the simulated annealing algorithm.

Xn+1) = 72 (1 = xn) (11)

T, Tmin=0.01
alpha=0.05,TOL=2
count=0, fcoun=4

v

Vi=random
Pi=ANN(Vi)
Vk=Vi*Vk

where r is equal to 4.

Vk=Vk/fit
Vk=mapalogic(VK)
Vk=Vk*fit
Pk=ANN(VK)

Vi=VK
Pi=Pk

Vi=Vk
Pi=Pk

Vi=Vi
Pi=Pi

count=count+1 |

No

Yes
T=T-alpha*T No
count=0

Figure 4. Flowchart of the simulated annealing algorithm.

4. Results and Discussion

The simulations of the algorithms were performed on a personal computer with a 64-bit Fedora
27 Workstation operating system, with Intel ® Core™ i3-3217U CPU @ 1.80 GHz and 4 GB of RAM.
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The compiler gcc version 7.3.1 20180712 (Red Hat 7.3.1-6) (GCC) was used. The codes were developed
in C language and gnuplot was used to make the figures.

4.1. Approximation of the Test Functions with the Neural Network

This section presents the results obtained with the neural networks for the approximation of the
evaluation functions generated by Equations (1)—(3).

In Table 1, it is shown that for most of the approximations the matrix R of the correlation coefficient
is 1, which indicates a perfect correlation index, showing the good performance of the neural network.

Table 1. Correlation coefficients obtained for the test functions.

Test Functions R
Function 0 1
Function 1 0.99
Function 2 1
Function 3 1

Furthermore, in Figure 5, it is observed that the network suitably maps each of the functions. In
some inflection points the network rounds a little more because the performance of a module or array
of PV modules is simulated, the x-axis represents the voltage (volts) and the y-axis the power (watts).
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Figure 5. Test functions generated with the neural network: (a) Function 0; (b) Function 1; (c) Function

2; (d) Function 3.

All test functions have different characteristics, in order to evaluate algorithms in

changing scenarios.

Table 2 shows the local maxima and the global maximum of each of the test functions, in which it
can be established that the algorithms will be subjected to different challenges that emulate extreme
operating conditions in the PV modules.
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Table 2. Maximum points of the test functions.

Test Functions Local Maximums Global Maximum
Function 0 [5.11, 66.19], [10.76, 114.72] [18.5056, 194.412]
Function 1 [4.97,49.74], [10.33, 64.13], [13.06, 57.02] [18.2847, 97.3037]
Function 2 [9.82, 27.12], [12.46, 10.60] [4.82874, 31.8543]
Function 3 [9.82, 25.73], [12.31, 8.80] [8.19883, 44.2902]

4.2. Results Obtained with Optimization Algorithms

In this section, the results of the optimization algorithms are shown, in terms of the maximum
value found, the value evaluated in the function, the computation time and the number of iterations.
In addition, a set of figures that show the partial solutions (in blue) and the global value found by the
algorithms (in red) are presented. The solid black line is the test function.

4.2.1. Results for Test Function 0

Table 3 shows the performance of the algorithms with the test function 0. The SA algorithm was
implemented for initial temperatures of 0.5, 100 and 1000. In general, it can be seen that the algorithms
find the global maximum, highlighting that, it has obtained a better computational efficiency with the
GSS algorithm with a computation time of 0.189 ms and 9 iterations. In the case of the SA algorithm, it
is observed that, with the increase of the initial temperature, the iterations increased from 160 to 900.

Table 3. Results of the algorithms for the test function 0.

Components GSS Error SAT=0.5 Error SA T =100 Error SA T =1000 Error
X 18.479162 0.14% 18.530024 0.13% 18.465574 0.22% 18.575342 0.37%
8flx) 194370331  0.02% 194.357605 0.03% 194.370087 0.02% 194.324768 0.04%
Time (ms) 0.189 2175 7.904 10.585
Iterations 9 160 675 900

In addition, the GSS and SA (T = 0.5) algorithms presented the best error percentages of 0.14%
and 0.13% for the component in x, and 0.02% and 0.03% for the component in f(x); with respect to the
reference value of the global maximum.

Figure 6 shows the local maximums and the global maximum found by each of the algorithms.
Figure 6¢ shows that the increase in the initial temperature causes the SA algorithm to perform a more
exhaustive search, causing the number of local maxima to increase.

4.2.2. Results for Test Function 1

The results obtained for this case are shown in Table 4. The GSS algorithm presented a better
computational time of 0.178 ms with only 8 iterations. This algorithm had the best error percentage
with values of 0.03% and 0.44% for the components in x and f(x). It can also be observed that the
increase in the initial temperature affects the performance of the SA algorithm, which presented errors
of 0.81% and 0.54% (in x and f(x)) for T = 100.

Table 4. Results of the algorithms for the test function 1.

Components GSS Error SAT=0.5 Error SA T =100 Error SA T =1000 Error
X 18.279242 0.03% 18.396032 0.61% 18.433100 0.81% 18.035101 1.36%
fx) 96.871460 0.44% 96.812531 0.50% 96.776138 0.54% 96.801155 0.52%
Time (ms) 0.178 2.514 8.113 9.580

Iterations 8 160 675 900
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Figure 6. Results obtained with the algorithms for the test function 0: (a) GSS; (b) SA (T = 0.5);
(c) SA (T = 100); (d) SA (T = 1000).

Figure 7 shows the results obtained for this case. Variations in the global maximum found by
each algorithm can be observed, as well as the increase in the number of iterations when the initial
temperature increases.
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Figure 7. Results obtained with the algorithms for the test function 1: (a) GSS; (b) SA (T
(c) SA (T = 100); (d) SA (T = 1000).

0.5);



Computation 2019, 7, 43 10 of 13

4.2.3. Results for Test Function 2

For this case, the results obtained are shown in Table 5. The analysis is similar to that performed
for test function 1. The best performance (10 iterations and time of 0.188 ms) and percentage error
(0.16% and 0.43%) was obtained with the GSS algorithm (See Figure 8).

Table 5. Results of the algorithms for the test function 2.

Components GSS Error SAT=0.5 Error SAT =100 Error SA T =1000 Error

x 4.836398 0.16% 5.019549 3.95% 4.780378 1.00% 4.792931 0.74%

fx) 31.715771 0.43% 31.506104 1.09% 31.707682 0.46% 31.711351 0.45%
Time (ms) 0.188 1.429 4.046 5.41
Iterations 10 160 675 900

ANN

ANN

local X local X
global %

Power (W)
Power (W)

o | . . . . I o L . | . I .
0 2 a 6 8 10 12 14 0 2 4 6 8 10 12 14
Voltage (V) Voltage (V)

(@) (b)

ANN

local % local %
global % global %

Power (W)
Power (W)

o 2 a 6 8 10 12 14 o 2 a 6 8 10 12 14
Voltage (V) Voltage (V)

() (d)

Figure 8. Results obtained with the algorithms for the test function 2: (a) GSS; (b) SA (T = 0.5);
(c) SA (T =100); (d) SA (T = 1000).

4.2.4. Results for Test Function 3

Table 6 shows the results for test function 3. In this case, the SA algorithm with T = 1000 has the
lowest error percentage with values of 0.66% and 0.26% for x and f(x). The GSS algorithm again has the
best computational time (See Figure 9).

Table 6. Results of the algorithms for the test function 3.

Components GSS Error SAT=0.5 Error SA T =100 Error SA T =1000 Error

X 8.110684 1.08% 7.864448 4.08% 8.432590 2.85% 8.252893 0.66%

fx) 44.196526 0.21% 44.063797 0.51% 44.038975 0.57% 44.173416 0.26%
Time (ms) 0.280 2.018 4.019 8.82

Iterations 9 160 675 900
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Figure 9. Results obtained with the algorithms for the test function 3: (a) GSS; (b) SA (T = 0.5);
(c) SA (T = 100); (d) SA (T = 1000).

5. Conclusions

From the results obtained with the neural network, it can be concluded that it is important to have
a universal structure to approximate the test functions, since a minimum variation in the computation
times is achieved.

The choice of the range for the x-axis is an important factor that must be taken into account for
the two algorithms implemented, golden section and simulated annealing. A bad choice of the range
causes the algorithms to not find the global maximum.

On the other hand, the versatility of the simulated annealing algorithm is highlighted because the
search mechanism can be controlled by adjusting the computational temperature and the cooling rate.
The disadvantage is that many more iterations are performed and the search process becomes slower.

Another disadvantage of simulated annealing is that by having a larger group of possible solutions,
some solution may be in the tolerance threshold and therefore accepted as the best option.

This research shows that with a single development of the algorithms several functions can be
optimized, while with other methods such as neural networks it is necessary to adjust the synaptic
weights and the bias. This same problem occurs with fuzzy logic, in which membership functions and
fuzzy rules must be adjusted.
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