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Abstract: With the rapid growth of simulation software packages, generating practical tools for
simulation-based optimization has attracted a lot of interest over the last decades. In this paper,
a modified method of Estimation of Distribution Algorithms (EDAs) is constructed by a combination
with variable-sample techniques to deal with simulation-based optimization problems. Moreover,
a new variable-sample technique is introduced to support the search process whenever the sample
sizes are small, especially in the beginning of the search process. The proposed method shows
efficient results by simulating several numerical experiments.

Keywords: estimation of distribution algorithms; simulation-based optimization; stochastic
programming; variable sample path

1. Introduction

Realistic systems often lack a sufficient amount of real data for the purposes of output response
evaluation. This fact represents a blocking obstacle to the design process of most of the optimization
techniques. However, several processes require optimization at some stage, e.g., engineering design,
medical treatment, supply chain management, finance, and manufacturing [1–9]. Therefore, real
data alternatives are investigated. For instance, data augmentation is used to expand small-sized
sets by applying some transformations to these given real sets [10,11]. Nonetheless, the nature
and size limitation of some real data set do not guarantee sufficient diversity of the generated
augmented data. Therefore, simulated data are a good choice either for these cases or even other cases.
Recently, the combination between simulation and optimization has drawn much attention. The term
“simulation-based optimization” is commonly used instead of “stochastic optimization,” since almost
all recent simulation software package contain an optimization procedure for creating applicable
simulation methods [12,13].

Simulation-based optimization has been used for optimization of real world problems
accompanied with some kind of uncertainties in the form of randomness. These problems may
need to deal with systems and models, which are highly nonlinear and/or have large-scale dimensions.
These kinds of problems can be classified as stochastic programming problems, in which a stochastic
probability function is used to estimate the underlying uncertainty. A problem of such kind is defined
mathematically as follows [14]:
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min
x∈X
{ f (x) = E[F(x, ω)]}, (1)

where f is a real-valued function defined on search space X ⊆ Rn with objective variables x ∈ X and
ω is a random variable whose probability density function is F. The choice of the optimal simulation
parameters is critical to performance. However, the optimal selection of these parameters is still a quite
challenging task. Because the simulation process is complicated, the objective function is subjected to
different noise levels, followed by expensive computational evaluation. The simulation complication
is characterized by:

• the calculations and time cost of the objective function,
• the difficulty of computing the exact gradient of the objective function, as well as the high cost

and time consuming element of calculating numerical approximations of it, and
• the included noise in objective functions.

To deal with these issues, global search methods should be invoked in order to avoid
using classical nonlinear programming methods, which fail to solve these types of multiple local
optima problems.

Recently, a great interest has been given to using some artificial tools in optimization.
Metaheuristics play a great role in either real-life simulation or invoking intelligent learned
procedures [15–24]. Metaheuristics exhibit good degrees of robustness for a wide range of problems.
However, these methods suffer from slow convergence in cases of complex problems, which leads to
high computational cost. This slow convergence may come from the random structures of exploring the
global search space of such methods. On the other side, metaheuristics cannot utilize local information
to infer promising search directions. On the contrary, a main characteristic of local search methods
is characterized by their fast conversion. Local search methods exploit local information to estimate
local mathematical or logical movements in order to determine promising search directions. However,
the local search method can easily be stuck at local minima, i.e., it is highly probable to miss global
solutions. Therefore, design hybrid methods that combine metaheuristics and local search are highly
needed to obtain practical efficient solvers [25–27]. Estimation of Distribution Algorithms (EDAs) are
promising metaheuristics—in which exploration for potential solutions in search space depends on
building and sampling explicit probabilistic models of promising candidates’ solutions [28–31].

There are several optimization and search techniques that have been developed to deal with the
considered problem. The variable-sample method is one of these techniques [32]. The main idea of the
variable-sample method is to convert a stochastic optimization problem to a deterministic one. This is
achieved by estimating the objective function that contains random variables at a certain solution by
sampling it with several trails. This type of Monte Carlo simulation can obtain approximate values of
the objective function. The accuracy of such simulation depends on the sample-size; therefore, using
a large enough size is recommended. The variable-sample method controls the variability of such
sample-size in order to maintain the convergence of search methods to optimal solutions under certain
conditions. A random search algorithm called Sampling Pure Random Search (SPRS) was previously
reported in [32] by invoking the variable-sample method. In SPSR, the objective function with random
variables is estimated at a certain input by the average of variable-sized samples at that input. Under
certain conditions, the SPSR algorithm can converge to local optimal solutions.

More accurate solutions could be obtained in many cases for stochastic programming problem,
e.g., [15,18,33]. In this paper, we present a novel metaheuristic method of Estimation of Distribution
Algorithm (EDA). The proposed method is combined with the SPRS method [32], and a modified
sampling search method called Min-Max Sampling Search (MMSS) in order to deal with the stochastic
programming problem. The main modification in the MMSS method is to use a function transformation
instead of the average of the function values, especially when the samples size is not sufficiently large.
Actually, the proposed EDA-based search method starts searching the space with relatively small
sample sizes in order to achieve faster exploration. Subsequently, the EDA-based method increases
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sample sizes while the search process progresses. The proposed modified MMSS method restricts the
noisy values of the estimated function in small-size samples at the early stages of the search process.
Several experiments with their technical discussion have been done in order to test the performance of
the proposed methods.

The rest of the paper is organized as follows. The main structures of the estimation of distribution
algorithms and variable-sample methods are highlighted in Sections 2 and 3, respectively. In Section 4,
we highlight the main components of the proposed EDA-based methods. In Section 5, we investigate
parameter tuning of the proposed methods and explain the experimentation work conducted for
evaluation purposes. Detailed results and discussions are given in Section 6. Finally, the paper is
concluded in Section 7.

2. Estimation of Distribution Algorithms

The EDAs have been widely studied in the context of global optimization [28–30,34]. The use of
the probabilistic models in optimization offers some significant advantages comparing with other types
of metahuristics [35–38]. Firstly, the initial population is generated randomly to fill the search space.
Then, the best individuals are used to build the probabilistic model. Usually, the best individuals are
selected in order to push the search space to the promising regions. New candidate solutions replace
the old solutions partly or as a whole, where the individual of highest quality is the target, and the
quality of a solution is measured by its associated fitness value. Generally, EDAs execute a repeated
process of evaluation, selection, model building, model sampling, and replacement.

The main objective of EDA is to improve the estimation of the solution space probability
distribution by exploiting samples generated by the current estimated distribution. All generated
samples are subjected to a selection method to pick certain points to be used for probability distribution
estimation. Algorithm 1 explains the main steps of standard EDAs.

Algorithm 1 Pseudo code for the standard EDAs

1: g← 0
2: Dg ← Generate and evaluate M random individuals (the initial population).
3: do
4: Ds

g ← Select L ≤ M individuals from Dg according to a selection method.
5: Pg(x) = P(x|Ds

g)← Estimate the joint probability distribution of the selected individuals.
6: Dg+1 ← Sample and evaluate M individuals from (the new population) Pg(x).
7: g← g + 1.
8: until a stopping criterion is met.

Many studies have been done in continuous EDAs. Generally, there are two major branches in
continuous EDAs. One is widely used that is based on the Gaussian distribution model [28,39] and
another major based on the histogram model [40]. The Marginal Distribution Algorithm for continuous
domains (UMDAc) is a simple real valued EDA which uses a univariate factorization of normal density
in the structure of the probabilistic model. It has been introduced by Larrañaga et al. [41,42]. Some
statistical tests were carried out in each generation and for each variable in order to determine the
density function that best fits the variables. In this case, the factorization of the joint density function is
represented as:

fl(x; Θl) =
n

∏
i=1

fl(xi; Θl
i) (2)

where Θl is a set of local parameters. The learning process to obtain such joint density function is
shown in Algorithm 2.
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Algorithm 2 Learning the joint density function

1: while the stopping criterion is not met do
2: for i = 1 to n do
3: Set DSe,Xi

l−1 to be the projection of the selected individuals over the ith variable.
4: Select, using a hypothesis test, the density function fl(xi; Θl

i) that best fits DSe,Xi
l−1 .

5: Obtain the maximum likelihood estimates for Θl
i = (Θl,k1

i , . . . , Θl,ki
i ).

6: end for
7: At each generation, the form of the learnt joint density function is: fl(x; Θl) = ∏n

i=1 fl(xi; Θl
i).

8: end while

3. Variable Sampling Path

The variable-sample (VS) method [32] is defined as a class of Monte Carlo methods that is used
to deal with unconstrained stochastic optimization problems. Sampling Pure Random Search (SPRS)
is the random search algorithm introduced by Homem-De-Mello [32] that invokes the VS method.
The sample of average approximation with a variable sampling size scheme replaces the objective
function in each main iteration of the SPRS algorithm. Specifically, an estimation of the objective
function can be computed as:

f̂ (x) =
F(x, ωk

1) + · · ·+ F(x, ωk
Nk
)

Nk
, (3)

where ωk
1, . . . , ωk

Nk
are sample values of the random variable of the objective function. Under certain

conditions, the SPRS can converge to a local optimal solution [32]. Algorithm 3 demonstrates the
formal algorithm of (SPRS) method.

Algorithm 3 Sampling Pure Random Search (SPRS) Algorithm

1: Generate a point x0 ∈ X at random, set the initial sample size N0, and set k := 1.
2: Generate a point y ∈ X at random.
3: Generate a sample ωk

1, . . . , ωk
Nk

.
4: Compute f̂ (xk), f̂ (y) using the following formula: f̂ (x) = 1

Nk
[F(x, ωk

1) + · · ·+ F(x, ωk
Nk
)].

5: If f̂ (y) < f̂ (xk), then set xk+1 := y. Otherwise, set xk+1 := xk.
6: If the stopping criteria are satisfied, stop. Otherwise, update Nk, set k := k + 1 and go to Step 2.

4. Estimation of Distribution Algorithms for Simulation-Based Optimization

We propose an EDA-based method to deal with the simulation-based global optimization
problems. The proposed method combines the EDA with a modified version of the variable-sample
method of Algorithm 3. We suggest a modification to the variable-sample method in order to
avoid sample low quality resulted by small sample sizes. This modification depends on a function
transformation, as shown in Algorithm 4.

4.1. Function Transformation

The search process is affected with sample sizes. Using large sizes is time consuming, while
using small ones yielding low-quality approximation of function values. A good search strategy is
to start the search with relatively small-size samples and then increase the sample size while the
search is going on. To avoid degradation of the search process when the sample sizes are small in
the early stages of the search, a new function transformation is proposed by re-estimating the fitness
function if the sample size (N) falls under a certain threshold, i.e., N < Nsmall with a predefined Nsmall .
Specifically, the samples of size N at solution x are evaluated and sorted. Then, the N/2 highest
and N/2 lowest objective function values of these samples are averaged and denoted by f̂max(x) and
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f̂min(x), respectively. Then, a new transformed estimation of the objective function at x is computed
using the computed values; f̂max(x) and f̂min(x):

f (x) ≈ f̂t(x) = φ( f̂max(x), f̂min(x)), (4)

with suitable transformation function φ(·). The choice of a function transformation is preformed
empirically to select the function whose best performance among several candidate functions. We
found that the following function gives the best performance:

f̂t(x) = µ( f̂max(x)− f̂min(x)), (5)

where µ is a weight parameter (with 0 < µ ≤ 1) that depends on the sample size N at the current
iteration. Algorithm 4 uses the above-mentioned function transformation to modify the sampling
search method in Algorithm 3.

Algorithm 4 Min-Max Sampling Search (MMSS) Algorithm

1: procedure
2: Generate a point x0 ∈ X at random, set the initial sample size N0, and set k := 1.
3: while the stopping criteria are not satisfied do
4: Generate a point y ∈ X at random.
5: Generate a sample ωk

1, . . . , ωk
Nk

.
6: for i = 1 to Nk do
7: Compute F(x, ωk

i )
8: end for
9: if Nk ≤ Nsmall then

10: compute f̂ (xk), f̂ (y) using Equation (3),
11: else
12: compute f̂ (xk), f̂ (y) using Equation (5).
13: end if
14: if f̂ (y) < f̂ (xk) then
15: then set xk+1 := y,
16: else
17: set xk+1 := xk.
18: end if
19: Update Nk, and set k := k + 1.
20: end while
21: end procedure

4.2. The Proposed EDA-Based Method

The proposed EDA-based method is a combination of estimation of distribution algorithms with
the UMDAc technique [42], in which the stochastic function values can be estimated using sampling
techniques. In the simulation-based optimization problem, the objective (fitness) function contains a
random variable. Therefore, function values can be approximated using variable sample techniques,
which is illustrated in two different ways as in the SPRS and MMSS techniques.

Algorithm 5 illustrates the main steps of the proposed EDA-based method. The initialization
process in the EDA has been applied to create M diverse individuals within the search area using a
diversification technique similar to those used in [24,43,44]. Besides this exploration process, a local
search has been applied to each individual to improve the characteristics of the initial population.
The EDA selection process uses the standard EDA selection scheme, in which the best L individuals
with the best fitness function values have been chosen from Pg generation to be survive to the next
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generation Pg+1. In order to improve the performance of the search process, an intensification step has
been applied to the best solution in each generation.

Algorithm 5 The proposed EDA-based Algorithm

1: Initialization.
a: Create an initial population D0 of M individuals.
b: Evaluate the function values, apply local search to improve each individual.
c: Set the generation counter g := 0.

2: Main Loop. Repeat the following steps until the stopping criterion is met
a: Select the best L ≤ M individuals Ds

g.
b: Estimate joint density function f (x; Ds

g) of the selected individuals using Algorithm 2.
c: Sample and evaluate M− L individuals DC

g from f (x; Ds
g).

d: Set Dg+1 = DC
g ∪ Ds

g.
e: Apply a local search to each individual in Dg+1.
f: Set k := k + 1.

The proposed EDA-based method can also be used for deterministic objective function according
to the way of evaluating the fitness function in Steps 1:b and 2:c of Algorithm 5, and this yields three
versions of the proposed EDA-based method:

• EDA-D: If the objective function has no noise, and its values are directly calculated from the
function form.

• EDA-SPRS: If the objective function contains random variables and its values are estimated using
the SPRS technique.

• EDA-MMSS: If the objective function contains random variables and its values are estimated
using the MMSS technique.

The main difference between difference between EDA-SPRS and EDA-MMSS is in the function
evaluation step. The sample path method SPRS depends on sample average approximation in the
evaluation function process. However, the search process is not sufficiently appropriate with small
sample sizes. This problem affects the quality of the final solution. EDA-MMSS algorithm is modified
by applying the same main steps of the EDA-SPRS method, which were explained in the previous
subsection, except the function evaluation method. A modified sample path method is defined to
evaluate the function values in a small sample size by Equation (5), while the SPRS method is accepted
when the number of sample size is sufficiently large. Algorithm 5 is used with Algorithm 4 for the
evaluation function to deal with a stochastic optimization problem in order to improve the performance
of SPRS method with a small sample size.

5. Numerical Experiments

Experiments are conducted to prove the efficiency of the proposed method and its versions. We
use various benchmark data sets for evaluation purposes. In this section, we explain the the details of
the experimentation procedures.

5.1. Test Functions

The proposed algorithm is tested using several well-known benchmark functions [45–48] in order
to check its ground truth of the method efficiency without the effect of noise. A set of classical test
functions are listed in Table 1 that are conducting initial tests for parameter setting and performance
analysis of the proposed global optimization method. The characteristics of these test functions are
diverse enough to cover many kinds of difficulties that usually arise in global optimization problems.
For more professional comparisons, another set of benchmark functions (h1 - h25) with higher degrees
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of difficulty were used. Specifically, the CEC 2005 test set [47,48] is also invoked in comparisons; see
Appendix A.

For simulation-based optimization, two different benchmark test sets are used. The first one
(SBO—Set A) consists of four well-known classical test functions; Goldstein and Price, Rosenbrock,
Griewank, and Pinter functions that are used to compose seven test problems ( f1 - f7) [49–51].
The details of these seven test functions are shown in Table 2. The mathematical definitions of
the test functions are given in Appendix B. The other test set (SBO - Set B) contains 13 test functions
(g1–g13) with Gaussian noise (µ = 0, σ = 0.2); see Appendix C for the function definitions of this
test set.

Table 1. Classical Global Optimization (CGO) test functions.

No. f Function Name n No. f Function Name n

1 RC Branin RCOS 2 6 P0
4,0.5 Perm 4

2 GP Goldstein Price 2 7 T6 Trid 6
3 SC2 Schwefel 2 8 G20 Griewank 20
4 Z2 Zakharov 2 9 DP25 DixonPrice 25
5 S4,7 Shekel 4 10 AK30 Ackley 30

Table 2. Classical Simulation-Based Optimization (CSBO) test functions.

Function Name n Stochastic Variable Distribution

f1 Goldstein & Price 2 N(0, 10)
f2 Rosenbrock 5 N(0, 10)
f3 Griewank 2 N(0, 10)
f4 Pinter 5 N(0, 10)
f5 Modified Griewank 2 N(0, 10)
f6 Griewank 2 Uniform(−17, 17)
f7 Griewank 50 N(0, 10)

5.2. Parameter Settings

Table 3 shows the used parameters in the proposed EDAs-based method. An empirical parameter
tuning process was followed to find the best values of the parameter set. All parameters are tested to
obtain standard settings for the proposed algorithms. The maximum number of function evaluations
maxI, which is used as a termination criteria, has two different values according to whether the problem
is stochastic or deterministic. The EDA population size R and number of selected individuals in each
iteration S are considered as measurable effects to build an efficient algorithm. While the main task
is to make a balance between the exploration process and avoid the high complexity, we use large
R to explore the search space, and then continue with limited selected individuals S to control the
complexity of building and sampling the model. The theoretical part of choosing the parameters of
the EDAs has been discussed in [29]. The number of sample size Nk, which is used in Algorithm 3
and Algorithm 4, is adapted to be started with Nsmall and then gradually increased to reach Nmax.
The threshold of the small sample size Nsmall and µ parameters used in function transformation in
Label 4 are chosen experimentally.
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Table 3. Parameter settings.

Parameter Definition Best Value

R Population size 60
S No. of selected individual size 0.25× R

Nmin The initial value for the sample size 50
Nmax The maximum value for the sample size 5000
Nsmall The threshold of small sample sizes 300

µ The parameter of the function transformation 0.5× N/Nmax

maxI Max no. of function evaluations for GO 10,000n
Max no. of function evaluations for SBO 1,000,000

Runs No. of independent runs in each experiment 25

5.3. Performance Analysis

In this section, we compare the performance of EDA-SPRA and EDA-MMSS methods. The results
are reported in Table 4; these results are the average of errors for obtaining the global optima over
25 independent runs with 500,000 maximum objective function evaluations for each run. In the
experimentation, the errors of obtained solutions are denoted by fGap, which is defined as:

fGap = |( f (x)− f (x∗)|, (6)

where x is the best solution obtained by the methods, and x∗ is the optimal solution. The results
represented in Table 4 show the effect of the function transportation step on the final result. Table 4
reveals that the performance of EDA-MMSS method is better than that of EDA-SPRA at obtaining
better solutions in average. Actually, the EDA-MMSS code could reach better average solutions than
the EDA-SPRA code in five out of seven test functions. This favors the efficiency of the proposed
sampling technique.

Table 4. The fGap averages and the best solutions obtained by the EDA-SPRA and EDA-MMSS using
the SBO Test Set A.

EDA-SPRS EDA-MMSS

f Best Average Best Average

f1 5.06×10−2 1.64 ×10−1 6.61×10−3 6.15×10−2

f2 2.52×100 3.11×100 4.50×100 7.69×100

f3 3.75×10−3 4.24×10−1 2.90×10−2 3.22×10−1

f4 1.39×100 1.62×101 9.34×100 2.23×101

f5 3.59×10−2 3.02×10−1 9.11×10−4 2.11×10−1

f6 9.40×10−2 4.77×10−1 2.91×10−3 2.87×10−1

f7 3.14×100 4.56×100 2.25×100 2.99×100

The Wilcoxon rank-sum test [52–54] is used to measure the performance of all the methods
compared. This test is known as a non-parametric test [55,56], which our experiments support.
The statistical measures used in this test are the sum of rankings obtained in each comparison and the
p-value associated. Typically, the differences di between the performance values of the two methods
on i-th out of n results are calculated. Afterwards, based on the absolute values of these differences,
they are ranked. The ranks R+ and R− are computed as follows:

R+ = ∑
di>0

rank(di) +
1
2 ∑

di=0
rank(di),

R− = ∑
di<0

rank(di) +
1
2 ∑

di=0
rank(di).
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The statistics of the rank-sum test for an initial comparison between the proposed EDA-SPRS and
EDA-MMSS methods are shown in Table 5. Although the EDA-MMSS method could obtain better
solutions in four out of seven than the EDA-SPRS method, there is no significant difference between
the two compared methods at significance level 0.05.

Table 5. Wilcoxon rank-sum test for the results of Table 4.

Comparison Criteria Compared Methods R+ R− p-Value Best Method

Best Solutions EDA-SPRS, EDA-MMSS 14 14 0.7104 –
Average Errors EDA-SPRS, EDA-MMSS 15 13 0.7104 –

Figure 1 shows the performance of EDA-SPRA and EDA-MMSS for one random run, and the
figure illustrates the significant difference of the search behavior between the two methods, and how
the restriction process of the noisy part of the EDA-MMSS in the beginning of the search process affects
the quality of the individual later.
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Figure 1. The performance of EDA-SPRA and EDA-MMSS.
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The EDA-MMSS method manages to reach better solutions than the EDA-SPRA method in five
out of seven cases shown in Figure 1. Therefore, the proposed MMSS technique could help the search
method to perform better exploration and reach near global optimal solutions.

6. Results and Discussion

The results of the proposed methods on global optimization and simulation-based optimization
problems are discussed in this section.

6.1. Numerical Results on Global Optimization

For global optimization problem, we applied the EDA-D algorithm to ten test problems, which
are illustrated in Table 1, before applying the EDA-D algorithm on stochastic optimization problems
in order to guarantee its efficiency. Then, it has been compared with other metaheuristic methods.
The heuristic solution x is said to be optimal in case of the gap defined in Equation (6) being less
than or equal to 0.001. Table 6 reported the average fGap for 25 independent runs of EDA method for
each function, and it is compared with the Directed Scatter Search (DSS) method, which is introduced
in [51] with 5000 maximum number of function evaluations for each method. The results shown in
Table 6 that the performance of the EDA-D code show promising performance, and its fGap values
show its ability of obtaining global minima for 6 of 10 test problems. The comparison statistics are
stated in Table 7, which indicates the similar behavior of the two compared methods at the significance
level 0.05.

Table 6. The averages of fGap obtained by the DSS and EDA-D using the CGO test set.

f DSS EDA-D

RC 3.58×10−7 3.59×10−7

P0
4,0.5 6.00×10−1 5.02×10−4

GP 4.69×10−11 1.77×10−8

T6 2.39×10−3 1.00×10−3

SC2 2.55×10−5 2.50×10−3

G20 5.21×10−2 2.49×101

Z2 2.88×10−64 3.48×10−11

DP25 9.43×10−1 1.21×100

S4,7 5.67×10−7 1.00×10−4

AK30 1.04×101 9.52×100

Table 7. Wilcoxon rank-sum test for the results of Table 6.

Comparison Criteria Compared Methods R+ R− p-Value Best Method

Average Errors DSS, EDA-D 22 33 0.7337 –

For a more professional comparison, more sophisticated functions were used to compare the
results of the proposed method with those of some benchmark methods. The hard test set test functions
h1–h25, stated in Appendix A, are invoked in testing the performance of the proposed EDA-D method
against seven benchmark differential evolutionary methods [57]. The results of the proposed methods
and the seven compared methods using the hard test functions h1-h25 with n = 30 are reported in
Table 8. This table contains average errors with 25 independent trials for each method. Results of the
methods used in the comparison are taken from [57]. These comparisons indicate that the proposed
method is promising, and its results are similar to those of the methods used in the comparison.
Comparative statistics for the results in Table 8 are presented in Table 9 using the rank-sum statistical
test. The results of this statistical test indicate that there is no significant difference between the
proposed method and the global optimization benchmark methods used in the comparison at the
significance level 0.05. This indicates that the proposed method is promising in the field of deterministic
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global optimization. This motivates the idea of combining the EDA-D with sampling methods to solve
stochastic global optimization problems.

Table 8. Compared average error gabs of global optimization m thods using the hard test set.

h EDA-D jDE SaDE JADE CoDE SSCPDE CoBiDE PKDE

h1 4.63×10−12 0 0 0 6.73×10−30 0 0 0
h2 4.72×10−8 4.78×10−7 1.12×10−5 8.15×10−29 1.23×10−15 7.79×10−14 1.19×10−12 3.54×10−17

h3 4.51×10−2 2.03×105 5.35×105 8.18×103 1.20×105 7.14×104 7.80×104 4.89×104

h4 5.05×104 3.44×10−2 1.45×102 8.39E–16 5.17×10−3 1.59×10−3 8.88×10−4 7.83×10−4

h5 6.93×103 4.46×102 3.13×103 4.86×10−7 3.64×102 3.92×102 3.71×101 6.29×101

h6 7.97×10−1 2.25×101 4.01×101 2.58×100 1.33×10−1 7.80×10−9 1.66×10−1 2.65×10−1

h7 1.53×10−2 1.16×10−2 1.84×10−2 9.36×10−3 8.86×10−3 4.51×10−3 3.68×10−3 6.07×10−3

h8 2.00×101 2.09×101 2.09×101 2.09×101 2.02×101 2.09×101 2.07×101 2.03×101

h9 1.52×102 0 9.95×10−2 0 0 0 0 0
h10 3.18×102 5.79×101 4.48×101 2.43×101 4.16×101 2.84×101 4.34×101 4.57×101

h11 3.42×101 2.83×101 1.65×101 2.53×101 1.26×101 1.95×101 5.67×100 1.36×101

h12 1.80×102 1.20×104 2.17×103 6.68×103 3.34×103 1.64×103 2.96×103 3.72×103

h13 5.76×100 1.66×100 3.90×100 1.48×100 1.58×100 2.50×100 2.64×100 2.35×100

h14 1.40×101 1.30×101 1.26×101 1.23×101 1.24×101 1.22×101 1.22×101 1.23×101

h15 8.98×102 3.18×102 3.74×102 3.76×102 4.03×102 3.30×102 4.10×102 3.43×102

h16 4.67×102 8.49×101 7.71×101 9.63×101 6.39×101 4.97×101 8.42×101 6.48×101

h17 4.52×102 1.39×102 8.70×101 1.02×102 8.50×101 5.56×101 6.82×101 6.83×101

h18 9.69×102 9.04×102 8.78×102 9.04×102 9.05×102 9.00×102 9.04×102 9.00×102

h19 1.02×103 9.04×102 8.60×102 9.04×102 9.04×102 9.00×102 9.04×102 9.00×102

h20 9.80×102 9.04×102 8.73×102 9.04×102 9.04×102 9.00×102 9.04×102 9.00×102

h21 1.09×103 5.00×102 5.43×102 5.10×102 5.00×102 5.00×102 5.00×102 5.00×102

h22 1.24×103 8.67×102 9.36×102 8.64×102 8.63×102 8.83×102 8.54×102 8.86×102

h23 1.26×103 5.34×102 5.69×102 5.34×102 5.34×102 5.34×102 5.34×102 5.34×102

h24 1.36×103 2.00×102 2.00×102 2.00×102 2.00×102 2.00×102 2.00×102 2.00×102

h25 1.37×103 2.11×102 2.13×102 2.11×102 2.11×102 2.11×102 2.10×102 2.11×102

Table 9. Wilcoxon rank-sum test for the results of Table 8.

Comparison Criteria Compared Methods R+ R− p-Value Best Method

EDA-D, jDE 263 62 0.2327 –
EDA-D, SaDE 261 64 0.4151 –
EDA-D, JADE 269 56 0.1116 –

Average Errors EDA-D, CoDE 274 51 0.1683 –
EDA-D, SSCPDE 273 52 0.1510 –
EDA-D, CoBiDE 273 52 0.1456 –
EDA-D, PKDE 275 50 0.1456 –

6.2. Simulation Based Optimization Results

The proposed method has been compared with another metahuristic method to demonstrate its
performance in terms of simulation optimization. The EDA-MMSS method has been compared with
Evolution Strategies and Scatter Search for a simulation-based global optimization problem, which is
introduced in [51]. Table 10 shows the comparison among the proposed method, Directed Evolution
Strategies for Simulation-based (DESSP), and Scatter Search for Simulation-Based Optimization
(DSSSP). The averages of the function values for the tested functions, and the best values over
25 independent runs for EDA-MMSS, DESSP, and DSSSP are simulated to seven test function problems
presented in Table 2 with 500,000 maximum function evaluations, and their processing times are shown
in Table 11. From Table 10, the EDA-MMSS method has shown superior performance for this function,
especially for high dimensional function f7.
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Table 10. Best and average function values using the SBO Test Set A.

f EDA-SPRS EDA-MMSS DESSP DSSSP

Best Average Best Average Best Average Best Average

f1 5.06×10−2 1.64×10−1 6.61×10−3 6.15×10−2 5.00×10−4 2.33×10−1 1.46×10−2 2.94×10−1

f2 2.52×100 3.11×100 4.50×100 7.69×100 8.05×10−1 3.55×100 4.08×10−1 6.56×100

f3 3.75×10−3 4.24×10−1 2.90×10−2 3.22×10−1 1.00×10−3 3.31×10−1 5.90×10−1 1.04×100

f4 1.39×100 1.62×101 9.34×100 2.23×101 1.44×10−1 3.75×100 2.75×100 6.71×100

f5 3.59×10−2 3.02×10−1 9.11×10−4 2.11×10−1 4.00×10−4 3.87×10−1 2.82×10−1 1.91×100

f6 9.40×10−2 4.77×10−1 2.91×10−3 2.87×10−1 1.00×10−5 2.13×10−2 3.00×10−4 9.21×10−2

f7 3.14×100 4.56×100 2.25×100 2.99×100 2.79×101 3.96×101 8.41×100 1.24×101

Table 11. Averages of processing time (in seconds) for obtaining results in Table 10.

f f1 f2 f3 f4 f5 f6 f7

EDA-SPRS 79 10 39 75 10 5 241
EDA-MMSS 85 11 40 76 11 5 251

DESSP 162 20 119 177 25 10 476
DSSSP 414 103 317 307 114 35 683

Table 12 provides a statistical comparisons for the results in Tables 10 and 11. Although there were
no significant differences between the results of the proposed method and those of the methods used in
the comparison in terms of solution qualities, it is clear that the proposed method obtained better results
on solution averages. This indicates the robustness of the proposed method. Moreover, the proposed
method shows superior performance in saving processing times as shown in Tables 11 and 12.

Table 12. Wilcoxon rank-sum test for the results of Tables 10 and 11.

Comparison Criteria Compared Methods R+ R− p-Value Best Method

EDA-SPRS, EDA-MMSS 14 14 0.7104 –
EDA-SPRS, DESSP 21 7 0.2593 –

Best Solutions EDA-SPRS, DSSSP 9 19 0.9015 –
EDA-MMSS, DESSP 16 12 0.3829 –
EDA-MMSS, DSSSP 11 17 0.8048 –

EDA-SPRS, EDA-MMSS 15 13 0.7104 –
EDA-SPRS, DESSP 14 14 0.8048 –

Average Errors EDA-SPRS, DSSSP 9 19 0.8048 –
EDA-MMSS, DESSP 22 6 0.2086 –
EDA-MMSS, DSSSP 18 10 0.8048 –

EDA-SPRS, EDA-MMSS 0.5 27.5 0.6474 –
EDA-SPRS, DESSP 0 28 0.3141 –

Processing Time EDA-SPRS, DSSSP 0 28 0.0169 EDA-SPRS
EDA-MMSS, DESSP 0 28 0.3642 –
EDA-MMSS, DSSSP 0 28 0.0169 EDA-MMSS

The last experiment was conducted to compare the results of the proposed methods with those of
recent benchmark methods in simulation-based optimization. Eight methods [58] are used in this final
comparison and their results are reported in Table 13 using the SBO Test Set B. The proposed methods
could obtain better results than seven out of eight methods used in this comparison. Comparative
statistics for these results are reported in Table 14 using the rank-sum statistical test. These statistics
indicate that there is no difference between the results of the proposed EDA-SPRS and EDA-MMSS
methods. Moreover, the proposed methods have overcome 7 out of 8 methods used in the comparison,
which is clear from the p-values.
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Table 13. Compared average error gabs of simulation-based optimization methods using the SBO Test
Set B with n = 30.

g EDA-SPRS EDA-MMSS DE/rand/1 jDE GADS

g1 2.73×10−1 5.60×10−1 3.67×100 4.59×10−1 1.95×100

g2 1.79×100 8.54×100 5.89×101 4.25×101 3.24×101

g3 3.67×100 9.25×100 6.56×103 4.27×103 7.44×103

g4 1.63×10−1 4.14×100 1.02×102 5.82×101 6.49×101

g5 3.88×10−1 2.82×10−1 9.98×10−3 7.67×10−1 2.76×10−2

g6 2.00×100 2.42×100 4.18×102 1.99×102 4.75×102

g7 2.40×101 2.28×101 6.34×100 2.08×101 1.29×101

g8 5.67×100 3.73×101 1.65×104 9.19×103 1.05×104

g9 1.07×101 1.12×101 5.74×100 4.65×100 3.81×100

g10 2.50×101 4.26×101 3.91×102 2.90×102 2.31×102

g11 3.41×101 4.37×101 6.36×103 4.12×103 7.50×103

g12 8.23×103 4.51×103 7.89×103 8.22×103 6.09×103

g13 9.64×10−1 6.19×10−1 1.18×100 9.91×10−1 1.46×100

g DERSFTS OBDE NADE MUDE MDE-DS

g1 1.10×100 3.35×100 2.99×10−1 2.59×10−1 0
g2 5.67×101 5.69×101 3.29×101 2.69×101 8.53×10−3

g3 6.84×103 8.23×103 3.32×103 2.36×103 7.08×10−4

g4 1.06×102 1.45×102 4.53×101 3.68×101 7.92×10−2

g5 7.84×10−1 4.16×10−2 8.30×10−1 7.69×10−1 5.41×10−4

g6 3.95×102 5.21×102 1.65×102 1.46×102 1.41×10−3

g7 8.52×100 9.27×100 2.46×101 2.32×101 2.02×100

g8 1.66×104 2.15×104 6.84×103 5.28×103 7.81×10−1

g9 3.92×100 4.25×100 5.05×100 5.41×100 1.39×100

g10 3.83×102 3.78×102 1.96×102 2.00×102 1.89×10−2

g11 6.12×103 7.26×103 3.76×103 2.49×103 2.60×101

g12 1.01×104 8.03×103 5.60×103 6.00×103 0
g13 5.89×10−1 1.08×100 1.82×100 1.57×100 1.03×101

Table 14. Wilcoxon rank-sum test for the results of Table 13.

Comparison Criteria Compared Methods R+ R− p-Value Best Method

EDA-SPRS, EDA-MMSS 23 68 0.3560 –
EDA-SPRS, DE/rand/1 19 72 0.0483 EDA-SPRS

EDA-SPRS, jDE 15 76 0.0513 –
EDA-SPRS, GADS 20 71 0.0649 –

EDA-SPRS, DERSFTS 10 81 0.0513 –
EDA-SPRS, OBDE 19 72 0.0544 –
EDA-SPRS, NADE 15 76 0.0578 –
EDA-SPRS, MUDE 20 71 0.0812 –

Average Errors EDA-SPRS, MDE-DS 81 10 0.0077 MDE-DS
EDA-MMSS, DE/rand/1 10 81 0.1008 –

EDA-MMSS, jDE 10 81 0.1119 –
EDA-MMSS, GADS 10 81 0.1239 –

EDA-MMSS, DERSFTS 10 81 0.1008 –
EDA-MMSS, OBDE 10 81 0.0812 –
EDA-MMSS, NADE 6 85 0.1119 –
EDA-MMSS, MUDE 6 85 0.1662 –

EDA-MMSS, MDE-DS 84 7 0.0025 MDE-DS

7. Conclusions

In this paper, a modified method of Estimation of Distribution Algorithms for simulation-based
optimization is proposed to find the global optimum or near-optimum of noisy objective functions.
The proposed method is composed of combining a modified version of Estimation of Distribution
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Algorithm with a new sampling technique. This technique is a variable-sample method, in which
function transportation is used with small-size samples in order to reduce the large dispersion resulting
from random variables. The proposed sampling technique helps the search method to perform better
exploration and hence to reach near global optimal solutions. The obtained results indicate the
promising performance of the proposed method versus some existing state-of-the-arts methods,
especially in terms of robustness and processing time.
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Appendix A. Hard Test Functions

Twenty-five hard test functions h1-h25 are listed in Table A1 with their global minima and bounds.
The reader is directed to [47,48] for more details on these functions.

Table A1. Hard test functions.

h Function Name Bounds Global Min

h1 Shifted sphere function [−100, 100] −450
h2 Shifted Schwefel’s function 1.2 [−100, 100] −450
h3 Shifted rotated high conditioned elliptic function [−100, 100] −450
h4 Shifted Schwefel’s function 1.2 with noise in fitness [−100, 100] −450
h5 Schwefel’s function 2.6 with global optimum on bounds [−100, 100] −310
h6 Shifted Rosenbrock’s function [−100, 100] 390
h7 Shifted rotated Griewank’s function without bounds [0, 600] −180

h8 Shifted rotated Ackley’s function with global optimum [−32, 32] −140
on bounds

h9 Shifted Rastrigin’s function [−5, 5] −330
h10 Shifted rotated Rastrigin’s function [−5, 5] −330
h11 Shifted rotated Weierstrass function [−0.5, 0.5] 90
h12 Schwefel’s function 2.13 [−100, 100] −460
h13 Expanded extended Griewank’s + Rosenbrock’s function [−3, 1] −130
h14 Expanded rotated extended Scaffer’s function [−100, 100] −300
h15 Hybrid composition function [−5, 5] 120
h16 Rotated hybrid composition function [−5, 5] 120
h17 Rotated hybrid composition function with noise in fitness [−5, 5] 120
h18 Rotated hybrid composition function [−5, 5] 10

h19 Rotated hybrid composition function with narrow [−5, 5] 10
basin global optimum

h20 Rotated hybrid composition function with global [−5, 5] 10
optimum on the bounds

h21 Rotated hybrid composition function [−5, 5] 360

h22 Rotated hybrid composition function with high [−5, 5] 360
condition number matrix

h23 Non-Continuous rotated hybrid composition function [−5, 5] 360
h24 Rotated hybrid composition function [−5, 5] 260
h25 Rotated hybrid composition function without bounds [2, 5] 260
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Appendix B. Classical Test Functions—Set A

Appendix B.1. Goldstein and Price Function

Definition: f1(x) = [1+(x1 + x2 + 1)2(19− 14x1 + 13x2
1− 14x2 + 6x1x2 + 3x2

2)][30+(2x1− 3x2)
2(18−

32x1 + 12x2
1 − 48x2 − 36x1x2 + 27x2

2)].
Search space: −2 ≤ xi ≤ 2, i = 1, 2.
Global minimum: x∗ = (0,−1); f1(x∗) = 3.

Appendix B.2. Rosenbrock Function

Definition: f2(x) = ∑4
i=1

(
100

(
x2

i − xi+1
)
)2 + ((xi − 1)2

)
+ 1.

Search space: −10 ≤ xi ≤ 10, i = 1, 2, . . . , 5.
Global minimum: x∗ = (1, . . . , 1), f2(x∗) = 1.

Appendix B.3. Griewank Function

Definition: f3(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 2.

Search space: −10 ≤ xi ≤ 10, i = 1, 2.
Global minimum: x∗ = (0, 0), f3(x∗) = 1.

Appendix B.4. Pinter Function

Definition: f4(x) = ∑n
i=1 ix2

i + ∑n
i=1 20i sin2(xi−1 sin xi − xi + sin xi+1) + ∑n

i=1 i log10[1+ i(x2
i−1− 2xi +

3xi+1 − cos xi + 1)2], where x0 = xn and xn+1 = x1.
Search space: −10 ≤ xi ≤ 10, i = i = 1, 2, . . . , 5.
Global minimum: x∗ = (0, . . . , 0), f4(x∗) = 1.

Appendix B.5. Modified Griewank Function

Definition: f5(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
−∏n

i=1 e−x2
i + 2.

Search space: −10 ≤ xi ≤ 10, i = 1, 2.
Global minimum: x∗ = (0, 0), f5(x∗) = 1.

Appendix B.6. Griewank function with non-Gaussian noise

Definition: f6(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 2.

The simulation noise is changed to the uniform distribution U(-17.32, 17.32)
Search space: −10 ≤ xi ≤ 10, i = 1, 2.
Global minimum: x∗ = (0, 0), s f6(x∗) = 1.

Appendix B.7. Griewank function with (50D)

Definition: f7(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 2.

Search space: −10 ≤ xi ≤ 10, i = 1, 2, . . . , 50.
Global minimum: x∗ = (0, . . . , 0), , f7(x∗) = 1.

Appendix C. Classical Test Functions—Set B

Appendix C.1. Ackley Function

Definition: g1(x) = 20 + e− 20e−
1
5

√
1
n ∑n

i=1 x2
i − e−

1
n ∑n

i=1 cos(2πxi).
Search space: −15 ≤ xi ≤ 30, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g1(x∗) = 0.
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Appendix C.2. Alpine Function

Definition: g2(x) = ∑n
i=1 |xi sin xi + 0.1xi|.

Search space: −10 ≤ xi ≤ 10, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g2(x∗) = 0.

Appendix C.3. Axis Parallel Function

Definition: g3(x) = ∑n
i=1 ix2

i .
Search space: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g3(x∗) = 0.

Appendix C.4. DeJong Function

Definition: g4(x) = ‖x‖2.
Search space: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g4(x∗) = 0.

Appendix C.5. Drop Wave Function

Definition: g5(x) = −
1+cos 12

√
‖x‖2

1
2 ‖x‖2+2

.

Search space: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g5(x∗) = 0.

Appendix C.6. Griewank Function

Definition: g6(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 2.

Search space: −600 ≤ xi ≤ 600, i = 1, 2, . . . , 50.
Global minimum: x∗ = (0, . . . , 0), g6(x∗) = 1.

Appendix C.7. Michalewicz Function

Definition: g7(x) = −∑2
i=1 sin (xi) sin2m

(
ix2

i
π

)
; m = 10.

Search space: 0 ≤ xi ≤ π, i = 1, 2, . . . , n.
Global minima: g7(x∗) = −29.6309; n = 30.

Appendix C.8. Moved Axis Function

Definition: g8(x) = ∑n
i=1 5ix2

i .
Search space: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g8(x∗) = 0.

Appendix C.9. Pathological Function

Definition: g9(x) =
n−1

∑
i=1

[
1
2 +

sin2
(√

100x2
i +x2

i+1−0.5
)

1+10−3(x2
i −2xixi+1+x2

i+1)
2

]
.

Search space: −100 ≤ xi ≤ 100, i = 1, 2, . . . , n.

Appendix C.10. Rastrigin Function

Definition: g10(x) = 10n + ∑n
i=1
(

x2
i − 10 cos (2πxi)

)
.

Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), g10(x∗) = 0.
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Appendix C.11. Rosenbrock Function

Definition: g11(x) = ∑4
i=1

(
100

(
x2

i − xi+1
)
)2 + ((xi − 1)2

)
+ 1.

Search space: −10 ≤ xi ≤ 10, i = 1, 2, . . . , 5.
Global minimum: x∗ = (1, . . . , 1), g11(x∗) = 1.

Appendix C.12. Schwefel Function

Definition: g12(x) = −∑n
i=1

(
xi sin

√
|xi|
)

.
Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.
Global minimum: x∗ = (1, . . . , 1), g12(x∗) = −418.9829n.

Appendix C.13. Tirronen Function

Definition: g13(x) = 3e−
‖x‖2
10n − 10e−8‖x‖2

+ 5
2n ∑n

i=1 cos
[
5
(
xi + (1 + i mod 2) cos ‖x‖2)].

Search space: −10 ≤ xi ≤ 5, i = 1, 2, . . . , n.
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