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Abstract: The microbond test for natural fibers is difficult to conduct experimentally due to several
challenges including controlling the gap distance of the blade, the meniscus shape, and the large
data spread. In this study, a finite element simulation was performed to investigate the effects of
the bonding characteristics in the interface between the fiber and matrix on the Typha fiber/epoxy
microbond test. Our aim was to obtain the accurate mesh and cohesive properties via simulation of
the Typha fiber/epoxy microbond test using the cohesive zone model technique. The axisymmetric
model was generated to model the microbond test specimen with a cohesive layer between the fiber
and matrix. The cohesive parameter and mesh type were varied to determine the appropriate cohesive
properties and mesh type. The fine mesh with 61,016 elements and cohesive properties including
stiffness coefficients Knn = 2700 N/mm3, Ktt = 2700 N/mm3, and Kss = 2700 N/mm3; fracture energy
of 15.15 N/mm; and damage initiation tnn = 270 N/mm2, ttt = 270 N/mm2, and tss = 270 N/mm2 were
the most suitable. The cohesive zone model can describe the debonding process in the simulation
of the Typha fiber/epoxy microbond test. Therefore, the results of the Typha fiber/epoxy microbond
simulation can be used in the simulation of Typha fiber reinforced composites at the macro-scale.
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1. Introduction

Natural fiber-reinforced polymer composites have attracted research interest as replacements for
synthetic fibers. Synthetic fibers are not environmentally friendly due to being nonbiodegradable,
which causes environmental problems. Therefore, natural fibers have rapidly been developed to
reinforce polymer composites. Natural fibers are biodegradable and renewable. Several natural fiber
composites have been studied including ramie, kenaf, coir, sisal, hemp, and jute [1–3]. One of the
natural fibers that has the potential to reinforce composites is Typha fiber. Typha is widely available in
most countries [4]. Typha grows rapidly on wetlands and is often considered as parasite. Although
Typha is abundantly present in nature, its potential is still undeveloped compared to other natural
fibers [5]. Typha fiber composites are known to have many advantages, such as good flexibility, light
weight, good mechanical strength, low density, and renewability [6,7]. However, several challenges
exist to the use of natural fiber-reinforced polymer composite, one of which is the low compatibility
between natural fiber and the matrix polymer [8], which causes interlayer gaps and initial cracks along
the fiber. The interfacial composite is the contact area between the matrix and the reinforcing fiber
that carries the load received by the matrix to the fiber. The structures of the fiber and the matrix
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considerably influence the bonding of the fiber–matrix interface, which also affects the characteristics
of the composite structure [9–11].

Several testing methods, such as the fiber push-out test, microbond test, and fragmentation test,
have been used to evaluate the shear strength of the interface of the composite. The microbond test was
developed by Miller et al. [12] and is one of the most widely used test methods for testing fiber–matrix
interfacial shear strength (IFSS).

Microbond tests have been commonly used to study the effects of surface treatments on fibers and
the interface behavior between matrices and fibers. The microbond test for natural fibers is hard to
conduct experimentally due the several challenges such as difficulty in controlling the gap distance
of the blade, the meniscus shape, the plastic yield of the matrix, and the reproducibility of sample
preparation [13]. Microbond test results are reported cause large variations in test data and the large
data spread becomes an obstacle for determining the shear strength of composite interfaces compared
to other tests [14]. Therefore, microbond testing with numerical simulation approaches has attracted
researchers. Numerical simulation using the finite element method has been used to simplify the
investigation of the bonding characteristics on the interface between the fiber and matrix [15,16].

Several reports have been published about microbond test simulations. Ash et al. developed
an axisymmetric model to study microbond tests including realistic droplet shapes on the glass
fiber–polymer matrix [17]. Kang et al. modeled microbond tests using two-dimensional (2D)
axisymmetric models and considered different droplet shapes, such as cylinders and spheres, on the
effect of meniscus on carbon–epoxy fibers [14]. Crack propagation during fiber-on-fiber/matrix push-out
was modeled using a cohesive zone approach in the volumetric finite element method (FEM) with
an axisymmetric model [18]. The cohesive zone model was used to simulate the interphase between
fiber and matrix, providing an ideal tool to study the interfacial debonding progress in composites [19].
However, no study has investigated the behavior of interfacial bonds in the microbond test of Typha
fiber/epoxy. The aim of this study was to determine the accurate mesh and cohesive properties on the
simulation of the Typha fiber/epoxy microbond test using the cohesive zone model technique.

The Typha fiber/epoxy microbond test was simulated using the FEM. The mesh sensitivity and
cohesive properties are two parameters that play important roles in microbond test simulation.
Therefore, we wanted to determine the appropriate mesh type and cohesive properties to obtain good
agreement between simulation and experimental results. We wanted to analyze the mesh sensitivity
and cohesive properties of the Typha fiber/epoxy microbond test as these have not been reported in
the literature.

2. Materials and Methods

2.1. FEM

The FEM and geometry used were similar to the microbond test experiment, as shown in Figure 1.
The commercial finite element software Abaqus 6.14 (Dassault Systèmes Simulia Corp., Johnston,
RI, USA) was used to generate the model and analyze the Typha fiber/epoxy microbond test. The
axisymmetric model was generated to model the microbond test specimen with a cohesive layer
between the fiber and matrix with 0.01 mm thickness, as shown in Figure 2, where the embedded
length, fiber radius, and droplet height were 1.67, 0.125, and 0.3 mm, respectively. The vise blade was
0.78 mm away from the interface. The vise blade was modelled as a rigid body. The hard contact type
was selected as the interaction between the blade and resin. Tie constraints were used to tie fibers to the
cohesive layer and matrix. A displacement load of 0.466 mm was applied at the end of the fiber. The
magnitude of displacement was obtained from experiments. The edge of the fiber and matrix provided
the asymmetrical boundary condition, where only the Y plane axis is free (U1 = U2 = UR3 = 0), while
the vise blade is in the fully built-in fixed support condition (U1 = U2 = UR1 = UR2 = UR3 = 0). Finite
element analysis was performed on an ASUS computer (AsusTek Computer Inc., Taipei, Taiwan) with
an Intel core i9 processor (Intel Corp., Santa Clara, CA, USA) and 16 GB RAM.
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Figure 2. (a) Microbond test model geometry and (b) boundary condition. 
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microbond test results. The element near the interfacial area was adjusted. The quadrilateral linear 
CAX4 type and linear triangular CAX3 type were the elements used on the epoxy resin and Typha 
fiber, whereas the elements on the cohesive layer were quadrilateral linear COHAX4 type. The mesh 
on the Typha fiber/epoxy microbond test model is displayed in Figure 3. The numbers of each element 
in the microbond testing model are presented in Table 1. 

Table 1. The number of elements used in the model. 

Mesh Type Seed Mesh 
Typha Fiber and Matrix Cohesive Layer 

Total 
CAX4 CAX3 COHAX4 

Coarse 0.005 2256 183 1675 4114 
Medium 0.003 5896 230 1675 7801 

Fine 0.001 58,324 1017 1675 61,016 
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Figure 2. (a) Microbond test model geometry and (b) boundary condition.

The mesh was varied to determine the mesh that produces results near to the experimental
microbond test results. The element near the interfacial area was adjusted. The quadrilateral linear
CAX4 type and linear triangular CAX3 type were the elements used on the epoxy resin and Typha fiber,
whereas the elements on the cohesive layer were quadrilateral linear COHAX4 type. The mesh on the
Typha fiber/epoxy microbond test model is displayed in Figure 3. The numbers of each element in the
microbond testing model are presented in Table 1.

Table 1. The number of elements used in the model.

Mesh Type Seed Mesh
Typha Fiber and Matrix Cohesive Layer

Total
CAX4 CAX3 COHAX4

Coarse 0.005 2256 183 1675 4114

Medium 0.003 5896 230 1675 7801
Fine 0.001 58,324 1017 1675 61,016

Very Fine 0.0005 18,8491 3145 1675 193,311
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2.2. Material Properties

Dugdale [20] and Barenblatt [21] introduced the cohesive zone model in 1960 and 1962, respectively,
when solving the problem of cracking of perfect brittle material. Three modes of fractures, opening
mode, sliding mode, and tear mode, can appear at the interface between the fiber and matrix when
the loading conditions are applied to the composite. The cohesive zone model specifies three bond
conditions for each fracture mode: elastic bond, debonding, and debonded conditions. All the fracture
modes can be characterized by a traction–separation (t–δ) curve as shown in Figure 4. The condition of
the elastic bond is determined by the interfacial stiffness (K), which is the elastic constitutive matrix
that relates t and δ, as shown in Equation (1).

t = Kδ
tn

ts

tt

 =


Knn Kns Knt

Kns Kss Kst

Knt Kst Ktt



δn

δs

δt

 (1)

where n is normal mode, s is shear mode, and t is tear mode.
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The material properties are listed in Table 2. Typha fiber properties were obtained from our
previous research [22] and the epoxy resin properties were obtained from Selmi [23].

Table 2. Material properties Typha fiber and epoxy resin.

Material Young’s Modulus (GPa) Poisson’s Ratio

Typha fiber 0.88 0.35
Epoxy resin 3.7 0.4

Adjusting the stiffness parameters and damage criteria for cohesive elements is convenient with
finite element software [15]. Therefore, the cohesive properties were varied to obtain agreement of the
simulation results with the experimental Typha fiber/epoxy microbond results. Table 3 lists the various
cohesive properties. These values, obtained based on several simulations, were accepted as reported
using the same method of Dadej [24] and Potukuchi [25].

Table 3. Variations in cohesive properties.

Variations Stiffness Coefficients (N/mm3) Fracture Energy (N/mm) Damage Initiation (N/mm2)

Knn Kss Ktt GIc tnn tss ttt

VR1 2700 2700 2700 14.65 270 270 270
VR2 2700 2700 2700 15.15 270 270 270
VR3 3000 3000 3000 15.00 250 250 250
VR4 3500 3500 3500 14.00 270 270 270
VR5 5000 5000 5000 10.50 267 267 267
VR6 8000 8000 8000 5.50 200 200 200
VR7 10,000 10,000 10,000 5.00 250 250 250

3. Mesh Sensitivity Analysis

The microbond test has several parameters that must be considered, including fiber diameter,
embedded length, meniscus angle, contact angle, and the distance between the vise blade and the
specimen. Cohesive parameters must be determined first to produce suitable cohesive properties.
When accomplished, the experimental results would be similar to the experimental results [15]. The
mesh has an important role in finite element analysis for determining the accuracy of the simulation
results to ensure good agreement with the experimental results.

The force–displacement curve was obtained from the mesh sensitivity study in the microbond
test model, as shown in Figure 5. A, B, C, and D represent the coarse, medium, fine, and very fine
mesh, respectively, corresponding to P, Q, R, and S, respectively, which represent computational time.
We found that the higher the number of the elements, the lower the reaction force; this indicated that
mesh selection affected the simulation result. Figure 5 shows that the coarse mesh had the highest
force, which was 9.7 N; the lowest force on the very fine mesh was 1.5 N. The maximum forces for the
medium and fine meshes were 7.5 and 2.9 N, respectively.

The results of testing several cohesive properties on the coarse, medium, fine, and very fine mesh
are shown in Figure 6a–d, respectively. The force–displacement curves for the cohesive properties were
compared with the experimental results. The experimental curve decreased dramatically after reaching
the maximum force, with a maximum force value of 2.6 N. The maximum force in the microbond
simulation test with fine mesh had a maximum force resembling the experimental results, as shown in
Figure 5.
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In the simulation, the damage initiation parameter value was varied from 200 to 270 N/mm2. The
variation of the cohesive properties with coarse mesh showed that the maximum force was around
5–10 N. This maximum force exceeded the value obtained from the experiment. For medium mesh, the
maximum force was 4–7 N. Based on the image, VR3, VR4, and VR6 show that the curve decreased
after reaching maximum force. The simulation of the Typha fiber/epoxy microbond test with various
cohesive properties on the fine mesh is shown in Figure 6c. We found that the curve was similar to the
experimental curve; almost all curves had a maximum force close to the experimental value except for
VR6 and VR7. The VR2 curve was the most similar to the experimental results. Figure 6d depicts the
results of various cohesive properties on very fine mesh, showing that the maximum force is below the
experimental result. Only the VR4 curve decreased after reaching the maximum force.

Based on finite element theory, element size is a critical aspect related to the result accuracy.
The smaller the element size, the more accurate the analysis results. However, in certain cases, a
smaller element size produces a higher calculation value compared to actual value obtained from the
experiments [26]. In this situation, a limit must be set on the percentage error of the results obtained
from calculations to determine the appropriate element size [27]. In our study, the least error occurred
with the fine mesh.

The incorrect selection of cohesive properties in the microbond test simulation leads to results
incompatible with the experimental values. Dadej and Sadowski analyzed the response of the cohesive
zone model parameters on glass/epoxy composite and found that incorrectly choosing the damage
initiation parameter causes an unstable growth of crack length [24]. Schellekens and de Borst [28]
reported that excessive stiffness coefficient parameter values produce unstable analysis, which affects
the numerical computation time. The selection of a suitable mesh is also important. As reported
by Soto [29], incorrect selection of the number of elements generates incorrect crack initiation and
propagation, causing poor agreement of simulation results with experimental results.

From this result, the interfacial shear strength (IFSS) of Typha fiber/epoxy was obtained using
Equation (2) [30].

IFSS =
Fmax

πd f Lem
(2)

where Fmax is the maximum force when debonding occurs between the fiber and matrix, df is fiber
diameter, and Lem is embedded length.

The interfacial shear strength obtained from the simulation results of microbond testing with
fine mesh was 4.4 MPa; the interfacial shear strength from the experimental results is 3.2 MPa per
previous research [22]. The sensitivity mesh study revealed that fine mesh with 61,016 elements is
the most suitable for Typha fiber/epoxy microbond test simulation. Therefore, we concluded that
the cohesive properties and the type of mesh used in this simulation produced results close to the
experimental results.

4. Interfacial Debonding

Figure 7 displays the microbond test simulation results, which show the force and displacement
of Typha fiber/epoxy. The force–displacement curve illustrates that the matrix is still attached to the
fiber until a maximum force of 2.9 N at 0.31 mm displacement. After reaching the maximum force, the
line on the curve decreases sharply, which reveals debonding has occurred. As illustrated in Figure 8,
the debonding phenomenon is similar to the results of the simulation conducted by Hao et al. [31] for a
carbon fiber/bismaleimide composites microbond test, but with a different magnitude.

Figure 8 depicts a contour plot of shear stress in a simulation of Typha fiber/epoxy composite.
When the vise blade hit the matrix first, we observed that the stress at the resin tip is concentrated at
the vise blade tip. The shear stress contour spreads from the epoxy resin to the cohesive layer, which
was modeled as the interfacial region between the fiber and matrix. Then, the stress was distributed to
the fiber, as shown in Figure 8a. In the next step, more shear stress appeared on the fiber and continued
to propagate down through the interface area, as shown in Figure 8b. The moment immediately before
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debonding, depicted in Figure 8c, illustrates the last step, which is the shear stress concentration
moving into the bottom of the test specimen before full debonding occurred.
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Figure 9. Maximum traction damage initiation criterion.

We found that the appropriate mesh type and cohesive properties for the simulation of the Typha
fiber/epoxy microbond test. The debonding process of the interfacial area between the fiber and the
matrix can be clearly described by the proposed model. The mesh type and cohesive properties that
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matched the experimental results can facilitate further work on understanding the interfacial behavior
of Typha fiber and epoxy at the macro scale.

5. Conclusions

In this study, we conducted Typha fiber/epoxy microbond testing simulations with several different
cohesive properties and mesh types. From the results, we concluded:

1. Fine mesh with 61,016 elements is the most suitable type for the Typha fiber/epoxy microbond
simulation test based on the comparison of simulation and experimental results.

2. The simulation results agreed well with experimental results of load and displacement curves
and interfacial shear strength values when cohesive properties including stiffness coefficients
(Knn of 2700 N/mm3, Ktt of 2700 N/mm3, and Kss of 2700 N/mm3), fracture energy of 15.15 N/mm,
and damage initiation (tnn = 270 N/mm2, ttt = 270 N/mm2, tss = 270 N/mm2), with fine mesh.

3. The cohesive zone model can describe the debonding process during the simulation of the Typha
fiber/epoxy microbond test.

From this research, we expect that future Typha fiber simulation processes on a macro-scale will be
able to directly use the mesh parameters and cohesive properties reported here. In future work, the
effect of the blade gap distance on the Typha fiber/epoxy microbond test will be tested.
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