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Abstract: (1) Background: In this research, we aimed to identify and validate a set of relevant features to
distinguish between benign nevi and melanoma lesions. (2) Methods: Two datasets with 70 melanomas
and 100 nevi were investigated. The first one contained raw images. The second dataset contained
images preprocessed for noise removal and uneven illumination reduction. Further, the images
belonging to both datasets were segmented, followed by extracting features considered in terms of
form/shape and color such as asymmetry, eccentricity, circularity, asymmetry of color distribution,
quadrant asymmetry, fast Fourier transform (FFT) normalization amplitude, and 6th and 7th Hu’s
moments. The FFT normalization amplitude is an atypical feature that is computed as a Fourier
transform descriptor and focuses on geometric signatures of skin lesions using the frequency domain
information. The receiver operating characteristic (ROC) curve and area under the curve (AUC) were
employed to ascertain the relevance of the selected features and their capability to differentiate between
nevi and melanoma. (3) Results: The ROC curves and AUC were employed for all experiments and
selected features. A comparison in terms of the accuracy and AUC was performed, and an evaluation
of the performance of the analyzed features was carried out. (4) Conclusions: The asymmetry index
and eccentricity, together with F6 Hu’s invariant moment, were fairly competent in providing a good
separation between malignant melanoma and benign lesions. Also, the FFT normalization amplitude
feature should be exploited due to showing potential in classification.

Keywords: skin lesion; morphological operators; feature extraction; ROC curves; AUC

1. Introduction

Skin diseases vary in severity and symptoms; for example, a nevus is a benign skin lesion due to
the proliferation of cells that produce pigments (melanocytes), while melanoma is a form of skin cancer
with aggressive development that can develop from a benign lesion. Melanoma originates from the
same pigment-producing nevus cells [1]. Both clinical and statistical types of research have confirmed
that melanoma is rapidly evolving, causing high mortality among the population worldwide. In 2017,
87,110 individuals were diagnosed with melanoma in the USA [2]. The skin lesion is curable with early

Computation 2020, 8, 41; doi:10.3390/computation8020041 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
https://orcid.org/0000-0002-5934-329X
https://orcid.org/0000-0001-8437-498X
https://orcid.org/0000-0003-3217-6185
https://orcid.org/0000-0002-9121-5714
http://dx.doi.org/10.3390/computation8020041
http://www.mdpi.com/journal/computation
https://www.mdpi.com/2079-3197/8/2/41?type=check_update&version=2


Computation 2020, 8, 41 2 of 10

stage detection, leading to the development of computer-aided detection systems for the computational
diagnosis of typical skin lesions. The most significant step in such systems is feature extraction and
selection, where various features, such as the asymmetry, border irregularity, and color, can be used to
inspect the skin lesion pigmentation, shape, or evolution [3] or to separate melanomas from benign
lesions [4]. For automated melanoma detection, numerous computer-based techniques using image
segmentation [4] and support vector machines (SVMs) [5] exist. Furthermore, for quantitative and
qualitative information, other features, such as color, texture, or geometrical features, can be extracted.
In [3], the ABCD (A = asymmetry, B = border irregularity, C = color variegation, and D = diameter of
the lesion) set and the seven-point checklist were expanded with feature E (evolving or evolutionary
change) to assess the dynamic nature of skin malignancy. The reported sensitivity and specificity of
the ABCDE features vary when they are used individually or in combinations. This method classified
only pigmented lesions and has limited generalization capability when non-melanoma skin cancer
is investigated.

Different studies have been conducted for lesion detection based on feature extraction.
Korotkov and Garcia [6] reported an automatic technique for skin cancer detection on images acquired
by in vivo imaging based on specific features related to pigmented skin lesions. Besides this, asymmetry,
irregular edges, heterogeneity, and dynamic color features have been widely used to analyze suspicious
skin lesions [7]. Smaoui and Bessassi [8] analyzed lesions based on the ABCD rule and computed the
total dermatoscopic value for the malignancy detection of pigmented skin lesions. The geometric/color
asymmetries, border irregularity, colors, and diameters were investigated as features. They used three
skin lesions, namely, melanoma, suspicious, and benign skin lesions, in 40 samples of dermatoscopic
images. The accuracy of the proposed method was 92%, with 4 false diagnoses among the 40 samples.
The asymmetry of a lesion image was determined by identifying the centroids and centers of mass in
each of the four lesion quadrants and using fuzzy logic techniques [9,10]. Based on the four features of
asymmetry computed for each quadrant, the benign lesion and malignant melanoma discrimination
results reached an accuracy of 81%. The shape features of skin lesions can be characterized by using
Hu’s invariant moments [11–13]. Hu’s moments method uses the central moments, which integrate
translation and scale normalization. The main drawback of Hu’s moments consists of their redundant
information. On the other hand, Hu’s moments show strong differentiation abilities and are robust
to noise. A different approach for shape characterization is based on spectrum analysis using fast
Fourier transform (FFT) and specific Fourier descriptors. Yuan et al. [14] adopted the FFT and wavelet
analysis to investigate various simple shapes and the real microstructure morphology in terms of
shape similarity, axis orientation, axis ratio, and profile roughness. Similar shapes can be appropriately
distinguished through FFT and Fourier descriptors.

The ABCD features are usually integrated with a large number of other features to improve the
classification process, especially in multiclassification problems. In the current work, a set of necessary
simple descriptors is introduced to characterize the skin lesions sufficiently to be unambiguously
classified [15–18]. The asymmetry, eccentricity, circularity, asymmetry of color distribution, quadrant
asymmetry, 6th and 7th Hu’s moments, and FFT normalization amplitude were investigated due to
their ability to distinguish the skin lesions. Receiver operating characteristic (ROC)-based feature
selection approaches were employed for classification in [19]. A preprocessing step is employed for
noise removal and uneven illumination reduction. The classical morphologic top-hat transform is
carried out to correct the uneven illumination of the images [20,21].

Based on the above analysis, we propose this feature selection approach to use the fewest simple
descriptors necessary to characterize an object adequately. Also, we aim to determine those features
that can serve as good candidates for skin lesion classification. The long-term objective is to develop a
teledermatology tool for the diagnosis of skin lesions and later to migrate to a mobile application.

The remaining sections introduce the segmentation process used, the mathematical approaches of
the extracted features, and the proposed method in Section 2, followed by the experimental results and
discussion in Section 3. Finally, Section 4 highlights the conclusions of the study.
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2. Materials and Methods

A set of features is proposed, and these features were extracted from color digital images.
Two databases with 70 melanomas and 100 nevi were investigated. The first one, denoted D1,
contains raw images. The second database, D2, contains images preprocessed for noise removal and
uneven illumination reduction. The feature extraction was based on the segmentation of the lesion
area from the surrounding normal skin. Afterward, the area under the curve (AUC) and ROC curve
were employed to ascertain the relevance of the selected features and their capability to differentiate
between nevi and melanoma.

2.1. Preprocessing Operations

The removal of noise and artifacts due to the existence of hair is considered an important step in
achieving high performance in image diagnosis. Also, uneven illumination correction is in high demand.
A median de-noising filter was considered for image improvement with minimal degradation of the
initial image [22]. To correct the nonuniform illumination, an algorithm using top-hat transformation
was implemented [20,21]. Several examples of images processed for noise removal and nonuniform
illumination correction are presented in Figure 1.

Figure 1. Preprocessing of a melanoma image (first raw) and nevus image (second raw): (a1,a2) Original
image; (b1,b2) illumination equalization results obtained by employing classical top-hat transform;
(c1,c2) the image given after applying the median filter.

2.2. Segmentation Process

Otsu’s method optimally converts a grayscale image into a binary image by setting threshold T
values to minimize the overlapping of the class distribution [16–18]. It is formulated as discriminatory
analysis between two groups of pixel intensity level, C0 and C1, according to T, such that
C0 = {0, 1, 2, . . . , T}, and C1 = {T + 1, T + 2, . . . , L–1}, where L is the image maximum gray level.
Figure 2 displays the results of the segmentation process of skin lesion images.
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Figure 2. Skin lesion segmentation, with index 1 for a nevus and 2 for melanoma; (a1,a2) original RGB
image; (b1,b2) ellipse circumscribing the lesion; (c1,c2) elliptical mask; (d1,d2) elliptical mask enclosing
the skin lesion; (e1,e2) elliptical mask in grayscale containing the lesion; and (f1,f2) mask associated
with the skin lesion (segmented image).

2.3. Description of Features

In the present work, various features were extracted; these have the following mathematical
expressions. The asymmetry index (AI) was calculated as follows [23]:

AI =
∆Ae

Ae
(1)

where Ae is the area of the ellipse circumscribing the object, and ∆Ae is the difference between the area
of the ellipse circumscribing the object and the area of the object. Besides this, the eccentricity (E) of
an ellipse is the ratio of the distance from the center to the foci to the distance from the center to the
vertices. It expresses the elongation degree of an ellipse/object as follows [24]:

E =

√
1−

Rmin

Rmax
(2)

where Rmin and Rmax are the minimum and maximum distances from the foci of the object to the
contour of the object, which is delineated by a circle. A value of zero indicates a linear object. The shape
analysis of skin lesions was conducted as follows: (i) the central position of the lesion (barycenter)
was located using the pixel coordinates in the horizontal and vertical directions and the first-order
moments m0,1 and m1,0; (ii) the orientation of the lesion shape was determined using the second-order
moments m2,0, m1,1, and m0,2 to compute the major axis orientation and the major and minor axis
lengths. Only the number of pixels of the analyzed object and the elliptic contour were considered and
adapted to the size regardless of the size of the skin lesion.

Accordingly, several measurements were calculated as follows.
The circularity (CIRC) excludes the local irregularities and indicates the deviation from a circular

shape [25]:

CIRC =
4πA

P2 , (3)
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where A and P are the area and perimeter of the object, respectively. Perimeter was measured by
counting the number of pixel edges forming a border between pixels inside the object from the pixels
outside the object, and the area as the sum of pixels inside of the object.

To measure the feature of asymmetry of color distribution (Q), the lesion was divided according to
the major axis. The chi-square distance (Qx) was computed using the histograms of both components,
as follows [8]:

Qx(e1, e2) =
N∑

i=1

(e 1(i)−e2(i))
2

e1(i)+e2(i)
, x = R, G, B, (4)

where e1 and e2 are histograms of size N for each axially separated component of the lesion.
This technique was applied for the R, G, and B components. The asymmetry of color distribution (Q)
was computed as the average of the asymmetry scores of each component R, G, and B.

A quadrant asymmetry (ň) feature for skin lesion discrimination was used to compute a set of four
new features of asymmetry. This feature is an adapted version of the method proposed in [9]. The skin
lesion border mask was divided into four quadrants (each 128 × 128 pixels). The centroids and centers
of mass of the whole lesion image and each quadrant were determined. Then, the asymmetry feature
for quadrant i was computed as [10]

ňi =

(
Qk

Li

)(
oQi

oLi

)
, i = 1, 4, (5)

where k = 1 for nevi and k = 2 for melanoma. Qi is the area of the object (nevus or melanoma) and
Li is the area of the lesion in the particular quadrant i. oQi is the distance from the centroid of the
lesion within quadrant i to the centroid of the lesion, and oLi is the distance from the center of mass
of the lesion within quadrant i to the center of mass of the lesion. The quadrant asymmetry (ň) was
computed as the average of the quadrant asymmetry features ňi.

Hu’s moments were computed using the shape boundary information and relationships among
the pixels inside the region [11–13]. Hu’s seven moments contain much redundant information.
Hu’s invariant moments use the central moments, which integrate translation and scale normalization.
The moments F1 to F6 are translation, size, and rotation invariant. F7 is skew invariant. We analyzed in
our approach only the moments F6 and F7:

F6= (η 20−η02)((η 30+η12

)2
−(η 21+η03)

2) + 4η11( η 30+η12)(η 21+η03), (6)

F7= (3η 21−η03)(η 21+η03)(3(η 30+η12

)2
−(η 21+η03)

2 ) − (η 30− 3η12)(η 21+η03)(3(η 30+η12

)2
−(η 21+η03)

2), (7)

where ηij, i + j ≥ 2 denotes invariance concerning both translation and scale. The major weakness of
Hu’s theory is that it does not provide for the possibility of any generalization.

The FFT normalization amplitude feature computed as a Fourier transform descriptor is introduced
to analyze the shape characteristics of lesions. The discrete form of the fast Fourier transform (FFT)
is [6]

F(p, q) =
M−1∑
m=0

N−1∑
n=0

f(m, n)e−j 2πmp
M e−j 2πnq

N (8)

where p = 0,1, M − 1; q = 0,1, N − 1. According to FFT analysis, the Fourier amplitude can be written
as follows:

F(u) = R(u) + jI(u), (9)

where R(u) and I(u) are the real and imaginary parts of the transforming data; j is the square root of −1;
u = 1, 2, . . . , N − 1. The FFT normalization amplitude acts as an analyzed feature and contains shape
orientation. It is as follows:

FFT =
||Fu||

||F0||
(10)
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where ||Fu|| indicates the norm of the amplitude of F(u) or the Fourier spectrum, and ||Fu0|| is the
amplitude of the 0th Fourier descriptor.

Finally, the AUC and the ROC curve were used to estimate the effectiveness of a selected feature by
comparison with a perfect classifier (a perfect classifier has an AUC of 100%). If AUC < 0.6, the selected
features are irrelevant for the proposed goal. ROC plots were made of the sensitivity versus the
false alarm rate (i.e., 1—specificity). The sensitivity or the detection probability was computed as
TP/(TP + FN) and the specificity or false alarm probability was TN/(TN + FP), where TP is true positive,
FN is false negative, TN is true negative, and FP is false positive.

2.4. The Proposed Feature Selection Method

These steps of the proposed method are illustrated in Figure 3.

Figure 3. Proposed feature selection method.

3. Results and Discussion

To evaluate the performance of the proposed feature selection procedure, 170 color digital images
(70 melanomas and 100 nevi) from the Digital Archive of the Department of Dermatology of the
University Medical Center in Groningen (UMCG) were used [26]. In this study, the programming
environment was MATLAB R2018a. The hardware experimental environment consisted of an Intel (R)
Core (TM) i3-4030U x64-based processor, 1.9 GHz CPU, 4 GB installed memory (RAM), and 64-bit
operating system.

The present work is based on the features selected using the proposed procedure to differentiate
between benign nevi and melanoma lesions. The proposed features describe the structure of the skin
lesions and the appearance differences between benign and malignant. A total of eight features were
quantified for each lesion type and dataset. The ROC curves and AUC are illustrated in Figure 4.
Table 1 shows the average values of the performance measures

The area under the curve (AUC) for AI (asymmetry index) is 0.81 for raw images and 0.89 for the
processed images, showing very good separation between the malignant melanoma and benign lesions.
Similarly, for feature E (eccentricity), the AUC values are 0.75 (D1) and 0.77 (D2), indicating good
separation between malignant melanoma and nevi. The CIRC, Q, and ňfeatures show values of area
under the ROC plot ranging from 0.51 to 0.58, indicating modest separation of the two classes. The FFT
normalization amplitude has an AUC of 0.64 for raw images and 0.69 for images in dataset D2 and
presents average separation of the two classes. F6 and F7 Hu’s invariant moments have AUC values of
0.71(D1)/0.77(D2) and 0.61(D1)/0.66(D2), respectively. F6 has good separation, while F7 has average
separation between malignant melanoma and benign lesions.
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Figure 4. Receiver operating characteristic (ROC) curves and area under the curve (AUC) for
discriminating melanoma from nevi in the D1 and D2 datasets: (a) AI (asymmetry index) and
E (eccentricity) features; (b) circularity (CIRC) and FFT normalization amplitude features; (c) asymmetry
of color distribution (Q) and quadrant asymmetry (ň) features; (d) F6 and F7 Hu’s invariant moments.

Table 1. The sensitivity, specificity, and accuracy of the analyzed features for the original (D1) and
processed (D2) images.

AI Feature E Feature CIRC Feature FFF Feature Q Feature ň Feature F6 Feature F7 Feature

Sensitivity (D1) 0.98 0.90 0.81 0.53 0.61 0.67 0.68 0.76
Sensitivity (D2) 0.84 0.94 0.81 0.80 0.63 0.65 0.72 0.62
Specificity (D1) 0.64 0.66 0.32 0.76 0.57 0.46 0.80 0.51
Specificity (D2) 0.87 0.63 0.35 0.51 0.58 0.53 0.82 0.71
Accuracy (D1) 0.82 0.78 0.57 0.65 0.59 0.57 0.74 0.64
Accuracy (D2) 0.85 0.79 0.58 0.66 0.61 0.59 0.77 0.67

In terms of sensitivity and specificity, the asymmetry index, for images in D2, shows balanced
accuracy of correct classification for melanoma and nevi (Table 1). Conversely, eccentricity and the FFT
normalization amplitude (for dataset D2) indicate sensitivity of 0.94/0.80 versus specificity of 0.63/0.51
and accuracy of 0.79/0.66, respectively. The eccentricity and FFT normalization amplitude are relevant
features for melanoma diagnosis. F6 Hu’s invariant moment is important for nevus diagnosis as its
specificity/sensitivity is 0.82/0.72 with accuracy of 0.772. F7 Hu’s invariant moment follows the same
trend, but the accuracy is 0.67 (D2). Asymmetry of color distribution (Q) and quadrant asymmetry (ň)
features showed no significant contribution as assessed by the sensitivity, specificity, and accuracy.

According to these results, two dominant uncorrelated features, AI (asymmetry index) and
E (eccentricity), are good candidates for skin lesion classification. They are geometric features and
indicate that melanoma usually shows important disturbances in terms of symmetry and regular
geometric shapes, and they can thus be discriminated from benign lesions. Also, the FFT normalization
amplitude can act as a descriptor of the skin lesion malignancy as it is built using the shape characteristics
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of lesions. On the other hand, the quadrant asymmetry (ň) feature failed to be a relevant feature for
classification. When the analysis is performed partially in quadrants, some information is lost and the
lesion discrimination results are not satisfactory. The asymmetry of color distribution (Q) describes the
biaxial asymmetry in terms of color distribution and shows inferior performance in comparison with
geometric features, despite the increased complexity of the extraction algorithm. However, this feature
has potential in the evaluation of malignancy when a set of features is generated by combining the color
and geometric features. The Hu’s moments characterize global features and are appropriate for shape
recognition. The F6 moment is translation, size, and rotation invariant and F7 is skew invariant. F6 is
more highly recommended for classification tasks than F7 but the computation process of both features
is quite complicated. For all proposed features, there were better results for processed images (D2).

Moreover, a comparison with previous studies that used the same dataset was conducted,
where Giotis et al. [26] proposed a classification system based on color and texture lesion descriptors
using the same image database. The automatically extracted features were combined with a set of
visual attributes provided by the examining physician. The most valuable features were selected using
a majority vote, and 81% diagnostic accuracy was reported. The cost of the computation process was
high, where the features were generated from images and visual features. Almaraz-Damian et al. [27]
proposed a computer-aided detection system for the detection and classification of melanoma skin
lesions. They used a fusion technique to concatenate the features provided by the ABCD rule and a
deep learning algorithm and used a mutual information metric to extract relevant information among
features. Then, some classifiers such as logistic regression, support vector machine with linear and
radial basis function (RBF) kernel, and vector machine algorithms were employed. The proposed
method achieved an accuracy of 92.40% but is computationally expensive. Accordingly, due to the
effectiveness of the proposed approach, it is suggested to compare the proposed approach with other
feature selection methods for benchmarking and other previous studies on dermoscopic images, such as
in [28–32]. In the future, we intend to migrate this method to a mobile application.

4. Conclusions

In this study, a set of eight features were investigated in terms of their potential to differentiate
melanoma from nevi. These features are devoted to asymmetry evaluation based on shape and
color assessment. Emphasis was placed on the evaluation of lesion shape and color, which are
expressed by various mathematical approaches. In an attempt to break out of the patterns of the ABCD
rule, we investigated an atypical feature, namely, the FFT normalization amplitude computed as a
Fourier transform descriptor that focuses on geometric signatures of the skin lesion using frequency
domain information. The asymmetry index and eccentricity, together with F6 Hu’s invariant moment,
are fairly competent in providing good separation between malignant melanoma and benign lesions.
Also, the FFT normalization amplitude feature should be exploited as it shows potential in classification.
Additionally, the AI (asymmetry index) feature is competitive for multiclass classification (melanoma
and nevus skin lesions), eccentricity and FFT normalization amplitude for melanoma diagnosis, and F6

and F7 Hu’s invariant moments for nevus diagnosis.
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